Resonance Raman Spectroelectrochemistry. 6. Ultraviolet Laser Excitation of the Tetracyanoquinodimethane Dianion

Richard P. Van Duyne,a,b Mary R. Suchanski,1c Joseph M. Lakovits,1a Allen R. Siedle,1d Keith D. Parks,1a and Therese M. Cotton1a,e

Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201, and the Central Research Laboratories, 3M Company, St. Paul, Minnesota 55101. Received November 27, 1979

Abstract: The resonance Raman spectrum has been obtained for the electrogenerated dianion of tetracyanoquinodimethane (TCNQ) upon excitation of its lowest energy electronic transition (λmax 330 nm) with a frequency doubled, flashlamp-pumped, Rhodamine 640 dye laser. For comparison we report the normal Raman spectrum of solid Li2TCNQ·THF. The electron transfer induced frequency shifts for the second reduction step of TCNQ2− are measured and interpreted using the π-bond order changes determined from SCF–MO–CI and INDO/S electronic structure calculations as well as the π-bond length changes determined from a MNDO–SCF–MO calculation. Finally, the TCNQ2− Raman data is used to identify the oxidation state of TCNQ in the coordination complex [Co(acacen)(py)2]2+TCNQ.

Introduction

It is now widely recognized that the observables in resonance Raman spectroscopy (RRS) (viz., vibrational frequency, resonance-enhanced vibrational symmetry type, number and intensity pattern of overtones, and depolarization ratios) and their laser excitation wavelength dependence represent sensitive probes of the molecular and electronic structure changes that can occur in molecules. Such structure changes are commonly induced by chemical modification, electron-transfer (ET) reactions, and optical excitation. Our primary motivation for applying RRS to the study of molecular and electronic structure changes stems from a long-term interest in developing a detailed description of ET processes. In particular we have been concerned with evaluating the role of intramolecular vibrational energy dissipation processes in highly exothermic, homogeneous, ET reactions.2-7 To compare such ET theories with experiment, information is needed concerning the magnitude of the specific structural changes (viz., bond length, vibrational frequency, and anharmonicity) which occur within the donor and acceptor molecules during an ET process. In addition we are interested in studying the molecular and/or electronic structure changes that accompany the partial ET reactions involved in the formation of donor–acceptor, charge-transfer complexes that behave as one-dimensional, organic, electrical conductors.8-12 Hence the technique of resonance Raman spectroelectrochemistry (RRSE) was developed13 as a convenient means of coupling the observational sensitivity of RRS for monitoring molecular and electronic structure changes with the ability of electrochemistry to initiate and cleanly carry out successive one-electron transfer reactions.

Tetracyanoquinodimethane (TCNQ) was chosen for study by RRSE because it is a strong electron-acceptor molecule,8 is the acceptor half of the prototype one-dimensional, organic metal tetrathialfulvalene–tetracyanoquinodimethane8,9 (TTF–TCNQ) and exhibits two successive, one-electron reductions that are both chemically and electrochemically reversible in deoxygenated, aprotic solvents:14

TCNQ0 (1A) + e− ⇌ TCNQ− (2B3g) (1)

TCNQ− (2B3g) + e− ⇌ TCNQ2− (1A) (2)

RRSE with visible ion laser lines has been used to obtain the RRS of the 2B3g (vib., D2h point group) ground state of the...
TCNQ radical anion. The vibrational frequency shifts associated with the first reduction step (eq 1) for most of the totally symmetric normal modes of TCNQ have been obtained by comparing the RRS of TCNQ^{-}eq with the pre-RRS of TCNQ. The νC=N stretch, the νC=0 exocyclic C=C stretch, and the νC–C ring stretch showed the largest 1e$^{-}$ transfer induced frequency shifts (viz., $\Delta \nu = -31 \text{ cm}^{-1}$, $\Delta \nu = -64 \text{ cm}^{-1}$, and $\Delta \nu = +28 \text{ cm}^{-1}$.)

