Probing Redox Reactions at the Nanoscale with Electrochemical Tip-Enhanced Raman Spectroscopy

Dmitry Kurouski, † Michael Mattei, ‡ and Richard P. Van Duyne*,†,‡

†Department of Chemistry and ‡Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States

Supporting Information

ABSTRACT: A fundamental understanding of electrochemical processes at the nanoscale is crucial to solving problems in research areas as diverse as electrocatalysis, energy storage, biological electron transfer, and plasmon-driven chemistry. However, there is currently no technique capable of directly providing chemical information about molecules undergoing heterogeneous charge transfer at the nanoscale. Tip-enhanced Raman spectroscopy (TERS) uniquely offers subnanometer spatial resolution and single-molecule sensitivity, making it the ideal tool for studying nanoscale electrochemical processes with high chemical specificity. In this work, we demonstrate the first electrochemical TERS (EC-TERS) study of the nanoscale redox behavior of Nile Blue (NB), and compare these results with conventional cyclic voltammetry (CV). We successfully monitor the disappearance of the 591 cm⁻¹ band of NB upon reduction and its reversible reappearance upon oxidation during the CV. Interestingly, we observe a negative shift of more than 100 mV in the onset of the potential response of the TERS intensity of the 591 cm⁻¹ band, compared to the onset of faradaic current in the CV. We hypothesize that perturbation of the electrical double-layer by the TERS tip locally alters the effective potential experienced by NB molecules in the tip–sample junction. However, we demonstrate that the tip has no effect on the local charge transfer kinetics. Additionally, we observe step-like behavior in some TERS voltammograms corresponding to reduction and oxidation of single or few NB molecules. We also show that the coverage of NB is nonuniform across the ITO surface. We conclude with a discussion of methods to overcome the perturbation of the double-layer and general considerations for using TERS to study nanoscale electrochemical processes.

KEYWORDS: Tip-Enhanced Raman Spectroscopy (TERS), Nanoscale Electrochemistry, Cyclic Voltammetry (CV)

Unraveling electrochemical process at the nanoscale is critical for understanding how electrode surface heterogeneity locally affects electron transfer processes in range of fields, including electrocatalysis and biological electron transfer. Electrochemical scanning probe techniques such as scanning electrochemical microscopy (SECM) and electrochemical scanning tunneling microscopy (EC-STM) provide nanoscale information about electrode surface structure. For example, Sun et al. recently demonstrated SECM imaging of the catalytic activity of individual Au nanoparticles with ~10 nm spatial resolution. EC-STM can achieve submolecular resolution imaging of the potential dependent configurations of adsorbed electroactive molecules, such as porphyrins, on a well-defined electrode surface. However, neither technique provides direct chemical information about the molecules undergoing nanoscale electron transfer reactions. Spectroscopic techniques, such as surface-enhanced Raman spectroscopy (SERS) and fluorescence microscopy, offer such chemical information and have been used to optically probe nanoscale electrochemical processes involving single molecules. For example, Cortés et al. recently demonstrated that oxidation and reduction of a single molecule can be observed using SERS and that the potentials at which single molecule redox events occur depend strongly on the local surface environment. However, neither SERS nor fluorescence microscopy is capable of selectively monitoring electrochemical processes at a particular location of interest in the electrode surface. Clearly, a technique is needed which can combine the high spatial resolution electrochemical mapping provided by SECM and EC-STM with the sensitivity and selectivity of SERS to elucidate the effects of nanoscale electrode features on local heterogeneous charge transfer.

