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Abstract

I construct a continuous time model of strategic default and provide a numerical algorithm
that solves it. I compare the results and computation times to standard discrete time models of
sovereign debt. The method proposed here is faster than discrete time computation methods
while obtaining similar quantitative results. The few differences between the models can all
be attributed to a feature in continuous time that is absent in discrete time, costly deleveraging.
I solve three variants of the model. The first includes short term maturity bonds only and a
constant risk-free interest rate. The second allows for stochastic fluctuations in the risk-free
rate. Finally, I extend the model to allow for long term maturity bonds.
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1 Introduction

One of the promising developments in macroeconomics during the past few years has been the ap-

plication of continuous time methods to incomplete-markets models. Such methods have been ap-

plied in Brunnermeier and Sannikov (2014) to study financial frictions in a macroeconomic model,

in Gabaix et al. (2016) to study the dynamics of inequality, and in Kaplan et al. (2016) to study

monetary policy with heterogeneous agents. This paper extends these methods to problems of

strategic default on unsecured debt. The contribution of this paper is twofold. First, I construct

and solve a continuous time model which expands the quantitative capabilities of strategic default

models as its solution is faster and can accommodate a large number of state variables. Second,

I show that the solution of the model is very similar to its counterpart discrete time model, and

that the few differences between the two can all be attributed to a feature in continuous time that

is absent in discrete time - costly deleveraging.

The benchmark model considered is a short-term debt model, a continuous time version of

Arellano (2008). A benevolent sovereign faces fluctuations in its domestic output and can save

or borrow using short-term debt contracts. The stochastic process for the sovereign’s output is

not continuous over time but features jumps. At any point in time, the sovereign can choose to

default on its debt obligations. If the sovereign defaults, it is excluded from financial markets

for a stochastic period of time during which it suffers an output loss. Risk-neutral international

investors with access to a risk-free world interest rate buy the sovereign bond. In addition to

the risk-free interest rate, the bond carries a premium corresponding to the risk of default. The

sovereign takes into account the interest rate schedule when making its debt issuance decision. I

propose a numerical method to solve the sovereign’s problem, study the business cycle statistics of

the economy, and compare them to the solution of the discrete time version of the model. Finally, I

show how to extend the analysis to different environments, e.g., allowing the government to issue

long-term maturity bonds.

I calibrate the benchmark model according to Arellano (2008) and study the differences between

the business cycle statistics of the model in continuous time to the ones in discrete time. As op-

posed to discrete time short-term debt models, where the researcher can control the maturity

length of sovereign bonds by choosing the length of a period in the model, short-term bonds in

continuous time mature in high-frequency. So one drawback of modeling short-term sovereign

debt in continuous time is that it abstracts from the maturity length of bonds. In the calibrations

considered, I find that this drawback is rather minor as the quantitative results of the continuous-

time and discrete-time models are quite similar.

While business cycle statistics of the discrete-time Arellano (2008) model and its continuous-

time counterpart are overall similar, there are two notable differences regarding the behavior of

the trade balance and of spreads. In continuous time, the trade balance is less counter-cyclical and

the average spread is lower. These differences are not driven by the different maturity length of
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sovereign bonds, but rather by one main feature of the continuous time model - costly delever-

aging.

The main difference between discrete time models of sovereign debt and the models presen-

ted in this paper is that in the latter deleveraging is more costly. Consider a negative endowment

shock which increases the sovereign’s risk of default, as well as the spread, holding fixed the sov-

ereign’s debt level. In the discrete-time environment, the sovereign can immediately decrease its

stock of debt which needs to be payed in the following period. This action decreases the probab-

ility of default, so that the sovereign does not face the high equilibrium spreads which it would

if it kept its level of debt unchanged. In the continuous time version of the model, on the other

hand, a negative jump in the stock of debt is not feasible. The negative endowment shock moves

the sovereign into a region of higher spreads from which it cannot instantaneously escape. De-

leveraging in continuous time is costly both because the sovereign faces higher spreads during the

deleveraging process, and because quick deleveraging can only be done by cutting consumption

considerably.

Costly deleveraging alters equilibrium outcomes along several dimensions. The continuous-

time sovereign1 is worse off at any point on the state space in which the discrete-time sovereign

chooses to decrease its debt obligations. Denote by the default frontier the set of points on the state

space for which the sovereign is indifferent between defaulting and repaying its debt. Whenever

the discrete-time sovereign is indifferent between defaulting and deleveraging, the continuous

time sovereign prefers to default. For low and medium endowment levels, the discrete-time sov-

ereign chooses not to deleverage on the default frontier, and is constrained to hold its level of

debt fixed.2 For high endowment levels, the discrete-time sovereign chooses to deleverage when

it is on the default frontier. Therefore, the default region of both sovereigns is similar for low and

medium endowment levels but it is larger for the continuous-time sovereign for high endowment

levels. In addition, policy functions of the sovereign in the two frameworks are remarkably sim-

ilar for low and medium levels of endowment. For high levels of endowment and small levels of

debt, both sovereigns choose to increase their debt. However, the discrete-time sovereign does so

faster as the continuous-time sovereign has a lower incentive to reach a high level of debt asso-

ciated with a high spread. So the continuous-time sovereign exhibits lower counter-cyclicality of

the trade balance.

Since deleveraging is costly, the continuous-time sovereign tries to avoid regions of the state

space associated with high spreads. This cautious behavior leads to a lower average spread in

the continuous-time framework. However, negative endowment shocks do occasionally move

the sovereign to regions of high spread from which it cannot immediately escape. So while the

average spread is lower, the volatility of spreads is similar to the discrete-time environment. This

1From here onwards I use ‘continuous-time sovereign’ to refer to the sovereign in the continuous time environment,
and ‘discrete-time sovereign’ for the discrete time environment.

2On the default frontier the sovereign cannot increase its debt obligations as this would lead to an immediate default.
This is explained in details in section 2.
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implies that the coefficient of variation, the ratio between the volatility of the spread to its mean,

is higher in the continuous-time environment. As Aguiar et al. (2016) explains, matching the high

volatility of the spread in the data as well as the low probability of default is a difficult challenge

for quantitative sovereign debt models. The continuous time environment helps overcoming the

challenge for the same reason that deleveraging is costly. Avoiding high spreads following a

negative endowment shocks by instantaneously cutting the level of debt is infeasible.

The numerical method proposed takes advantage of sparse matrix operations. It is between

two to fifty times faster than discrete time solution methods, depending on the density of the grid.

It’s comparative advantage is in analyzing a dense asset grid as it does not add many non-zero

elements to the sparse matrix used in computations. There is an additional computational ad-

vantage when solving long-term debt models. In discrete-time models, it is notoriously difficult

to compute the interest rate schedule as it involves solving a fixed point problem. Chatterjee and

Eyigungor (2012) discusses this difficulty and shows how in order for the value functions to con-

verge one needs to add an additional state variable to the problem, a noise to the endowment

process of the sovereign. In the continuous time framework, on the other hand, finding the in-

terest rate schedule is a simple task as it boils down to a simple sparse matrix inversion. Finally,

I show how one can use the Kolmogorov Forward equations to obtain the ergodic distribution of

the model. The Kolmogorov Forward equations have an additional role in the context of hetero-

geneous agents, e.g., in models of consumer bankruptcy. They can be used to track the evolution

of assets traded by all agents.

In the final part of the paper, I solve a continuous time version of the long-term debt model

of Chatterjee and Eyigungor (2012). The quantitative results of the continuous-time and discrete-

time models are very similar. With long term maturity bonds, deleveraging is less costly than in

the benchmark model because acquiring back debt is cheap when the spread is high. While low

prices of long-term debt in bad states provide a welfare benefit also in discrete time,3 this benefit

is higher in the continuous time framework. Under Chatterjee and Eyigungor (2012) calibration,

I find that the optimal debt maturity in the continuous time framework is slightly longer than in

the discrete time framework. In discrete time the optimal debt maturity is the short-term one, a

one-quarter bond. In continuous time the optimal maturity length of the bond is, on average, 1.2

quarters.

This paper is related to several strands of the literature. First, it is related to the theoretical

and quantitative literature on sovereign debt building on the seminal work of Eaton and Gerso-

vitz (1981). It includes Arellano (2008) and Aguiar and Gopinath (2006) for short-term debt, and

Hatchondo and Martinez (2009), Arellano and Ramanarayanan (2012), and Chatterjee and Eyi-

gungor (2012) for long-term debt. This paper is also related to models of consumer bankruptcy

such as Chatterjee et al. (2007), Livshits et al. (2007), and Mitman (2016). While focusing on sover-

eign debt, the methods presented in this paper can also accommodate general equilibrium models

3Arellano and Ramanarayanan (2012) refers to this welfare benefit of long-term debt as the ‘hedging benefit’.

4



of consumer bankruptcy.