In order to measure the vibrational frequency shifts and other properties associated with the second one-electron reduction step of TCNQ (eq 2), we require the RRS of TCNQ$^{2-}$ (lA). Although we were initially led to believe that this spectrum could be obtained with visible laser excitation frequencies, further study showed that TCNQ$^{2-}$ absorbs only in the ultraviolet with maxima at 330, 240, and 210 nm. Continuing advances in laser technology, particularly in tunable dye lasers, have provided new opportunities for the chemist to exploit the RR phenomenon. Ultraviolet RRS is now practical using the discrete UV frequencies available from Ar$, Kr$, and He-Cd lasers, and the tunable UV radiation available from frequency doubled, pulsed dye lasers.

This paper reports the ultraviolet RRS of electrogenerated TCNQ$^{2-}$ (lA) using a frequency doubled, flashlamp-pumped, dye laser as the excitation source. The RRS of TCNQ$^{2-}$ in solution is compared with the CW Ar$^+$ laser excited NRS of solid dillithium tetracyanoquinodimethanide tetrahydrofururate (Li$_2$TCNQTTHF). The vibrational frequency shifts accompanying the second reduction step of TCNQ are reported and analyzed by comparison with the π-bond order changes and bond-length changes obtained from various electronic structure calculations on TCNQ$^{-}$ (BD$_3$) and TCNQ$^{2-}$ (A$_2$). Finally the utility of this new Raman data on TCNQ$^{2-}$ as an aid in the identification of the TCNQ oxidation state in a Co(II) coordination complex will be demonstrated.

Experimental Section

Materials. The sources of and purification methods for TCNQ have been previously described. Solutions of TCNQ (5 X 10$^{-4}$ M) in acetonitrile with tetrabutylammonium perchlorate (TBAP, ca. 0.1 M) as the supporting electrolyte were thoroughly degassed by repeated freeze-pump-thaw (F-P-T) cycles under diffusion pump vacuum and stored under high-purity nitrogen. TCNQ$^{2-}$ (lA) was electrochemically prepared by controlled-potential electrolysis in a vacuum tight cell (Figure 1) at $-0.95 \text{ V vs. a platinum quasi-reference electrode (PtQRE)}$. Both coulometry and UV–vis absorption spectroscopy showed that the two-electron reduction under these conditions is complete (i.e., $n_{ele} = 2.00 \pm 0.02; \lambda_{max}$ (TCNQ$^{2-}$) 330 nm, $\epsilon = 3.1 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$), and reversible (i.e., $Q_{in}/Q_{out} = 0.99 \pm 0.02$; λ_{max} (TCNQ$^{2-}$) 390 nm, $\epsilon = 7.0 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$). The total duration of the reversal coulometry experiment was 4 X 10$^{-3}$ s so that the Q_{in}/Q_{out} ratio of ca. 1 indicates the chemical stability of TCNQ$^{2-}$ for at least this length of time.

Dillithium tetracyanoquinodimethanide tetrahydrofururate (Li$_2$TCNQTTHF) (1) was prepared in 90% yield by the addition of 2 equiv of n-butyllithium to 1,4-bis(dicyanomethylene)benzene in tetrahydrofurane. The white precipitate was isolated by Schlenk filtration and drying under high vacuum. Anal. Calcd for C$_{14}$H$_8$Li$_2$N$_2$O$_4$: H, 4.44. Found: C, 66.25; N, 19.31; H, 4.43. Either in solution or in the solid state, it was extremely sensitive to oxygen and moisture, turning red after brief exposure to air.

Oxidation of 1 in tetrahydrofurane with excess tetracyanoethylenediamine purple LiTCNQ$^{2+}$ in 81% yield. Alkylation was achieved by stirring a benzene suspension of 1 with methyl fluorosulfonate to form 1,4-bis(1,4-dicyanomethylene)benzene (2), in 27% yield: mp 185 °C; δ (acetone) = 7.95 (s, 2 H) and ≈ 2.30 (s, 3 H) ppm; IR (KBr) 2250 (acen) and 1730 (C=C) cm$^{-1}$. Calcd for C$_{16}$H$_{14}$N$_4$: H, 5.12. Found: C, 71.52; H, 4.19. Electron impact fragmentation of 2 occurred by loss of methyl groups and the mass spectrum showed peaks at m/z 234 (M$^+$, 20), 219 [M – CH$_3$]$^+$, 100, and 204 [M – 2CH$_3$]$^+$, 11. The reaction of 1 with deuterium chloride in anhydrous tetrahydrofurane produced the deuterated derivative in 90% yield, δ (acetone) = 8.90 ppm, m/e 208.