Tip-enhanced Raman spectroscopy (TERS) is a powerful tool that exploits the localized surface plasmon resonance (LSPR) of a Ag or Au scanning probe to locally enhance the Raman scattering of molecules in the tip–sample junction by at least a factor of 10⁶. Its unique combination of subnanometer spatial resolution, single-molecule sensitivity, and rich vibrational information makes TERS the ideal tool for studying redox reactions at the nanoscale. Recently, the...
utility of TERS for monitoring and spectroscopically mapping reactions at the nanoscale was demonstrated using the photocatalytic conversion of 3-nitrothiophenol to 3′-dimer-captoazobisbenzene.24–26 Extending TERS to electrochemical environments would uniquely provide chemically specific imaging of redox processes across nanoscale electrode features. TERS has been demonstrated previously in an aqueous environment27 and very recently under electrochemical conditions,28 but probing an electrochemical reaction with TERS has not yet been realized. In this work, we demonstrate, for the first time, the use of TERS for directly monitoring of the structural changes of a redox active molecule during the electron transfer process in the nanoscale tip–sample junction. We then discuss the major challenges to using electrochemical TERS (EC-TERS) for nanoscale mapping of heterogeneous charge transfer processes.

ITO coverslips (18 × 18 mm, 8–12 Ω, SPI Supplies) were cleaned by sonication in pure ethanol (VWR International) for 30 min. After the coverslips were dried under argon, a few drops of 170 μM ethanolic solution of NB (Sigma-Aldrich) was placed on their surface and exposed for 3–4 s. The excess of NB solution was removed from the ITO by thorough rinsing with pure ethanol. The coverslips were then dried under argon flow. The ITO coverslip (working electrode) was fixed at the bottom of the 2 mm Kelp wet-cell (Agilent, Supporting Information (SI) Figure S1) and sealed by epoxy (Araldite). A silver wire (0.25 mm diameter, Alfa Aesar) was attached to the top of ITO coverslips (18 × 18 mm) as the counter electrode and reference electrode, respectively. Laser power was adjusted with a neutral density filter wheel (ThorLabs) and was directed into the back port of an inverted Nikon TE-2000U microscope, reflected off of a 10/90 beam splitter, and directed upward into 1.3 NA through a long-pass filter (LP03-633RS-25, Semrock). The light was then filtered (LP03-633RS-25, Semrock). The light was then focused into a 1/3 mm spectrometer (SP2300, Princeton Instruments), dispersed (1200 grooves/nm, 500 nm blaze), and imaged with a liquid N\textsubscript{2}-cooled CCD camera (Spec10:400BR, Princeton Instruments).

A double-beam spectrophotometer (Cary 5000, Agilent) was used to measure absorbance spectra of 10 μM oxidized and reduced NB in phosphate buffer (pH = 7.1, Sigma-Aldrich). Nile blue was chemically reduced using 0.1 M sodium dithionite (Sigma-Aldrich). MATLAB and GRAMS/Al 7.0 were used for all data processing. All potentials are quoted relative to Ag/AgCl.

To demonstrate the feasibility of electrochemical TERS, the redox dye Nile blue (NB) was chosen as a prototypical molecule. NB undergoes a two-electron one-proton reduction at pH > 6, as demonstrated previously by Ni et al. (Scheme 1).30

Scheme 1. Redox Reaction of NB at pH > 6

As shown in Figure 1, the reduced and oxidized forms of NB (NB\textsubscript{RED} and NB\textsubscript{OX}) have distinctive features in their respective UV–vis absorption spectra. Most notably, the disruption of the conjugation in the central ring of NB upon its reduction results in the disappearance of the strong absorption features at 602 and 634 nm (Figure 1). NB\textsubscript{RED} absorbs most strongly in the blue and near-UV regions, with prominent features at 261, 362, and 405 nm. In our EC-TERS experiment, we used 633 nm

Nano Letters

Letter
continuous wave excitation to exploit the resonance Raman effect for probing NBOX. Therefore, the Raman spectra of NBOX reported in this work are tip-enhanced resonance Raman (TERR) and surface-enhanced resonance Raman (SERR) spectra. For simplicity, we will refer to spectra of both NBOX and NBRED as TER and SER spectra throughout this manuscript.