I build upon the work of Achdou et al. (2014), which shows how to solve incomplete-markets

heterogeneous-agents models in continuous time. They study an environment without default

and impose an exogenous borrowing limit, which is independent of the current endowment of

the agent. In contrast, I study an environment with a strategic default decision that implies an

endogenous borrowing limit on the sovereign.

This paper is not the first one to study models of sovereign debt in continuous time. Nuño and

Thomas (2015) studies the effects of monetary policy in a sovereign debt model using a continu-

ous time framework, and Tourre (2016) studies the behavior of bond spreads with a non-separable

utility function. Both papers use a Brownian-motion for the exogenous process of the sovereign’s

endowment so that endowment never jumps but moves continuously over time. While this as-

sumption makes the analysis simpler, as a smooth pasting condition can be used on the default

frontier, it makes the comparison to standard discrete time models difficult. For instance, these

papers can only study long-term debt as there are no defaults in equilibrium if debt is of short

maturity. The model presented in this paper can accommodate short-term debt, and the types

of defaults are similar to discrete time models. Both Nuño and Thomas (2015) and Tourre (2016)

do not compare the results of their models to ones they would have obtained in a discrete time

environment. Compared to Nuño and Thomas (2015) and Tourre (2016), this paper can be seen as

a bridge for understanding the underlying mechanism and differences between continuous time

and discrete time models of sovereign debt.

Another important paper which studies a model of sovereign debt in continuous time is Aguiar

et al. (2015). The authors study fiscal and monetary policy in a monetary union with the potential

of rollover crises on sovereign debt. As in the benchmark model I consider, they study short-term

maturity bonds. Since no exogenous variable in their model jumps over time, in the absence of

rollover risk the equilibrium does not feature sovereign defaults. They adopt the timing conven-

tion of Cole and Kehoe (2000), which gives rise to rollover crises – the source of sovereign defaults

in their model. In contrast to them, I abstract from rollover risk and study strategic sovereign

defaults in the spirit of Eaton and Gersovitz (1981).

The paper proceeds as follows. Section 2 presents the benchmark model of short term debt.

Section 3 contains the numerical method that solves the model. The calibration of the model, its

equilibrium, and the concept of costly deleveraging are presented in Section 4. Section 5 considers

the two extensions of the benchmark model, world interest rate fluctuations and long term debt.

Section 6 concludes.

2 Benchmark Model

In this section I present the benchmark model. It is a continuous time version of Arellano (2008).

A sovereign that faces fluctuations in its domestic output and a constant world interest rate op-
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timally chooses the amount of debt it holds over time. The sovereign may choose to default on its

debt obligations, in which case it is excluded from world financial markets for a stochastic period

of time and faces output losses. The strategic default decision implies that the interest rate the sov-

ereign pays on its debt depends on the probability of future default, and therefore on its current

state.

Time is continuous and denoted by t ∈ [0,∞). I assume the sovereign is a small open economy

so it takes the fixed world interest rate, rf , as given. The sovereign receives utility from aggregate

consumption which is denoted by ct. Its preferences are given by

E0

{∫ ∞
0

e−ρtu(ct)dt

}
,

where ρ > 0 is the discount factor, and the flow utility function, u(c), is strictly increasing, strictly

concave, differentiable, and satisfies Inada conditions. The sovereign receives a strictly positive

flow endowment yt at time t. I assume that yt follows a compound Poisson process with arrival

rate λy. That is, the flow endowment remains at its current level until a shock hits the economy.

The probability of the economy experiencing a shock in a time interval dt is λydt. Denote by y−

the flow endowment of the sovereign just before the shock hits the economy. When the shock

hits the economy, the new endowment of the sovereign is drawn from the conditional distribution

function F (y, y−).4

Figure 1 displays a sample path for the realization of endowment. It is critical that the en-

dowment process features stochastic jumps in order to observe defaults on the equilibrium path.

Consider, for example, a case in which endowment follows an Ornstein–Uhlenbeck process. This

is a common stochastic process considered in continuous-time economic models, which moves

continuously over time. In such case, if the sovereign is on the default frontier its probability of

going into the default region in any interval of time, however small it may be, is equal to 1. This

implies that the equilibrium interest rate on the default frontier is equal to infinity. Such interest

rate schedule enforces the sovereign to never be on the default frontier. So there are no defaults

on the equilibrium path.5

The sovereign can save and borrow using short term debt contracts that mature instantan-

eously. I denote the amount of assets held by the sovereign at time t by at. A negative value of

at is interpreted as debt obligations. Conditional on repayment of debt obligations, the law of

motion for at follows

dat = (yt − ct)dt+ r(Ωt)atdt , (1)

where r(Ωt) is the interest rate the sovereign receives on its assets (or pays on its debt), which is a

function of its current state denoted by Ωt. As I explain below, the current state of the sovereign
4I assume that this distribution function admits a joint density function denoted by f(y, y−) which satisfies∫∞

0
f(y, y−)dy = 1, for all y−.

5This argument holds when the only asset available to the sovereign is short term debt. In case of long term debt,
there may be defaults on equilibrium path even when the endowment process is continuous. Nuño and Thomas (2015)
and Tourre (2016) study such a case.
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Figure 1: Example of an Endownment Process
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Notes: a realization of an endowment process with arrival rate λy = 1. Upon realization of the shock
the new endowment is drawn from ln y = ρ ln y− + ε, with ρ = 0.945 and ε ∼ N (0, 0.0252).

is fully characterized by its current level of output and assets, and whether it is excluded from

international financial markets or not. The assumptions on u(c) imply that it is never optimal for

the sovereign to have at move in a discontinuous fashion. Notice that a discontinuous jump in at
can occur only if ct → ±∞. Inada conditions imply setting ct → ∞ is sub-optimal, and ct → −∞
is ruled out by non-negativity of consumption.

At any moment in time, the sovereign may choose to default on its debt obligations. In that

case, its outstanding debt is reset to zero and it is excluded from international financial markets

for a stochastic period of time. When excluded from financial markets, the sovereign suffers an

output loss of φ(y) so that its flow endowment is given by yt−φ(yt). The sovereign regains access

to international financial markets with Poisson intensity λD. So the average amount of time a sov-

ereign is excluded from financial markets after a default is 1
λD

.

Given the interest rate schedule, I can write the Hamilton-Jacobi-Bellman (HJB) equations for the

sovereign. Let us denote by w(·) the value function of a sovereign that is excluded from interna-

tional financial markets, and by v(·) the value function of a sovereign that is not. When excluded

from financial markets, the state of the sovereign is simply given by yt. Its HJB equation is given

by

ρw(y) = u(y − φ(y)) + λy

∫ ∞
0

(
w(y′)− w(y)

)
f(y′, y)dy′ + λD [v(0, y)− w(y)] . (2)
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The HJB equation of a sovereign that has access to international markets is given by

ρv(a, y) = max
c
{ρw(y),

u(c) + va(a, y) (y − c+ r(a, y)a) + λy

∫ ∞
0

(
v(a, y′)− v(a, y)

)
f(y′, y)dy′

}
. (3)

The first argument of the max represents the option of the sovereign to default. The second argu-

ment represents the option to repay debt obligations, choose the level of consumption and issue

new bonds. The derivative of the value function with respect to the asset level is denoted by

va(a, y). The term including va(a, y) in equation (3) represents the effect of changing the bond

holding position of the sovereign. Let the choice whether to default or not be denoted by D(a, y),

where it takes the value 1 for default, and 0 for no-default. Denote by D ⊆ A × Y the region

where the sovereign chooses to default. I assume that when the sovereign is indifferent between

repaying its debt and defaulting, it repays its debt. Conditional on choosing to repay its debt, I

can derive the necessary first order condition for optimal consumption decision,

u′(c(a, y)) = va(a, y) ,

where c(a, y) denotes the optimal consumption level of a sovereign with asset position a, and

current flow endowment y. In the appendix I show that the value function of the sovereign in the

region of no default is increasing in assets (decreasing in bond obligations), i.e., va(a, y) > 0. So

the implicit level of consumption that satisfies the equation above is strictly positive. Since the

value of a sovereign with no access to international markets does not depend on previous bond

holdings, this immediately implies the following Proposition.

Proposition 1. The default decision of the sovereign is of the threshold kind in bond obligations. That is,
for every level of endowment y, there exists a level of assets a(y) such that

D(a, y) =

{
1, if a < a(y) ,

0, if a ≥ a(y) .

The threshold level of bond holdings implies a borrowing constraint on the sovereign. Whenever

the sovereign is at state (a(y), y), it cannot increase its level of outstanding bond obligations.6 That

is, ȧ(a(y), y) ≥ 0, for all y. This borrowing limit implies the following state boundary constraint.

va(a(y), y) ≥ u′ [y + r(a(y), y)a(y)] , ∀y .

This condition ensures that for every level of endowment y,

c(a(y), y) ≤ y + r(a(y), y)a(y) ,

6The sovereign cannot increase its debt obligations as such decision would imply an infinite interest rate. This would
be clear when I derive the interest rate equation below.
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so that ȧ(a(y), y) ≥ 0. Thus, the model features an endogenous borrowing limit. The borrowing limit

the sovereign faces depends on its current output and is equal to the level of debt such that the

sovereign is indifferent between defaulting and repaying its debt obligations.