The cobalt(II) Schiff's base chelate N,N'-ethylenebis(acetylaminoiminato)cobalt(II), Co(acacen), was prepared by the method of Carter. Anal. Found: C$_{17}$H$_{16}$CoN$_2$O$_2$: C, 51.07; H, 6.54; N, 9.96. The 2:1 complex of this compound with TCNQ in the presence of pyridine (py)$_3$(Co(acacen))(py)$_2$TCNQ (3), was prepared according to method 2 of Basolo et al. Anal. Calcd for C$_{39}$H$_{28}$CoN$_2$O$_2$: H, 5.54; N, 15.52. Found: C, 62.20; H, 5.89; N, 15.29.

Apparatus. The general experimental arrangement for carrying out RRSE experiments in bulk solution using controlled-potential electrolysis (coulometry) as the electrogeneration mode has been previously described. The great reactivity of TCNQ$^{2-}$ toward atmospheric oxygen combined with its UV absorption properties has, however, necessitated some modifications of the previously described electrochemical cells, laser excitation sources, and photon detection electronics.

A low-volume (viz., ca. 5-10 mL), vacuum tight (viz., ca. 10$^{-3}$ Torr) spectroelectrochemical cell was designed specifically for the RRSE studies of TCNQ$^{2-}$ as well as for the radical ions involved in photosynthesis. This one cell, shown in detail in Figure 1, provides the capability for carrying out the following experiments on the same electroactive sample: (1) cyclic voltammetry; (2) double potential step chronocoulometry and chronocoulometry; (3) cyclic differential pulse voltammetry; (4) UV–vis electronic absorption spectroscopy in either a 1.0-cm or a 0.1-mm (viz., a 0.0-mm quartz spacer can be inserted in the normally 1.0-cm cell) path length cell; (5) RRS in either the F–P–T side arm or in the spectrophotometric cell. All of the electroanalytical experiments employing the micro-working electrode angle as well as the spectroanalytical experiments can be carried out before and after bulk electrolysis at the macro-working electrode. The vacuum spectroelectrochemical cell is first charged with solids in a drybox (viz., the electroactive compound and the supporting electrolyte), attached to a vacuum line, and pumped down to 10$^{-2}$ Torr to dry these materials. Bulk-to-bulb transfer of previously dried and degassed nonaqueous solvent completes the cell loading operation. Since these various manipulations may require tipping the loaded cell on its side, an evacuated auxiliary solution side arm is provided to trap the auxiliary electrode compartment solution, which may contain fluorescent materials, so that it will not contaminate the solution in the working electrode compartment. All-quartz construction provides UV transparency.

The laser excitation source for these experiments is a pulsed, flashlamp-pumped, tunable dye laser fitted with intra-cavity frequency doubling crystals (Chromatix, CMX-4) for UV generation rather than the CW argon ion laser pumped dye lasers used previously. The pulsed dye laser was operated with Rhodamine 640 dye (Exciton) which produced ca. 2.5 mW average power at 330 nm and 10 Hz repetition rate. A 1.0-m holographic grating, double monochromator (Jobin-Yvon Raman HG-2) was used in second order in conjunction with a cooled (-20 °C), high quantum efficiency photomultiplier tube (PMT = RCA C31034) to detect the UV RR scattered photons from the TCNQ$^{2-}$ sample.