Using the apparatus shown in SI Figure S1, we acquired TER spectra of NBOX at various applied potentials. Representative TER and EC-SER spectra of NBOX and NBRED acquired at applied potentials of 0.0 V and −0.6 V, respectively, are shown along with corresponding SER spectra in Figure 2a. The EC-TER and EC-SER spectra are in good agreement with each other. The majority of NBOX bands experience very small (1−3 cm$^{-1}$) shifts upon reduction. These shifts are consistent with the changes assigned to NBRED by Ni et al. using SERS with 488 nm excitation and by Cortés et al. using SERS with 633 nm excitation. Notably, Cortés et al. also observed that the 591 and 1641 cm$^{-1}$ bands of NBOX are only about 1 order of magnitude more intense than those of NBRED at 633 nm, despite the strong electronic resonance of NBOX at this wavelength. We observe a comparable decrease in Raman intensity for these two bands upon NB reduction. Following literature precedent, we therefore tentatively assign the spectra acquired at −0.6 V vs Ag/AgCl to NBRED. Quantitative vibrational assignments of NBOX and NBRED using time-dependent density functional theory (TD-DFT) are currently underway in our lab to verify our detection of NBRED. In lieu of these theoretical assignments, qualitative vibrational assignments from the literature are given for NBOX in SI Table S1.

There are several more prominent changes in the spectrum, which are highlighted in Figure 2b and c. The difference spectra (black curves) in these two panels highlight the most pronounced spectral changes. In Figure 2c, the 1376 cm$^{-1}$ mode is much more intense relative to the 1354 cm$^{-1}$ band for NBRED than for NBOX. Further, the 1354 cm$^{-1}$ band of NBOX shifts by 5 cm$^{-1}$ to 1349 cm$^{-1}$ in the spectrum of NBRED. The shoulder at 1193 cm$^{-1}$ in the spectrum of NBOX also shifts by 10 cm$^{-1}$ to 1203 cm$^{-1}$ for NBRED. A full list of spectral changes resulting from reduction is given in SI Table S1. Additionally, it is important to note that there are differences in the TER spectra of NBOX and NBRED relative to the corresponding SER spectra. For example, the relative intensities of the 1376 and 1585 cm$^{-1}$ bands in the SER spectra of NBRED are much larger than in the TER spectra. We attribute these discrepancies to differences in the binding strength and orientation of NB on the ITO vs Au surface. However, both the TERS spectra and the SERS spectra show consistent changes in the spectra of NBRED relative to NBOX. Therefore, differences in molecule−surface interactions on ITO and Au do not appear to significantly affect the potential response. All differences

Figure 1. UV−vis spectra of oxidized (NBOX) (a) and reduced (NBRED) (b) NB. NBRED was produced by chemical reduction of NBOX with sodium dithionite. The extinction coefficients of NBOX (M$^{-1}$ cm$^{-1}$) at the following wavelengths are: $\lambda = 279$ nm, $\epsilon = 26\,000$; $\lambda = 325$ nm, $\epsilon = 7\,300$; $\lambda = 602$ nm, $\epsilon = 43\,000$; $\lambda = 634$ nm, $\epsilon = 47\,000$. For NBRED, the extinction coefficients (M$^{-1}$ cm$^{-1}$) at various wavelengths are $\lambda = 261$ nm, $\epsilon = 24\,000$; $\lambda = 362$ nm, $\epsilon = 5\,800$; $\lambda = 405$ nm, $\epsilon = 3\,800$; $\lambda = 633$ nm, $\epsilon = 100$.

Figure 2. (a) EC-TER (on ITO) and EC-SER (on Au) spectra of NBOX (blue) and NBRED (red) vs Ag/AgCl. The asterisk denotes leaked room light. (b) and (c) Selected regions of the EC-TER spectra of NBOX (blue) and NBRED (red) vs Ag/AgCl and difference spectra (black) highlighting spectral changes in NB resulting from reduction. Spectra in (b) and (c) are normalized such that the 1354 and 1184 cm$^{-1}$ bands have the same intensity for both species. All spectra are offset along the intensity axis for clarity.