Let us now turn to the characterization of the interest rate schedule the sovereign faces. As-

sume risk neutral international banks have unlimited access to funds at the world interest rate,

rf . Perfect competition among themselves ensures that in expectation they make zero profits on

sovereign bond holdings. The expected interest on sovereign bonds in the region of no default,

(a, y) 6∈ D, is given by

E [dr(a, y)] = r(a, y)dt− λy
∫ ∞

0
D(a, y′)f(y′, y)dy′dt .

The first term is the repayment in case of no default, while the second term indicates the loss of

funds in case of a sovereign default. The zero profit condition in the region of no default then

implies

r(a, y) = rf + λy

∫ ∞
0

D(a, y′)f(y′, y)dy′ . (4)

This equation characterizes the interest rate in the region of no default. Notice that the interest

rate does not depend on the savings decision of the sovereign but only on the current state of the

sovereign. This is different than the interest rate schedule in discrete time. There, the interest rate

depends on the amount of debt in the following period and not on the stock of debt in the current

period. As debt obligations move continuously over time, there is no difference between “next

period’s” debt and the current level of debt in the model. In the default region,

r(a, y) =∞, ∀(a, y) ∈ D .

To see this, consider that the probability of receiving any return on debt in the default region is

lower than λydt so that the return on debt is of magnitude dt2.

3 Numerical Solution Methodology

This section describes the numerical algorithm that solves the model described in the previous

section. It can easily be extended to accommodate a more general structure of state variables and

accommodate modifications to the model. I show two extensions of the model in section 5, where

I consider long-term debt and world interest rate fluctuations.

The solution algorithm is based on a finite difference method using an upwinding scheme.

The algorithm is an extension to the method used in Achdou et al. (2014). In both models an

agent with access to non-state-contingent assets who faces idiosyncratic risk optimally chooses its

consumption level. However, in their model there is no default and an exogenous borrowing limit,

which is independent of the current endowment of the agent, is imposed. The benchmark model,

in contrast, features a strategic default decision that implies an endogenous borrowing limit. This
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section provides a comprehensive description of the numerical solution methodology, but I refer

the reader to Achdou et al. (2014) and its appendix for a detailed introduction on how to solve the

HJB equation using a finite difference method.

3.1 Solving the HJB Equation with a Finite Difference Method

I solve the problem on a discrete state space equidistant grid with I different points for endow-

ment levels, and J different points for asset levels. In its essence, this algorithm is a simple value

function iteration procedure. I start with a guess for the value functions and default decision. In

every iteration I obtain updated value functions using the current value functions and default de-

cision. The updated value functions imply an updated default decision and an updated interest

rate schedule. I stop whenever the updated and old value functions are sufficiently close.

Denote by vi,j the value function of a sovereign with access to financial markets, endowment

yi, and asset level aj . Denote by wi, the value function of a sovereign with no access to finan-

cial markets and endowment yi − φ(yi). Let the interest rate at state (aj , yi) be denoted by ri,j .

Rewriting the HJB equations (2) and (3) in their discrete form I have

ρwi = u(yi − φ(yi)) + λy

I∑
i′=1

(wi′ − wi) f(i′, i) + λD (vi,j0 − wi) ,

ρvi,j = max

{
wi, u(ci,j) + ∂avi,j (yi − ci,j + ri,jaj) + λy

I∑
i′=1

(
vi′,j − vi,j

)
f(i′, i)

}
,

where aj0 = 0, and f(i′, i) denotes the probability of jumping from endowment yi to yi′ conditional

on the arrival of an endowment shock. I use superscript n to denote the nth guess of the value

functions, consumption levels, interest rates, and default decision. The value function is updated

in every iteration using a semi-implicit method. The next guess of the value functions satisfies the

following equations

wn+1
i − wni

∆
+ ρwn+1

i = u (yi − φ(yi)) + λy

I∑
i′=1

(
wn+1
i′ − wn+1

i

)
f(i′, i) + λD

(
vn+1
i,j0
− wn+1

i

)
, (5)

vn+1
i,j − vni,j

∆
+ ρvn+1

i,j = u
(
cni,j
)

+ ∂av
n+1
i,j

(
yi − ci,j + rni,jaj

)
+ λy

I∑
i′=1

(
vn+1
i′,j − v

n+1
i,j

)
f(i′, i), for j ≥ dni , (6)

vn+1
i,j = vn+1

i,dni
, for j < dni , (7)

where ∆ is a numerical updating parameter. The choice of the value of ∆ is discussed at the end of

this section. The endogenous borrowing limit for output level yi is given by adi . The consumption

cni,j at the no-default region (j ≥ di) is determined using the following first order condition.

ci,j = u′−1 (∂avi,j)
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For ease of notation, in the equation above and in the following equations I omit the guess iteration

superscripts as all variables refer to the nth iteration. The value of ∂avi,j is approximated using a

finite difference method. When approximating this derivative, one can use either the forward or

backward derivatives,

∂Fa vi,j =
vi,j+1 − vi,j

da
, ∂Ba vi,j =

vi,j − vi,j−1

da
,

where da = aj+1 − aj is the density of the grid.7 Notice that I cannot compute the backward

derivative on the default frontier (di), as vi,di−1 = vi,di by construction. Instead of using the ap-

proximated derivative, I shall use the derivative that is implied by the state boundary constraint

in case it is binding. That is,

∂Ba vi,di = u′−1
(
yi + ri,d̄iadi

)
.

Additionally, I cannot obtain the forward derivative at the highest asset position on the grid .

However, for high enough asset levels the forward derivative is not used.

Assume that the flow utility is of the CRRA form with coefficient of relative risk aversion equal

to γ. This assumption makes the remaining exposition of the numerical method perspicuous,

but the method extends to any increasing and concave utility function. Using the approximated

derivatives, I can compute the consumption levels with the forward and backward derivatives as

follows.

cFi,j = ∂a
(
vFi,j
)− 1

γ , cBi,j = ∂a
(
vBi,j
)− 1

γ .

The budget constraint implies the savings decision using the backward and forward derivatives.

sXi,j ≡ ȧXi,j = yi − cXi,j + ri,jaj , for X ∈ {F,B}.

The upwinding scheme implies using the forward derivative whenever savings computed us-

ing the forward derivative are positive (sFi,j > 0), and the backward derivative whenever savings

computed using the backward derivative are negative (sBi,j < 0). Since the value function is con-

cave in assets, savings computed using the forward derivative are lower than savings obtained by

using the backward derivative. In the case savings are negative using the forward derivative, and

positive using the backward derivative, I use the consumption level that implies si,j = 0.

Having the consumption levels in hand, I can use equations (5) - (7) to obtain the updated

value functions, wn+1 and vn+1. These equations are all linear, so updating the value functions

narrows down to a simple matrix inversion. In the appendix, I explain how to efficiently do

this using sparse matrices. If the difference between the updated and previous value functions

is small enough, the value functions have been found. Otherwise, I need to update the default

decision and the interest rate schedule for the next iteration. The default decision is obtained in

the following way.

dn+1
i = max

{
j : vn+1

i,j ≤ w
n+1
i

}
.

7There is no subscript on da as I use an equidistant gird.
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The interest rate schedule in the region of no default, for the following iteration, can then be

computed as follows.

rn+1
i,j = rf + λy

I∑
i′=1

1j<dn+1
i′

f(i′, i) , ∀i, j s.t. j ≥ dn+1
i .

The interest rates at the default region are equal to infinity, but are not needed for the purpose

of updating the value function. Using the updated default decision and interest rate schedule I can

use equations (5) - (7) to repeat the procedure and update the value function again. I do so until

the value functions converge. The updating parameter in equations (5) - (6), ∆, plays an important

role in whether the value functions converge or not. A higher level of ∆ decreases the total number

of iterations until convergence is reached at the risk of having the value functions oscillate without

ever converging. I suggest starting with a high value of ∆ (I used 2 in all computations below).

Then, if the value functions do not converge, decrease the value of ∆ until convergence is reached.

3.2 Finding Model Statistics using the Kolmogorov Forward Equations

The solution to the HJB equations yields the policy functions, c(·) and s(·). With those in hand, we

may want to study business cycle statistics implied by the model. One way to do so is to simulate

the model over a long period of time and look at statistics observed from the simulation. In this

section, I present an alternative way to find the unconditional and various conditional statistics of

the model. This is done by using the Kolmogorov Forward (KF) equations.