The photon detection electronics and signal processing system consists of a gain = 200 pulse amplifier (Ortec Model 9301/9302)
connected to the PMT which produces a current pulse that is identical in shape with the laser excitation pulse (viz., approximately Gaussian with fwhm = 1 μs). This current pulse, representing the UV RR signal, is integrated over a 10us gating interval in the signal channel of a dual-channel gated integrator. This gate interval was selected as a compromise between minimizing uncorrelated system noise and clipping the RR signal due to pulse-to-pulse laser triggering jitter. The reference channel of the gated integrator was used to monitor the laser pulse energy with a UV filtered photomultiplier tube (RCA 1 P 28). The output signals from both reference channels of the gated integrator were ratioed and averaged using an analog multiplier unit (Princeton Applied Research Model 230). The output of the multiplier was converted to a TTL pulse train with a voltage-to-frequency converter and recorded by standard TTL pulse counting electronics. The entire UV RRSE experiment is controlled by a Nova 2/10 mini-computer equipped with 65K bytes of memory, dual floppy disks, a CRT terminal, a line printer, and an incremental plotter.

Methods. Both RR and NR spectra are excited using backscattering geometry with S1-UV grade quartz collection and focusing optics. The laser beam is focused to a slit-shaped image on the cell, the Raman scattered light is collected and focused, and then the image on the cell, is rotated 90° with a dove prism to match the horizontal slits of the double monochromator. The Raman spectra obtained on solid powder samples (viz., compounds 1 and 3) employed the CW Raman instrument described previously.3,4,5,16 Solid samples were spun and liquid samples stirred to provide relative motion between the laser beam and the sample focal spot so that laser-induced thermal decomposition could be minimized.

Results and Discussion

RRSE of TCNQ^2^- and NRS of Li_2TCNQ-THF. The UV excited RRS of electrochemically generated TCNQ^2^- is presented in Figure 2. This spectrum was recorded in segments, combined, and smoothed using the computer algorithm based on the simplified least-squares method of Savitsky and Golay.36 Four of the totally symmetric fundamentals of TCNQ^2^- are clearly seen in this spectrum and are assigned by analogy with the previous results on TCNQ^2^- and TCNQ^--(2B_2g)14 as ν2 1615 cm^-1 (predominantly C==C and C==C ring stretching but this normal mode also contains some exocyclic C==C stretching and some C==H bending character), ν3 1311 cm^-1 (ring C==C stretch + exocyclic C==C stretch), ν5 1191 cm^-1 (C==H bend), and ν7 739 cm^-1 (ring C==C stretch + exocyclic C==C stretch). A possible fifth totally symmetric mode is observed with very low S/N and could be assigned as ν2 2119 cm^-1 (C==N stretch). The absence of the other five totally symmetric modes (viz., ν1 C==H stretch, ν6 ring C==C stretch + exocyclic C==C stretch, ν8 exocyclic C==C stretch + C==C==N bend + C==C==C bend, ν9 C==C==C ring bend + C==C==N bend, and ν10 C==C==N bend + C==C==C bend) from the TCNQ^2^- RR spectrum shown in Figure 2 indicates that the bond-length changes corresponding to these normal modes undergo only very small displacements when TCNQ^2^- is excited in the region of its lowest electronic transition with the UV laser. The intensity of RR lines is directly proportional to the bond-length changes that accompany excitation of a molecule into an excited state. When these bond-length changes are small, the exciting laser power is low, and the background signal is relatively high, as is the case in these TCNQ^2^- RRS experiments, it is very difficult to observe such lines.

Supporting evidence for the validity of the TCNQ^2^- RR spectrum and the proposed assignment comes from the CW argon ion laser excited (viz., 457.9 nm) NR spectrum of Li_2TCNQ-THF (1). This spectrum is shown in Figure 3A. Five totally symmetric fundamentals are clearly observed and assigned as ν2 2102 cm^-1; ν3 1614 cm^-1, ν4 1300 cm^-1, ν5 1200 cm^-1, ν7 740 cm^-1. No bands in the NRS of 1 correspond to the known vibrations of tetrahydrofurane.37,38 The assertion that compound 1 is, in fact, a solid-state TCNQ^2^- containing species is further supported by infrared and 'H NMR data. The IR spectrum of 1 in a Nujol mull contained absorptions at 2180 (s) and 2105 cm^-1 (s) that can be assigned as ν(CN). In addition there are other absorptions at 1375, 1040 (m), and 820 cm^-1 (m). The 'H NMR spectrum of 1 in dimethyl-d_6 sulfoxide contained a singlet at δ 6.53 (1 H) and two complex multiplets centered at δ 3.62 and 1.75, 1 H each, due to the AB
Table I. Totally Symmetric Raman Fundamentals of TCNQ0, TCNQ$^-$ and TCNQ$^{2-}$