DOI: 10.1021/acs.nanolett.5b04177
voltammograms in (e) are the average of four experiments. We therefore expect the disappearance of the NBOX monolayer assuming NB lies on the surface with ΔEpc = 110 mV and ΔEpa = 50 mV, respectively. The cathodic (Epc) and anodic (Epa) peaks are located at −0.24 V and −0.19 V vs Ag/AgCl, respectively, corresponding to a peak separation (ΔEpa) of 50 mV and Epa ∼ −0.215 V. By integrating the CV in Figure 3c, we obtain a charge of 4.2 × 1014 μC/cm² and 0.40 μC/cm², respectively (∼0.62 μC/cm² and 0.40 μC/cm², respectively, corresponding to 1.9 × 1012 molecules/cm², or ∼0.02 monolayer assuming NB lies flat on the surface with ∼1 molecule/nm²). We therefore expect the disappearance of the NBox TERS signal to exhibit behavior opposite that of the charge, that is, the NBox TERS signal will decrease as the cathodic charge increases and increase as the anodic charge becomes more negative.

As the potential is scanned from 0 V vs Ag/AgCl to −0.6 V, the intensity of the 591 cm⁻¹ band of NBox begins to increase linearly at −0.4 V and levels off at −0.2 V. As expected, the TERS intensity—potential profile for the 591 cm⁻¹ band strongly resembles the mirror image of the charge vs potential curve in Figure 3d. However, we observe a shift in the potentials at which reduction and oxidation occur as observed by TERS relative to the CV. Although the onset of the cathodic current in the CV occurs at −0.13 V, the TERS intensity does not begin to decrease until −0.3 V. Similarly, the onset of anodic current in the CV occurs at −0.3 V, whereas the TERS intensity begins to reappear at −0.4 V. Therefore, the TERS potential response is shifted more than 100 mV further negative than the conventional voltammetric response in Figure 3c. To verify that the shift of the optical response relative to the CV is specific to the near-field response, we have also monitored the fluorescence of NB on ITO and SERS of NB on Au. A full discussion of these results is provided in the Supporting Information (Figures S3 and S4).

Further, we observed that the TERS intensity—potential profiles from multiple experiments show nearly identical shifts relative to the conventional CV (vide infra). This consistency...
suggests that the shift observed in the TERS voltammogram relative to the CV is likely the result of some perturbation by the tip rather than local variations in the formal potential (E°) across the electrode surface.\(^1\)\(^2\)\(^3\) Specifically, reduction of NB in the tip–sample junction is energetically less favorable (oxidation is more favorable) than reduction (oxidation) across the bulk of the ITO surface. There are several possible explanations for the shift in the TERS response relative to the CV. A subensemble of NB molecules may be trapped between the AFM tip and the ITO surface, limiting the electrochemical accessibility of the NB molecules contributing to the TERS response. Alternatively, we hypothesize that the tip locally perturbs the structure of the compact layer in the electrical double-layer. Distortion of the double-layer structure locally alters the effective potential experienced by the NB molecules in the tip–sample junction such that a larger overpotential is required for reduction.

In light of the perturbation of the local interfacial structure by the tip discussed above, it is necessary to examine whether the tip impacts the heterogeneous electron transfer kinetics of the NB molecules directly beneath it. In Figure 3d, the potential by which half of the anodic charge has passed is ~0.24 V vs Ag/AgCl (corresponding to $E_{pc,TERS}$), whereas the potential by which half of the cathodic charge has passed is ~0.19 V (corresponding to E_p). Analogously, we define the cathodic TERS “peak potential” ($E_{pa,TERS}$) to be the potential by which half of the initial intensity at 591 cm$^{-1}$ has been lost and the anodic TERS “peak potential” ($E_{pa,TERS}$) to be the potential by which half of the intensity has returned. Using these definitions, we find that $E_{pa,TERS} = -0.435$ V vs Ag/AgCl and $E_{pc,TERS} = -0.290$ V.

The voltammetric peak separation measured by TERS ($\Delta E_{p,TERS}$) is ~145 mV, which is significantly larger than the 50 mV peak separation measured by conventional CV. This increase in peak separation suggests that the tip may also locally slow down the heterogeneous charge transfer kinetics in the junction or locally increase the uncompensated resistance.\(^3\) To investigate whether the tip impacts the kinetics of NB reduction and oxidation in the tip–sample junction, we examined the dependence of the TERS intensity–potential profiles on scan rate.