Generally, the KF equations characterize how the probability that a stochastic process is in a

certain state changes over time. They are often used in heterogeneous agents models in continuous

time to describe the evolution of the distribution of agents across different states over time. The

KF equations in the benchmark model are given by

∂tΓ
ND (a, y, t) =− ∂a

[
s(a, y)ΓND (a, y, t)

]
− λyΓND (a, y, t) + λy

∫ ∞
0

f(y, ỹ)ΓND (a, ỹ, t) dỹ

+ λDΓD (y, t)1 (a = 0) , (8)

∂tΓ
D(y, t) =− λyΓD(y, t) + λy

∫ ∞
0

D(a, y)f(y, ỹ)ΓND (a, ỹ, t) dỹ − λDΓD(y, t) , (9)

where ΓND(a, y, t) is the probability the economy has access to international markets and its state

is (a, y) at time t. Equation (8) is defined for (a, y) such that the sovereign chooses to repay its

debt, i.e., D(a, y) = 0. For states in which the sovereign chooses to default ΓND(a, y, t) = 0 for

all t. ΓD (y, t) denotes the probability the economy has no access to international markets and its

endowment is equal to y at time t.

The first term in equation (8) describes movement into state (a, y) due to the savings decision

of the sovereign. If the sovereign always decides to hold assets constant, i.e., s(a, y) = 0, for all

(a, y), then this term is equal to 0. The second term in equation (8) and the first term in equation
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(9) describe the probability of moving away from the current state due to an endowment shock.

The following term describes movement into the state (a, y) from other endowment levels, ỹ, due

to an endowment shock. f(y, ỹ) is the joint density function of switching from endowment ỹ to

endowment y upon arrival of the endowment shock. Notice I integrate over ỹ and not y as this

term describes movement into endowment y and not from endowment y. The last term in both

equations describes the probability of regaining access to international financial markets.

Consider the unconditional distribution of the state of the economy of the sovereign. Define

them by Γ̄ND(a, y) and Γ̄D(y). This distribution must satisfy ∂tΓ̄
ND (a, y) = 0, and ∂tΓ̄

D (y) =

0. So the distribution which satisfies the KF equations with the following two conditions is the

unconditional distribution of the state of the economy.

After solving the value functions, finding the unconditional distribution boils down to invert-

ing a sparse matrix as I show in the appendix. This implies that this method for obtaining the

unconditional distribution is faster than simulating the model many times. The unconditional

distribution provides us, among other statistics, the unconditional probability of the sovereign

having no access to financial markets and the unconditional variance of the trade balance. The

Kolmogorov Forward equations can also be used to obtain some conditional moments, such as

the correlation of the trade balance and endowment conditional on the sovereign having access to

financial markets.

The benchmark model includes a single agent, the sovereign. However, it is important to note

that the Kolmogorov Forward equations have an additional role in the context of heterogeneous

agents. Consider a model of consumer bankruptcy where households can choose to reneg on their

debt obligations. The problem of the household in that context is almost identical to the problem of

the sovereign. The risk-free interest rate in the framework of consumer bankruptcy, as opposed to

a small open economy, may be endogenous and set such that markets clear. In such environment

one needs a way to track the evolution of assets traded by all agents. This can be achieved using

the Kolmogorov Forward equations presented in this section.

4 Results and Discussion

In this section, I calibrate the model according to Arellano (2008). The results of the continuous-

time model are overall quantitatively similar to the results of the discrete-time model. The few

differences can be attributed to a feature in continuous time that is absent in discrete time. This

feature is costly deleveraging. In continuous time, assets move continuously across time so a bad

endowment shock can move the economy into a region with high spreads for a short amount of

time. In discrete time, the level of assets can jump between two consecutive periods. So a high

spread due to a negative endowment shock can be avoided by an instant decrease in the level of

debt. Costly deleveraging induces the sovereign to refrain from high-spread regions. Accordingly,

the average spread in the benchmark model is lower than in the discrete-time Arellano model.
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Nevertheless, the volatility of spreads in the benchmark model is similar to the one in discrete

time. Negative shocks can move the sovereign into regions of high spreads from which it cannot

instantaneously escape. So the coefficient of variation of spreads in the benchmark economy, the

ratio between spread volatility to the average level of spreads, is about two times higher than in

the discrete-time economy.

The computing time for the benchmark grid considered is between two to fifty times faster

than standard discrete time computation methods. The continuous time methodology is relatively

more efficient in studying a denser grid of asset levels, and relatively less efficient in considering

denser endowment grids. In section 4.3 I discuss the source of the comparative advantage of the

continuous time method. Finally, I study the difference between statistics computed using Monte

Carlo methods as opposed to ones computed using the Kolmogorov Forward equations.

4.1 Calibration

Following Arellano (2008), the risk free interest rate, rf , is calibrated to 1.7%. The coefficient

of relative risk aversion, γ, is equal to 2. The discount factor, ρ, is calibrated to 4.81% so that

it corresponds to the quarterly discount factor in discrete time, β = 0.953. The probability of

switching from the bad credit state to the good one, λD, is equal to 0.282. The cost of default is

modeled as a maximum level of output that can be reached in the bad credit state. That is,

φ(y) =

{
0 if y < ȳ,

y − ȳ if y ≥ ȳ,

where ȳ is calibrated to 0.969E(y). Finally, I need to calibrate the stochastic process for output.

Assume that λy = 1 so that on average a shock occurs once a quarter. When a shock occurs, a

new productivity is drawn from a log-normal distribution with mean ρy ln y−. The persistence

parameter, ρy, is calibrated to 0.945 and the standard deviation of the shock is set to 0.025.

The benchmark grid consists of 601 asset grid points uniformly distributed between -1 and

0.5, and 51 output grid points uniformly distributed between 3 standard deviations below and

above the unconditional mean. The model is also solved on a coarse grid which consists of 301

and 25 asset and output grid points, respectively, and a dense grid with 1,801 and 151 asset and

output grid points. For the dense grid, the output grid points are uniformly distributed between

4 standard deviations above and below the unconditional mean.

4.2 Results and Costly Deleveraging

The left panel of Table 1 displays business cycle statistics of the sovereign for the different grids.

To be consistent with Arellano (2008), I simulate the model for 500,000 quarters and compute stat-

istics across episodes of 74 quarters prior to default. The right panel of this table contains the

corresponding business cycle statistics in the discrete time model. Even though the two models
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are not isomorphic, the qualitative and quantitative results are quite similar across the two. There

are four differences between the two models: (i) the volatility of the trade balance and the correl-

ation between the trade balance and output are about 20%-30% lower in continuous time, (ii) the

average spread is about 25% lower in continuous time, (iii) the debt to output ratio is about 15%

lower in continuous time, and (iv) the coefficient of variation for the spread is about 40% higher

in continuous time. In this section I explain the main feature driving these differences, costly

deleveraging.

Table 1: Business Cycle Statistics

Continuous time Discrete time

Benchm. Coarse A-fine Y-fine Fine Benchm. Coarse A-fine Y-fine Fine

Asset grid points 601 301 1801 601 1801 601 301 1801 601 1801

Output grid points 51 25 51 151 151 51 25 51 151 151

corr(c, y) 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98

corr(TB/Y, y) -0.18 -0.23 -0.16 -0.18 -0.15 -0.23 -0.23 -0.24 -0.23 -0.23

corr(rs, y) -0.31 -0.32 -0.31 -0.32 -0.29 -0.26 -0.16 -0.40 -0.30 -0.38

corr(rs, TB/Y ) 0.71 0.71 0.70 0.70 0.71 0.53 0.35 0.60 0.54 0.65

σ(y) 5.27 5.20 5.37 5.24 5.42 5.72 5.79 5.70 5.67 5.67

σ(c) 5.46 5.45 5.54 5.43 5.59 6.11 6.23 6.10 6.05 6.04

σ(TB/Y ) 0.72 0.80 0.71 0.73 0.70 1.15 1.25 1.15 1.09 1.09

σ(rs) 4.76 5.88 5.06 4.75 4.72 4.44 6.01 4.52 4.37 3.60

µ(rs) 2.60 2.63 3.01 2.59 2.82 3.57 3.86 4.09 3.51 3.54

σ(rs)/µ(rs) 1.88 2.30 1.75 1.88 1.73 1.32 1.63 1.17 1.31 1.08

Average debt-to-output (%) 3.65 4.67 3.33 3.64 3.18 4.23 4.74 4.42 4.02 4.04

Defaults per 500,000 quarters 2,254 2,024 2,268 2,254 2,222 2,229 2,262 2,239 2,183 2,157

Time to converge 23” 4” 1’:33” 2’:52” 10’:04” 2’:01” 12” 22’:03” 5’:14” 9h 18’:51”

The main source of difference between the two models is the result of the law of motion for

assets. In the discrete time model, assets move discretely across time. In continuous time, the

optimal evolution of assets across time is continuous. Consider a negative endowment shock that

moves the sovereign into a region with higher risk of default. In discrete time, the sovereign can

choose to decrease its debt obligations so that the spread it pays on its debt does not increase sub-

stantially with respect to the previous period. In continuous time, the negative endowment shock

moves the sovereign into a region of higher spreads from which the sovereign cannot instantan-

eously escape. Deleveraging in that case is costly both because the sovereign has to face higher

spreads during the deleveraging process, and because quick deleveraging can only be done by

cutting consumption considerably.