<table>
<thead>
<tr>
<th>Mode</th>
<th>ν_i</th>
<th>$\Delta \nu_i$</th>
<th>Solidb</th>
<th>ν_i</th>
<th>$\Delta \nu_i$</th>
<th>Solidc</th>
<th>ν_i</th>
<th>$\Delta \nu_i$</th>
<th>Solidd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_1</td>
<td>457.9 nm</td>
<td>3048 cm$^{-1}$</td>
<td>457.9 nm</td>
<td>329.8 nm</td>
<td>391 cm$^{-1}$</td>
<td>647.1 nm</td>
<td>2192 cm$^{-1}$</td>
<td>2192 cm$^{-1}$</td>
<td>2119 cm$^{-1}$</td>
</tr>
<tr>
<td>ν_2</td>
<td>2223</td>
<td>1600</td>
<td>1602</td>
<td>1613</td>
<td>1608</td>
<td>1389</td>
<td>1379</td>
<td>1311</td>
<td>1300</td>
</tr>
<tr>
<td>ν_3</td>
<td>1453</td>
<td>1454</td>
<td>1192</td>
<td>1207</td>
<td>724</td>
<td>729</td>
<td>739</td>
<td>740</td>
<td>740</td>
</tr>
<tr>
<td>ν_4</td>
<td>948</td>
<td>707</td>
<td>711</td>
<td>724</td>
<td>612</td>
<td>609</td>
<td>612</td>
<td>609</td>
<td>609</td>
</tr>
<tr>
<td>ν_5</td>
<td>598</td>
<td>331</td>
<td>334</td>
<td>336</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
</tr>
<tr>
<td>ν_6</td>
<td>331</td>
<td>334</td>
<td>336</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
<td>341</td>
</tr>
</tbody>
</table>

a From ref 14. b From ref 39. c LiTCNQ; from ref 40. d Li3TCNQ-THF; this work. e Solution-phase frequency shifts according to the convention in note 15. f Split band in solid state; components are 1394 and 1379 cm$^{-1}$.

Table II. Bond-Order and Bond-Length Changes in TCNQ

<table>
<thead>
<tr>
<th>K_i</th>
<th>$\Delta \rho_{i,1}$</th>
<th>$\Delta \rho_{i,2}$</th>
<th>$\Delta \rho_{i,3}$</th>
<th>$\Delta \rho_{i,4}$</th>
<th>$\Delta r_{i,1}$</th>
<th>$\Delta r_{i,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>-0.09</td>
<td>-0.10</td>
<td>-0.05</td>
<td>-0.081</td>
<td>+0.2</td>
<td>+1.6</td>
</tr>
<tr>
<td>K_2</td>
<td>+0.13</td>
<td>+0.15</td>
<td>+0.140</td>
<td>+0.100</td>
<td>-0.2</td>
<td>-2.1</td>
</tr>
<tr>
<td>K_3</td>
<td>-0.20</td>
<td>-0.23</td>
<td>-0.212</td>
<td>-0.182</td>
<td>+3.9</td>
<td>+4.3</td>
</tr>
<tr>
<td>K_4</td>
<td>+0.09</td>
<td>+0.13</td>
<td>+0.065</td>
<td>+0.051</td>
<td>-1.7</td>
<td>-1.1</td>
</tr>
<tr>
<td>K_5</td>
<td>-0.05</td>
<td>-0.08</td>
<td>-0.031</td>
<td>-0.032</td>
<td>+0.1</td>
<td>+0.9</td>
</tr>
</tbody>
</table>