TERS voltammograms were acquired using scan rates of 5, 10, 20, and 30 mV/s (Figure 4). For all four scan rates, the behavior of the intensity–potential profiles is nearly identical. If the tip did locally slow the charge transfer kinetics of NB, we would expect $\Delta E_{p,TERS}$ to increase as the scan rate increases.\(^3\) However, no clear trend is observed in the behavior of $\Delta E_{p,TERS}$ as a function of scan rate. Therefore, we conclude that the kinetics of NB reduction and oxidation are not perturbed significantly enough to be detected in the TERS voltammogram within this range of scan rates. In conventional analysis of cyclic voltammetry, an increase in peak separation cannot be energetic in nature and must either correspond to slowed electron transfer kinetics or increased uncompensated resistance.\(^3\) This contradiction between TERS voltammetry and conventional CV analysis suggests that the use of $E_{pc,TERS}$, $E_{pa,TERS}$, and $\Delta E_{p,TERS}$ as diagnostic parameters for nanoscale voltammetry requires more thorough consideration.

The major assumption in the definition of these three diagnostic parameters is that the TERS intensity is directly proportional to the number of molecules occupying the tip–sample junction. This is not necessarily the case. In order to understand the dependence of the TERS intensity on the number of molecules reduced or oxidized, one must consider the distribution of the enhanced electric field in the junction. Simulations of the field distribution in the hot spot beneath the tip have shown that the intensity of the electric field decays dramatically with increasing radial distance from the tip apex.\(^3\) Although all molecules located in the tip–sample junction will contribute to the TERS intensity, those closest to the apex of the tip will experience the greatest enhancement, whereas those on the periphery will experience less. As such, not all molecules in the junction contribute equally to the TERS intensity. Thus, it is reasonable to expect that although the TERS intensity–potential profile in Figure 3e strongly resembles the mirror image of the charge vs potential curve in Figure 3d, the quantitative relationship between the two curves is not straightforward without precise knowledge of the distribution of molecules within the hot spot.

Further, because TERS is a nanoscale measurement, very few molecules are being probed in our EC-TERS experiments. The surface excess of NB on the ITO surface determined from integration of the CV (vide supra) is 1.9×10^{12} molecules/cm2 (~0.02 monolayer). To estimate an upper limit for the number of molecules probed in our EC-TERS experiments, we assume that TERS probes a circular area with radius (R_{TERS}) equal to half of the tip radius of curvature ($R_{tip} = 20$ nm).\(^3\) Using these criteria, we estimate that fewer than 10 molecules are probed in our EC-TERS experiments. It is reasonable to expect that the subensemble of NB molecules contributing to the TERS voltammogram will not have directly analogous behavior to the thermodynamic distribution probed by conventional CV. Therefore, although $E_{pc,TERS}$, $E_{pa,TERS}$, and $\Delta E_{p,TERS}$ are seemingly reasonable diagnostic parameters analogous to those typically used in conventional voltammetry, theoretical relationships between TERS intensity and charge must be developed in order to properly analyze nanoscale TERS voltammetric data. A thorough investigation of the behavior...
of TERS voltammetry compared to conventional voltammetry is currently underway in our laboratory. We have directly observed the electrochemical behavior of few NB molecules consistent with our coverage estimate (vide supra). TERS voltammograms were acquired at four different locations on the ITO surface as a proof of concept for spectroelectrochemical TER mapping (Figure 5). In some of the TERS voltammograms (most prominently in Figure 5b), there are clearly step-like features corresponding to the reduction and oxidation of single or few molecules. In contrast, the TERS voltammogram in Figure 5d shows a continuous linear response. We hypothesize that the coverage of NB on the ITO surface is nonuniform. In areas of lower coverage (perhaps where isolated molecules are adsorbed), step-like behavior is observed as individual or few molecules are reduced and oxidized. In areas with higher coverage, the behavior of the individual molecules cannot be resolved, and the linear response corresponding to a higher local coverage of NB.

The authors declare no competing financial interest.

REFERENCES