I illustrate this difference in Figure 2. Let’s consider two economies, a continuous-time one

(CTE) and a discrete-time one (DTE) and assume both start at the same point, point A. For simpli-

city I shall consider the case in which the interest rate schedule in both economies is equivalent.

Suppose a negative endowment shock occurs which shifts the economy from point A to point B.

As the probability of default is decreasing in the level of endowment, the interest rate which cor-
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Figure 2: Costly Deleveraging - An Illustration

I. Prior to Shock II. After Shock
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Notes: this figure illustrates why deleveraging is more costly in continuous time. The line in the left
panel corresponds to the interest rate faced by a sovereign with endowment y1, for different levels of
assets. The additional line in the second panel corresponds to the interest rate faced by a sovereign with
endowment y2 < y1. In discrete time, the sovereign can jump from point B to C, while in continuous
time the sovereign moves continuously from B to C.

responds to point B is higher than in point A. Suppose both economies wish to deleverage so that

in one period they arrive to point C. Since point C features a lower level of debt, it also corres-

ponds to a lower interest rate. Let’s denote these interest rates by rC < rB . In the DTE, the interest

rate immediately jumps to rC as it depends on the probability of default in the following period.

In the CTE, assets move continuously from point B to point C. So the average interest rate paid by

the sovereign in the CTE is greater than rC .

Note that the sovereign can choose to move assets from pointA to pointB in a short amount of

time by setting consumption close to 0, avoiding some of the higher interest rate burden. However,

concavity of the utility function incentivizes it to smooth consumption over time. To conclude, a

negative endowment shock of the same magnitude is more welfare deteriorating in the CTE when

the sovereign is in debt.

Costly deleveraging induces the sovereign to default in the continuous time framework at re-

gions where it would choose to repay its debt under discrete time. This difference occurs only

when the endowment of the sovereign is high. The endowment level of the sovereign needs to

be high enough so that in discrete time it would choose to decrease its debt level and avoid the

high spread. We can see this in Figure 3 which plots the default region in the two economies.

The default behavior of the sovereign in both economies is very similar for lower levels of en-

dowment, but for higher levels of endowment the default region is larger in the continuous time

environment.

Intuitively, one may suspect that the lower threshold for default at high endowment levels in
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Figure 3: Default Region
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Notes: this figure depicts the default frontier of both economies. The sovereign chooses to default
whenever its state is below the default frontier.

the continuous time model leads to overall more defaults in continuous time. This assertion is

wrong. Since reaching areas of higher spread is costly for the sovereign, it tries to avoid these

regions. So while in discrete time a high endowment is often associated with a large negative

trade balance, it is less so the case in continuous time. This can be seen in the right panel of

Figure 4, which plots the savings decision of the sovereign in the continuous and discrete time

models, for three levels of endowments.8 The left and center panels include the savings decisions

of a sovereign with 20th-quantile and median income, respectively. The similarity of the policy

functions at those levels of endowment between the discrete time and continuous time economies

is striking. There is almost no difference between the two. The right panel displays the savings

decision for a sovereign with the 80th quantile endowment. Here we see that when endowment is

high, the costly deleveraging motive kicks in. In discrete time, the sovereign chooses to decrease

its assets and face a higher spread. In continuous time, the fear of costly deleveraging induces the

sovereign to borrow less. So the trade balance is less counter-cyclical.

The cautious behavior of the continuous-time sovereign is apparent in its lower average debt to

output ratio. This behavior is also the reason for the lower average spread in the continuous time

environment. Despite the attempt of the sovereign to avoid high spreads, negative endowment

shocks do occasionally cause spreads to rise substantially. Such shocks are the cause for the higher

coefficient of variation of spreads, the ratio between the volatility of the spread to its mean.

Aguiar et al. (2016) discusses the difficulty of discrete time quantitative models of sovereign

8The quarterly savings of the sovereign in continuous time is defined to be the change in assets that would occur in
one quarter if no endowment shock hits the economy.
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Figure 4: Policy Functions - Savings
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Notes: this figure includes the savings policy function of the sovereign in the continuous and discrete
time economies. Three levels of endowment are considered: the 20th quantile (left panel), median
income (center panel), 80th quantile (right panel).

debt to simultaneously match the low probability of default in the data as well as the high volatility

of spreads. The continuous time environment helps overcome this challenge for the same reason

deleveraging is costly. High spreads which follow negative endowment shocks cannot be avoided

by immediately cutting the stock of debt.

Bocola and Dovis (2016) and Martinez and Hatchondo (2017) propose two alternative mechan-

isms that capture the higher coefficient of variation of spreads observed in the data in a discrete-

time environment. Bocola and Dovis (2016) does so by including a subsistence level of consump-

tion in the utility function, and Martinez and Hatchondo (2017) studies the case in which bor-

rowers cannot commit to borrow from only one lender in the spirit of Bizer and DeMarzo (1992).

Between the two, the mechanism that drives the higher coefficient of variation in the benchmark

model is closer to Bocola and Dovis (2016). The sovereign in Bocola and Dovis (2016) tries to

avoid regions of high spread in order to stay far above its subsistence consumption level. How-

ever, large negative shocks occasionally move it to regions of high spread. The sovereign does not

immediately deleverage as such action would lead to a consumption level close to the subsistence

level.

4.3 Speed of Convergence and Comparative Advantage of the Continuous Time Model

The final row of Table 1 presents the time which takes the algorithm to find the value functions

for the different grids considered.9 Convergence time for the benchmark grid is 4 times faster

using the continuous-time methodology. The coarse grid is solved three times faster and the fine

grid is solved more than fifty times faster using the continuous-time method. For fine grids, the

performance of Matlab in solving the discrete-time model is much worse than high-performance

9The models were solved on a MacBook Pro (Retina, 15-inch, Mid 2014) with a 2.8 GHz Intel Core i7 processor and
16 GB 1600 MHz DDR3 memory. Both models were solved on Matlab (2014b).
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programming languages such as Julia (it takes more than 9 hours on Matlab as opposed to 30

minutes on Julia). It is important to note that the continuous-time method solved on Matlab is also

about 2 to 4 times faster when comparing it to the discrete-time model solved on Julia.10 These

differences are substantial for estimation purposes which require solving the model thousands of

times.

The larger grid size provides insight into the comparative advantage of the continuous-time

methodology. The time consuming operation in the numerical methodology is the inversion of

large sparse matrices. More than the size of the matrix itself, the foremost factor in the time it

takes Matlab to inverse the sparse matrix is the number of non-zero elements (nnz). Consider a

grid with J asset points and I endowment points. The number of non-zero elements in the large

sparse matrix which Matlab inverts is approximately equal to

nnz = I2J + 2IJ . (10)

Consider a given row in the sparse matrix which corresponds to a state (aj , yi). This row

has non-zero elements in (aj−1, yi), (aj , yi), and (aj+1, yi), which are used in the computation of

the numerical backward and forward derivatives with respect to assets. In addition, it has an

additional I non-zero elements which correspond to states the sovereign can jump to due to an

endowment shock. So in every row corresponding to states in which the sovereign has access to

international financial markets the matrix has I + 2 elements. There are IJ rows in the matrix, so

the maximal number of non-zero elements is I2J + 2I . Notice this is an upper bar on the number

of non-zero elements since, as I explain in the appendix, states of default are not considered in the

large sparse matrix.

This implies that in continuous time, adding more points to the endowment grid is much

more time consuming than adding points to the asset grid. As seen in Table 1, the time it takes to

converge for the grid with many asset point (A-fine) is about 15 times faster in continuous time

than discrete time. For the endowment fine grid (Y-fine), on the other hand, the computing time

is only 2 times faster.

Some of the non-zero elements in the sparse matrix correspond to very low probability events.

Consider for example an endowment shock that moves endowment from its highest level to its

lowest level. The probability for such an event is close to zero, but not equal to it. In order to

increase the speed of the algorithm, we can manually set such low probability events to zero and

rescale the transition matrix so its rows sum to 1. For the continuous time model presented in

Table 1, I set endowment shocks with probability of less than 0.01% to 0.11

Table 2 presents business cycle statistics and computation times for four different thresholds of

low probability events: 1%, 0.01%, 10−6% and 0%.12 All computations are done on the benchmark

10The convergence times of the discrete-time method for the five grid specifications solved on Julia, in the order in
which they appear in Table 1, are 1’:19”, 9”, 10’:17”, 3’:42”, and 30’:35”.

11This is the probability conditional on the arrival of an endowment shock. i.e., f(i′, i) < 0.01% is set manually to 0.
120% implies the transition probability matrix is unchanged.
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grid. We can see that business cycle statistics computed using a threshold less than or equal

to 0.01% are all very similar. Computations time, on the other hand, are substantially different.