a Assignments from ref 39. b $\Delta \rho_{i,1} = \rho_i(TCNQ^-) - \rho_i(TCNQ^0)$; $\Delta \rho_{i,2} = \rho_i(TCNQ^{2-}) - \rho_i(TCNQ^-)$; ρ_i from ref 16. c From ref 42. d $\Delta r_{i,1} = r_i(TCNQ^-) - r_i(TCNQ^0)$; $\Delta r_{i,2} = r_i(TCNQ^{2-}) - r_i(TCNQ^-)$; r_i from ref 44.

spin pattern of the coordinated tetrahydrofuran. This data should be compared to the 1H NMR spectrum of 1,4-bis(di-(dicyanomethyl))benzene, the starting material, which exhibited singlets at $\delta_{acetone}$ 7.90 (2 H) and 6.20 (1 H). These IR and NMR data suggest that TCNQ$^{2-}$ is effectively a 1,4-disubstituted benzene containing two electropositive substituents.

Table I summarizes the totally symmetric vibrational data for TCNQ0, TCNQ$^-$, and TCNQ$^{2-}$ in both the solid state and in solution. Also listed in Table I are the observed vibrational frequency shifts which accompany the successive one-electron transfer steps (i.e., reductions) for TCNQ in solution. It should be noted that the discrepancies between the observed frequencies for the totally symmetric modes of the electrolytically generated TCNQ$^{2-}$ and chemically generated solid-state TCNQ$^{2-}$ in the form of the dihydrogen salt, I, are small enough to be understood in terms of a lithium cation perturbation, such as that found in comparing electrolytically generated TCNQ$^-$ and chemically formed LiTCNQ solid, rather than a fundamental structural difference. The data compiled in Table I clearly show that modes ν_2 and ν_4 are the most sensitive to changes in the electronic structure of the TCNQ moiety. These two modes are therefore expected to be highly selective vibrational diagnostics for determining the oxidation state of TCNQ in charge-transfer complexes and coordination complexes (see below).

Analysis of the ET Induced Vibrational Frequency Shifts.

In our earlier work on the first reduction step of TCNQ, we developed an approximate method for the analysis of the ET induced frequency shifts. This method was based on the comparison of the observed frequency shift with a calculated, π-bond order change, $\Delta \rho_{i,\text{total}}$, for each of the i normal modes. The bond-order changes for each of the individual bond stretching internal coordinates, ρ_{i}, were obtained from electronic structure calculations on TCNQ0 and TCNQ$^-$ based on the SCF-MO-CI[6] and INDO/S[22] procedures. The $\Delta \rho_{i}$ were then weighted by the fractional contribution that a particular bond stretching coordinate, K_i, makes to the potential energy distribution (PED) for each totally symmetric normal mode. The PED used was that from the work of Girlando and Pecile[30] on the normal coordinate analysis (NCA) of TCNQ0. Angle bending coordinates are assigned PED weighting factors of zero in computing the total PED weighted bond order change, $\Delta \rho_{i,\text{total}}$, for each normal mode from

$$\Delta \rho_{i,\text{total}} = \sum (\text{PED}) K_i \Delta \rho_i$$

(3)

We would now like to extend this analysis to the case of the second electron-transfer step in TCNQ (eq 2). An extension of our previous analysis is also possible since Pecile et al.[43] have published the PED for TCNQ$^-$ and Dewar and Rzepa[44] have carried out additional electronic structure calculations on TCNQ0, TCNQ$^-$, and TCNQ$^{2-}$ using a MNDO-SCF-MO formalism. Since Dewar and Rzepa have reported bond lengths, r_i, calculated from MNDO results rather than bond orders, comparison with experiment will be done by computing a total, PED weighted bond length change, $\Delta R_{i,\text{total}}$, for each normal mode from

$$\Delta R_{i,\text{total}} = \sum (\text{PED}) K_i \Delta r_i$$

(4)

Thus we are now in a position to compare the experimentally determined ET induced vibrational frequency shifts for the two successive TCNQ reduction steps with the results of three different electronic structure calculations and two different potential energy distribution calculations.

Table II lists the bond-order and bond-length changes which accompany the first and second electron-transfer processes for TCNQ as determined from the theoretical electronic structure calculations.16,42,44 These results were combined with the PEDs for TCNQ0 and for TCNQ$^{2-}$ to generate the total, weighted bond-order and bond-length changes shown in Tables III and IV, respectively. The measured frequency shifts show qualitative agreement with both the sign and magnitude of the weighted bond-order and bond-length changes. Two anomalies
do, however, appear. First, the weighted bond-length change computed for \(\nu_3 \) in the TCNQ\(^+\) formation process is virtually zero, whereas this mode is found experimentally to show a substantial change in frequency. We attribute this anomaly to a deficiency in the MNDO calculation of the C==N bond length change since (1) the C==N stretch dominates the PED for the \(\nu_3 \) normal mode and (2) both bond order change calculations are in agreement with the observations. Second, there is no correlation whatsoever between the \(\nu_3 \) frequency shift and either the weighted bond-order or bond-length changes. The \(\nu_3 \) mode frequency is observed to be almost insensitive to TCNQ oxidation state and yet there are substantial changes in the total bond-length and bond-length changes for both ET processes. The reasons for this disagreement are not completely clear at this time, but the following suggestions can be offered: (1) mode \(\nu_3 \) is independent of the PED in TCNQ; (2) the electronic structure calculations fail drastically for this mode; or (3) both PEDs are markedly in error for this mode. Possibility (1) does not seem likely owing to the fact that the PED and normal modes are linked through the NCA. Possibility (2) is also difficult to rationalize since the internal coordinates involved in \(\nu_3 \) are also involved in other normal modes for which the weighted bond orders do work. Consequently, possibility (3) is regarded as the most likely explanation. That the PED is in error for this mode is given some additional credence by the fact that the NCA is only capable of reproducing the observed TCNQ\(^0\) frequencies within \(\pm 7.5 \) cm\(^{-1}\) \(^{39}\) and the NCA for TCNQ\(^+\) gives a calculated \(\nu_3 \) frequency which is 26 cm\(^{-1}\) lower than the observed value.

It should also be pointed out that the experimentally measured ET frequency shifts and their relationship to electronic structure changes can also be used as an aid to the assignment of RR excitation spectra. The RR excitation spectra obtained by excitation into the region of the \(2\text{B}^2\) \(-\rightarrow\) \(2\text{B}^2\) transition of TCNQ\(^-\) with a tunable CW dye laser are highly structured. The energy separations between the maxima in these RR excitation spectra can be used to deduce the excited state vibrational frequencies for certain totally symmetric normal modes of TCNQ\(^-\). Thus one can obtain approximate values for the vibrational frequency shifts associated with the optically excited, intramolecular electron rearrangement process:

\[
\text{TCNQ}^- (2\text{B}^2) + h\nu_{\text{laser}} \rightarrow \text{TCNQ}^- (2\text{B}^2) \quad (5)
\]

The \(\Delta \rho_i \) associated with process 5 can also be obtained from certain electronic structure calculations and are generally found to be smaller than the \(\Delta \rho_i \) for the corresponding one-electron intermolecular transfer. Therefore, one expects that the excited-state frequencies for TCNQ\(^-\) should be smaller than the corresponding frequency for TCNQ\(^+\) but larger than the frequencies for TCNQ\(^-\). This criterion was used to restrict the search range of \(\nu_3 \) in the attempt to fit the observed RR excitation spectra of TCNQ\(^-\). The identification of the TCNQ Oxidation State in a Co(II) Coordination Complex. Basolo and co-workers have formulated compound 3, which is a diamagnetic, air-stable, brown solid, as the \([\text{Co} (\text{acac}) (\text{py})_2]^+\) salt of TCNQ\(^-\) rather than as the nitride bonded dimer.\(^{46}\)
except for reaction 1609,\[\text{TCNQ}^{-}\].