Setting the threshold to 10−6% reduces computation time by 20%. Setting it to 0.01%, the threshold

level used in Table 1, reduces it by an additional 35%. When setting the threshold level to 1%

the business cycle statistics are slightly different. In particular, the average spread is lower. Large

negative endowment shocks with probability less than 1%, which move the sovereign into default,

are quantitatively important for the level of the spread. So eliminating such events decreases the

average equilibrium spread.

Table 2: Speeding Computation by Eliminating Low Probability Events

Threshold probability 0% 0.000001% 0.01% 1%

corr(c, y) 0.99 0.99 0.99 0.99

corr(TB/Y, y) -0.18 -0.18 -0.18 -0.18

corr(rs, y) -0.31 -0.31 -0.31 -0.19

corr(rs, TB/Y ) 0.71 0.71 0.71 0.70

σ(y) 5.28 5.28 5.27 4.98

σ(c) 5.47 5.47 5.46 5.19

σ(TB/Y ) 0.72 0.72 0.72 0.80

σ(rs) 4.75 4.75 4.76 5.48

µ(rs) 2.62 2.62 2.60 2.02

σ(rs)/µ(rs) 1.86 1.86 1.88 2.78

Average debt-to-output (%) 3.65 3.65 3.65 3.90

Defaults per 500,000 quarters 2,258 2,258 2,254 2,291

Time to converge 45” 35” 23” 18”

4.4 Kolmogorov Forward Statistics vs. Simulation Statistics

The business cycle statistics in Table 1 are based on simulating the model for a long time period.

In section 3.2, I presented a method to find the ergodic distribution of the economy using the

Kolmogorov Forwards equations. This section compares business cycle statistics computed using

the ergodic distribution of the model, to statistics computed using simulating the model and then

averaging observations across quarters.

Table 3 presents business cycle statistics of the sovereign, conditional on having access to inter-

national financial markets. The first column presents the ergodic distribution of the model com-

puted using the Kolmogorov Forward equations. The last two columns present statistics com-

puted using a simulation at a frequency of a business day and then averaged across quarters.

Column two includes statistics computed using all periods in which the sovereign had access to

international financial markets. Column three corresponds to the statistics reported in Table 1. It

reports the average business cycle statistics computed across periods of length 74 quarters prior

to the default of the sovereign. So the difference between columns one and two are the result of
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averaging observation across quarters.13 The difference between columns two and three is that

column three limits the sample to periods before default as well as computing statistics across

small samples.

The first substantial difference between the three computation methods is the volatility of out-

put. Since output is quite persistent, computing it across 74 quarters leads to a small sample

bias. As output and consumption are highly correlated this implies the volatility of both output

and consumption is lower using the third method (column three). The second notable difference

is the much higher volatility of the spread when using the Kolmogorov Forward method. This

difference implies there are many high frequency changes in the spread that are smoothed out

when averaging across quarters. In addition, the average spread is higher using the Kolmogorov

Forward equation. This is a mechanical result. If the sovereign had no access to financial mar-

kets during any time in the quarter, that quarter is flagged as a no-access quarter. This leads to

the exclusion of observations that occur at the same quarter of a default, prior to the default, in

columns two and three. In addition to explaining the higher spreads, this exclusion also reduces

the volatility of the trade balance in the quarterly simulation.

Table 3: Different methods for computing statistics

Kolmogorov Forward Simulation + averaging across quarters

Ergodic distribution Ergodic distribution 74 Q before default

corr(c, y) 0.99 1.00 0.99

corr(TB/Y, y) -0.11 -0.08 -0.18

corr(rs, y) -0.12 -0.22 -0.31

corr(rs, TB/Y ) 0.61 0.66 0.71

σ(y) 7.56 7.33 5.27

σ(c) 7.71 7.42 5.46

σ(TB/Y ) 0.90 0.68 0.72

σ(rs) 13.32 4.82 4.76

µ(rs) 3.14 2.54 2.60

σ(rs)/µ(rs) 4.24 1.90 1.88

Average debt-to-output (%) 3.03 3.14 3.65

5 Two Extensions

In this section I present two extensions of the benchmark model. First, I relax the assumption

that debt maturity is instantaneous. Instead, I assume the government issues long term debt con-

13 A quarter in which the sovereign has access to international financial markets is considered such if the sovereign
has access to these markets throughout the quarter. So another difference between columns one and two is that column
two “leaves out” observations before default if they are at the same quarter as a default. It also does not include
observations after regaining access to financial markets, at the same quarter in which the sovereign regained access to
these markets.
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tracts that mature probabilistically and calibrate the model according to Chatterjee and Eyigungor

(2012). Business cycle statistics of the model are similar to its discrete time counterpart. The long

term maturity of the bond makes deleveraging less costly compared to the benchmark model, as

repurchasing debt in regions of high spreads is cheap. I find that the optimal debt maturity in the

continuous time model is 1.2 quarters on average. In comparison, Chatterjee and Eyigungor (2012)

finds that in the discrete time model the optimal debt maturity is the short-term one, a one-quarter

bond.

The second extension of the model relaxes the assumption that the world interest rate is con-

stant and assumes it follows a stochastic process instead. I find that under the calibrated process

for the risk free rate, business cycle statistics are very similar to the benchmark model. This is not

because the sovereign does not respond to the risk free rate. Rather, it is because the calibrated

volatility of the interest rate is small relative to the volatility of endowment. In the model, interest

rate fluctuations are not responsible for any of the sovereign’s defaults in equilibrium.

The main purpose of this section is to illustrate the continuous time sovereign debt model

can accommodate a large variety of modifications to the benchmark model. In addition, there

is a computational advantage in solving the model with long term debt. While in discrete time

finding the pricing schedule is a daunting task which requires solving a fixed point problem, in

continuous time computing the bond price schedule amount to solving a sparse system of linear

equations.

5.1 Long Term Debt

This section presents a version of the benchmark model which includes long-term duration bonds

instead of short term ones. The model is a continuous time version of Chatterjee and Eyigungor

(2012).

Assume the sovereign can save and borrow using long term debt contracts that mature prob-

abilistically. A bond matures with Poisson intensity λb and pays a flow payment z until it matures.

Thus, a bond is characterized by the pair (z, λb) and its price does not depend on the origination

date. Denote by at the number of long term bonds held by the sovereign at time t, so that −at
is the number of outstanding bonds of the sovereign. I assume that bonds can be infinitesimally

small so that in a time interval dt, a fraction λbdt of the outstanding bonds matures with certainty.

I consider a Markov perfect equilibrium so that the equilibrium price of a bond in period t, qt(·),

depends on the current state of the sovereign, (yt, at). The sovereign flow budget constraint is

given by

ctdt = ytdt+ zatdt+ λbatdt− q(at, yt)(λbatdt+ dat) .

Rearranging I get

st ≡ ȧt =
yt + (z + λb)at − ct

q(yt, at)
− λbat .
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Consider the expected return on a long term sovereign bond in the region of no-default,

E [dr(a, y)] =
z + λb(1− q(a, y)) + λy

∫∞
0 [q(a, y′)− q(a, y)] dF (y′|y) + s(a, y)qa(a, y)

q(a, y)
dt, (11)

where qa(b, y) is the derivative of q(a, y) with respect to bond holdings a. The first two terms in the

denominator are, respectively, the flow income of holding the bond, and the gain due to a share of

the bonds maturing. The third term corresponds to changes in the bond price due to endowment

shocks. Note that the risk of default is taken into account in this term. In the region of default

the price of the bond is equal to zero. So endowment shocks that move the sovereign into default

appear in equation (11) as a loss of the current price of the bond.

Finally, the last term of equation (11) corresponds to change in the bond price due to the sav-

ings behavior of the sovereign. Intuitively, the price of the bond is weakly increasing in the level of

assets of the sovereign, a. The sovereign has more incentive to default if its debt is higher (a ↓), so

the price of the bond is decreasing in the sovereign’s debt (−a). Zero profit condition on sovereign

bond holdings implies that in the region of no-default,

q(a, y)rf = z + λb(1− q(a, y)) + λy

∫ ∞
0

[
q(a, y′)− q(a, y)

]
dF (y′|y) + s(a, y)qa(a, y) . (12)

The main difference between the pricing of long term as opposed to short term bonds, is the de-

pendence of the price on the savings behavior of the sovereign. Even if we know the savings

behavior of the sovereign, finding the bond price schedule amounts to solving a fixed point prob-

lem. In principal, this dependence makes the computational problem harder. In continuous time,

however, we can use a finite difference method so that finding the bond price schedule given the

savings behavior amounts to a single matrix inversion. This is explained in details in the appendix.

In comparison to the benchmark model deleveraging is less costly with long term debt. Con-

sider the law of motion for assets in both models,

Benchm. model︷ ︸︸ ︷
ȧt = atr(at, yt) + (yt − ct) ,

Long-term debt model︷ ︸︸ ︷
ȧt = at

(
z + λb
q(at, yt)

− λb
)

+
1

q(at, yt)
(yt − ct) .

The first term in both models corresponds to debt service payments, while in long-term debt

this term also includes the maturing of debt. When the sovereign has outstanding bond obliga-

tions (a < 0), the level of consumption needed to sustain a certain level of savings is decreasing in

the level of the spread. In other words, the higher the spread the more the sovereign has to pay on

its debt. Since debt moves continuously over time, the sovereign cannot instantaneously escape

high spread regions by deleveraging. The difference lies in the second term. This is the change in

debt position due to the trade balance. A trade surplus (y − c > 0) leads to an increase in a, i.e.,

a decrease in the sovereign’s debt level. We can see that with long term debt, this term is divided

by the price of debt. In regions of high spreads, the price of sovereign debt is low. This implies

the sovereign’s cost of buying back its debt is cheaper. i.e., for the same level of trade surplus the
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sovereign is able to deleverage faster when debt does not mature instantaneously. Therefore, the

costly deleveraging motive is weaker with long-term debt. This welfare benefit of long term debt

is also present in the discrete time environment and has been studied in Arellano and Ramanaray-

anan (2012), which refers to this benefit as the hedging benefit of long-term debt. In comparison

to discrete time models of sovereign debt, the hedging benefit is higher in continuous time since

it ameliorates the deleveraging process following a negative endowment shock.

I follow the calibration of Chatterjee and Eyigungor (2012). The Poisson intensity of bond ma-

turity is set to 0.05, so that on average a bond matures once every 20 quarters. The flow payment,

z, is set to 0.03. The interest rate is set to 1% and the coefficient of relative risk aversion to 2.

Endowment follows a similar process to the benchmark model with ρy = 0.948 and σy = 0.027.

Finally the discount factor parameter, ρ, is set to 0.047, so it corresponds to a discrete time discount

factor of 0.954.

Table 4 presents business cycle statistics of the continuous time and discrete time models.14

Once again, the qualitative and quantitative results of the two models are remarkably similar. In

contrast to the benchmark model, the average spread and its volatility are higher in continuous

time. Since the costly deleveraging motive is weaker, the sovereign is less cautious in staying

away from regions of high spreads. While with short term debt the average debt-to-output ratio is

lower in the continuous-time environment, with long-term debt the average debt-to-output level

in the continuous-time framework is similar to the discrete-time one. Nevertheless, when the

sovereign suffers from a negative endowment shock that moves it to a region with high spreads,

it cannot instantaneously escape it. So the average spread, as well as the volatility of spreads, in

the continuous-time environment are higher.

Table 4: Business Cycle Statistics with Long-Term Debt

Continuous time model Chatterjee and Eyigungor (2012)

corr(c, y) 0.99 0.99

corr(TB/Y, y) -0.47 -0.44

corr(rs, y) -0.75 -0.65

σ(c)/σ(y) 1.09 1.11

σ(TB/Y )/σ(y) 0.17 0.17

σ(rs) 5.11 4.43

µ(rs) 10.22 8.15

Average debt-to-output (%) 70 70

Average debt service payments 5.60 5.55

Notes: continuous time model solved on a grid of 401 asset points equally distributed between -2 and
0, and 25 endowment grid points.

14Following Chatterjee and Eyigungor (2012), I compute business cycle statistics by simulating the model for 5,000
quarters, excluding quarters in which the sovereign has no access to financial markets together with the first 20 quarters
after regaining access to markets. I repeat this simulation 300 times and report the average statistics.
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Table 5 compares the business cycle statistics and convergence times of the continuous time

model for a variety of grids. The differences between having 25, 51, or 201 endowment grid points

are very small. The only notable difference between those grids is the volatility of the spread. It

declines as the number of endowment grid points increases.15 In the benchmark model adding

asset grid points is relatively faster than adding endowment grid points. With long term debt,

this is no longer the case. Endowment grid points still make the matrix less sparse than asset grid

points. However, in the long term debt model a dense asset grid can lead to oscillations in the

default frontier. The cause lies in the optimality condition for consumption,

Benchm. model︷ ︸︸ ︷
u′(c(a, y)) = va(a, y) ,

Long-term debt model︷ ︸︸ ︷
u′(c(a, y)) = va(a, y)/q(a, y) .

The state boundary constraint therefore depends not only on the level of assets and endow-

ment, but also on the endogenous price of the bond at that point. This dependence makes the

algorithm less stable as it is prone to oscillations in the default frontier. The last two columns of

table 5 compare business cycle statistics between a 401 and 1201 asset grid points, fixing the en-

dowment grid to 7 points. We can see that there is very little difference between the two columns.

This suggests we do not lose accuracy by restricting the benchmark grid to 401 points.

Table 5: Business Cycle Statistics and Convergence Times for Different Grids

Asset grid points 401 401 401 401 1201

Endowment grid points 25 51 201 7 7

corr(c, y) 0.99 0.99 0.99 0.99 0.99

corr(TB/Y, y) -0.47 -0.46 -0.46 -0.29 -0.29

corr(rs, y) -0.75 -0.76 -0.75 -0.61 -0.61

σ(c)/σ(y) 1.09 1.09 1.09 1.06 1.06

σ(TB/Y )/σ(y) 0.17 0.17 0.17 0.15 0.15

σ(rs) 5.11 4.75 4.60 5.05 5.04

µ(rs) 10.22 10.21 10.11 8.58 8.61

Average debt-to-output (%) 70 69 69 84 84

Average debt service payments 5.60 5.54 5.54 6.73 6.70

Time to converge 6’:14” 12’:13” 61’:50” 4” 35”

There are pros and cons for having a longer maturity length of sovereign bonds. As Arellano

and Ramanarayanan (2012) explain, longer maturity length is welfare-enhancing as its endogen-

ous price acts as a hedge against bad shocks. On the other hand, since the government cannot

commit to future debt issuance decisions, the endogenous price of long-term bonds makes it a

worse instrument to raise funds. Arellano and Ramanarayanan (2012) refer to this welfare bene-

fit of short-term duration bonds relative to long-term ones as the incentive benefit, as short-term

15Hatchondo et al. (2010) show a similar relationship between the number of grid points and the volatility of the
spread for discrete time short term debt models solved on an equidistant grid.
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provides the sovereign a higher incentive to repay its debt. Chatterjee and Eyigungor (2012) com-

pares the welfare of a sovereign with no debt obligations, and find that the sovereign is better off

with short-term debt than with long-term debt. In continuous time, as explained above, there is an

additional welfare gain in having long-term maturity bonds. Deleveraging is less costly with long-

term debt. Figure 5 displays the level of consumption that makes c1−γ/ρ equal to
∑

y v(0, y)π(y),

where π(y) is the ergodic distribution of endowment. Compared to Chatterjee and Eyigungor

(2012), the maximum level of welfare is not obtained with short term maturity bonds, which cor-

responds to λb → ∞.16 The welfare-maximizing value of λb is 0.85. This value leads to an addi-

tional 0.12% certainty consumption equivalence in comparison to short term debt, and to 0.85%

increase compared to the calibrated level of λb, 0.05. The optimal value of λb corresponds to an

average maturity length of 1.2 quarters. It is similar to the average maturity length which Chat-

terjee and Eyigungor (2012) finds to be optimal, a one-quarter bond. This finding shows that the

incentive benefit is not always greater than the hedging benefit. In other words, shorter is not

always better.

Figure 5: Welfare and Bond Maturity Length
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Notes: this figure displays the certainty consumption equivalence of a sovereign with no debt for
different maturity lengths. The dashed line is the certainty consumption equivalence when debt is
of short maturity. i.e., when λb →∞.

5.2 World Interest Rate Fluctuations

Consider again the case in which the government only has access to short term maturity bonds

as in the benchmark model. Assume that instead of a constant world interest rate, rf , the world
16The long term debt model was also solved for λb = 106, in which case the certainty consumption equivalence is

approximately equal to the one of short term debt.
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interest rate is stochastic. In particular, I assume the world interest rate follows a compound

Poisson process. The arrival rate of the shock is λr and upon the realization of the shock, a new

world interest rate is drawn from the distribution Fr(rf , r
f
−). The HJB equations corresponding to

this case are relegated to the appendix.

I assume that upon realization of an interest rate shock, the new interest rate is set according

to the following law of motion.

rf = (1− ρr)r̄f + ρrr
f
− + εr ,

where εr is iid normally distributed with mean 0 and variance σ2
r , and r̄f is the unconditional

mean of the process. I maintain the parameter values calibrated in the previous section which cor-

respond to Arellano (2008). Arellano calibrates the risk free interest rate to the average quarterly

yield on 5-year US treasury bonds between 1983Q3-2001Q4, setting it to 1.7%. I set the arrival

rate of an interest rate shock, λr, the persistence parameter, ρr, and the variance of the interest

rate shock, σ2
r , so it matches the quarterly variance, quarterly autocorrelation, and kurtosis of the

quarterly change in 5-year US treasury bond yield during this period. This amounts to setting

λr = 0.96 so that an interest rate shock arrives on average approximately once a quarter. The

persistence parameter is calibrated to 0.961, and the volatility of the iid shock is 13 basis points,

i.e., σr = 0.0013.17

Table 6 displays the business cycle statistics of the model with world interest rate fluctuations

in comparison to the benchmark model. Under our calibration, the business cycle statistics of the

two models are very similar. Even though, theoretically, defaults can now occur either due to an

endowment shock or to a world interest rate shock, approximately zero of the defaults under this

calibration are due to world interest rate shocks. Interest rate shocks are not responsible for any of

the sovereign’s default as they are small in size and quite frequent. The sovereign does respond

to interest rate fluctuations, as I show below. However, the volatility of the interest rate is so low

with comparison to the volatility of output that it does not substantially change the business cycle

statistics of the model.