The convention $\Delta\nu = \nu_{i}(\text{final state}) − \nu_{i}(\text{initial state})$ is used in this paper.

Cotton, T. M.; Van Duyne, R. P. manuscript in preparation.

define the oxidation state of the TCNQ in 3. The Raman spectrum of 3 obtained using the 647.1-nm line of a Kr+ laser is shown in Figure 3B. The Kr+ laser frequency was used to minimize sample fluorescence. At this excitation wavelength one expects to obtain NRS for TCNQ[4] and TCNQ[2] but RRS for TCNQ[2]. The bands at 339, 610, 677, 715, 1187, 1387, 1609, 1494, and 2192 cm$^{-1}$ are assigned to the resonance enhanced ν_A, ν_B, ν_C, ν_D, ν_E, and ν_F bands of trace quantities of TCNQ$^{-}\$ formed adventurously during the preparation and isolation of 3. The 431- and 481-cm$^{-1}$ lines are also found in the NRS of the Co(II) Schiff's base chelate. The 647-, 1024-, and 1048-cm$^{-1}$ peaks are assigned to Co(II) coordinated pyridine. The bands at 2164, 1492, and 1465 cm$^{-1}$ cannot yet be confidently assigned. The remaining Raman lines at 2106, 1304, 1194, and 731 cm$^{-1}$ can be readily attributed to the ν_2, ν_3, ν_4, and ν_5 modes of TCNQ$^{-}\$ by comparison with the NRS of Li$_2$TCNQ-THF and the RRS of electrogenerated TCNQ$^{-}\$ in CH$_3$CN solution. The ν_3 mode of TCNQ$^{-}\$ in 3 is probably masked by the strong, resonance enhanced ν_3 line of TCNQ$^{-}\$, considering the insensitivity of this mode to electronic structure changes (see Table I). The small deviation from exact congruence between the spectral lines of TCNQ$^{-}\$ in 3 and in 1 can be rationalized in terms of cation size effects by analogy with the results of studies on the effects of cation size on the vibrational frequencies of solid TCNQ$^{-}\$ salts.40 The present Raman data on 3, especially the clear presence of the two most electronic structure sensitive modes (ν_2 and ν_4) in Figure 3B, support Basolo's original formulation of this compound as containing TCNQ$^{-}\$. In view of the extreme ν_2 sensitivity of both electrogenerated TCNQ$^{-}\$ and solid-state Li$_2$TCNQ-THF, it is interesting to note that the large cation [Co(acacen)(py)$_2$]$^{2+}$ is apparently able to shut off the ν_2 decay reaction of TCNQ$^{-}\$ leading to the α-dicyno-p-toluoyl cyanide anion (DCTC$^{-}\$)17 (at least for periods of many days) as evidenced by the lack of bands corresponding to DCTC$^{-}\$ in Figure 3B.

Conclusion

We have measured the RR spectrum of electrogenerated TCNQ$^{-}\$ and the frequency shifts which accompany its formation from the radical anion. A reasonable qualitative correlation between these shifts and the weighted bond-order and bond-length changes was obtained for all of the observed modes except ν_3. Finally this new Raman data was used to determine that the TCNQ in the coordination complex [Co(acacen)-(py)$_2$]$_2$TCNQ is in fact TCNQ$^{-}\$.

Acknowledgments. The authors wish to thank Professor Fred Basolo for helpful discussion, Dr. Thomas Szymanski for the preparation of the Co(acacen), and Dr. David L. Jeanmaire for his general assistance and interest in this problem. The support of this research by the National Science Foundation under Grants CHE 74-12573 A03 and CHE 75-15480 is gratefully acknowledged. In addition R.P.V. acknowledges support from the Alfred P. Sloan Foundation (1974–1978). M.R.S. acknowledges an Electrochemical Society Summer Fellowship (1975). J.M.L. acknowledges partial financial support from the 3M Co., and T.M.C. acknowledges an IBM Postdoctoral Fellowship.