Figure 6 shows the savings decision for three different levels of income and three different

levels of world interest rate. A higher interest rate incentivizes the sovereign to increase its assets

and save more. However, the middle panel shows that a sovereign with median income and

debt (negative assets) is not responsive to the risk free rate. This is due to the high spreads that

characterize that region. The sovereign responds to the interest rate it faces, which is the sum

of the risk free rate and the spread. If the spread is substantially higher than the risk free rate,

changes to the risk free rate do not change the behavior of the sovereign much.

17Figure 9 in the appendix shows this calibration matches well also higher frequency moments which were not
targeted. In particular, it does a good job at matching the volatility, kurtosis, autocorrelation, and the volatility of
changes at a daily, weekly, and monthly frequency. It overestimates the kurtosis of changes at lower frequencies. The
latter is likely due to high frequency shocks that are small in size, which the calibrated process does not capture.
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Table 6: Business Cycle Statistics with World Interest Rate Fluctuations

Benchm. model WIR fluctuations

corr(c, y) 0.99 0.99

corr(TB/Y, y) -0.23 -0.23

corr(rs, y) -0.32 -0.33

corr(rs, TB/Y ) 0.71 0.70

σ(y) 5.20 5.26

σ(c) 5.45 5.51

σ(TB/Y ) 0.80 0.80

σ(rs) 5.88 5.74

µ(rs) 2.63 2.59

σ(rs)/µ(rs) 2.30 2.29

Average debt-to-output (%) 4.67 4.59

Defaults per 500,000 quarters 2,024 2,004

Time to converge 4” 2’:34”

Notes: all computations are performed on a grid with 301 asset points, 25 endowment points, and 11
world interest rate points.

Figure 6: Savings with World Interest Rate Fluctuations
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Notes: this figure presents the savings policy function of the sovereign for different world interest rates
and different endowment levels.

6 Conclusion

In this paper I develop a continuous time model of sovereign debt and provide a numerical

method for solving it. I show that the quantitative results are similar between the model and its

discrete time counterpart. The few differences between the two, most notably the lower average

spread in the continuous time model, are a result of the different spreads faced by the sovereign

along the deleveraging process. In continuous time, deleveraging is more costly.

Two extensions of the benchmark model are considered. The first extension includes long term

debt. I show that, as opposed to a discrete time environment, computing the pricing schedule of
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the long-term debt in continuous time is quite simple. In continuous time, longer maturity of

debt makes deleveraging less costly in comparison with the short term debt model. I calibrate

the model according to Chatterjee and Eyigungor (2012) and find the business cycle statistics in

the discrete- and continuous-time models are very similar. In addition, I find that the optimal

average bond maturity is 1.2 quarters. This result is similar to the optimal average debt maturity

in Chatterjee and Eyigungor (2012), a one-quarter bond. The second extension includes stochastic

world interest rate fluctuations. I find that under the calibrated process for the world interest

rate, average business cycle statistics of the model remain unchanged and sovereign defaults are

accounted for almost entirely by endowment shocks and not by world interest rate shocks.

The methods presented in this paper lay the groundwork for future quantitative research on

sovereign debt and consumer bankruptcy, which were so far infeasible to compute and estimate

in a timely manner.
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A Mathematical Appendix

I’ll first prove that the value function is strictly increasing in assets in the region of no-default.

This result would immediately validate Proposition 1.

Lemma 1. The value function in the region of no default is strictly increasing in assets. That is,

v(a1, y) < v(a2, y) , ∀(a1, a2, y) : a1 < a2 , D(a1, y) = D(a2, y) = 0 .

Proof. Let c1
t denote the optimal consumption path for the sovereign at state (a1, y) at time t = 0.

A feasible consumption level for the sovereign with assets (a2, y) at time t = 0 is c2
t = Mc1

t for

an arbitrarily large M , and specifically M > 1. Since assets move continuously over time, after

some amount of time, ∆, the assets of the sovereign which started with (a2, y) would be equal

to the assets of the sovereign that started with (a1, y). The amount of time it takes the two asset

levels to converge can be arbitrarily small by choosing a larger M . Assume that at time t + ∆ the

sovereign which started with asset level a2 mimics the behavior of the sovereign which started

with a1. Denote the value function of such behavior as vM (a2, y).

At time t+∆, the expected value of the two sovereigns are equal as their state variables are the

same. Between time t and t+ ∆, the utility of the sovereign which started with (a2, y) and follows

the strategy above is larger since utility is strictly increasing in consumption. I get that

v(a1, y) ≤ vM (a2, y) .

Finally, note that vM (a2, y) ≤ v(a2, y) as following the M -strategy is a feasible path. Therefore, I

conclude that

v(a1, y) < v(a2, y) .

Proposition 1. The default decision of the sovereign is of the threshold kind in bond obligations. For every
level of endowment y, there exists a level of assets a(y) such that

D(a, y) =

{
1, if a < a(y) ,

0, if a ≥ a(y) .

Proof. Suppose a sovereign at state (a1, y) chooses to repay its debt. It must be the case then that

v(a1, y) ≥ w(y) .

Now consider the problem of a sovereign with the same endowment level but higher level of

assets, a2 > a1. Lemma 1 implies that

v(a2, y) > v(a1, y) ,
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so that

v(a2, y) > w(y) .

That is, if a sovereign chooses not to default, all sovereigns with the same endowment level and

more assets would also choose not to default.
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B Numerical Method using Sparse Matrices

This section shows how to implement the numerical method using sparse matrices. For the most

part, it follows the numerical appendix of Achdou et al. (2014). There are two differences between

their method and the one presented here. First, the interest rate schedule is endogenous. Second,

default adds another step to the procedure, which I discuss in details below.

Each iteration involves three steps:

1. Computing the interest rate schedule given the default decision.

2. Constructing the sparse matrix used to compute the HJB equations, updating the guess for

v, and then for w.

3. Updating the default decision, and check for convergence of value functions.

Updating the interest rate schedule is described in the main text. Here I shall elaborate on how

to do the second step efficiently using sparse matrices.

B.1 HJB Equations in Matrix Form

Suppose we are currently at iteration n of the value function, and the value function has not yet

converged. We want to update the value function and find vn+1, and wn+1. Our goal is to write

equations (5)-(7) in matrix form. We start by introducing three variables that are used for the

upwinding scheme.

Lni,j = −

(
sni,j,B

)−
da

,

Mn
i,j =


(
sni,j,B

)−
−
(
sni,j,F

)+

da
− λy

 ,

Rni,j =

(
sni,j,F

)+

da
,

where sni,j,B and si,j,F are the savings decision of the sovereign computed using the backward and

forward derivatives of the value function, respectively. Using equations (6)-(7) we know that the

value function v computed in every iteration is independent of w. We only need to compute vn+1

for j ≥ dni , and get the remaining values of vn+1 from equation (7).

Let vn be a JI × 1 vector of the value function of iteration n. The first element corresponds to

the state (a1, y1), the second element to (a2, y1), the J th+1 element to (a1, y2), etc. Let dn be a vector

of length Dn which contains the locations of vn where the sovereign chooses not to repay its debt.

We are interested in finding v̄n+1 which is a vector of size JI−Dn. It contains the value function in

the no-default region. Let ūn denote the vector of utilities of the sovereign at different no-default
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states, based on the consumption levels computed using the backward/forward derivatives of the

value function. Equation (6) can be rewritten as

v̄n+1 − v̄n

∆
+ ρv̄n = ūn + Ānv̄n+1 + λyΛ̄

nv̄n+1 , (13)

where both Ān and Λ̄n are (JI − Dn) × (JI − Dn) sparse matrices. The An matrix is a block

diagonal matrix, where each block is a tridiagonal matrix. There are I blocks corresponding to

the I endowment levels. Each block has J − Dn
i rows and columns, where Dn

i is the number of

asset levels in which the sovereign with endowment i chooses to default. Following the notation

in section 3.1, Dn
i = dni − 1. The center diagonal in block i is given by Mn

i,j , where the first element

is Mi,d̄ni
. Similarly, the left diagonal is given by Lni,j , and the right diagonal by Rni,j . Note that An

is very sparse, and only has [3(J −Dn)− 2] I non zero elements.

The matrix Λ̄n corresponds to transition due to endowment shocks. It may be useful to first

consider the transition matrix in the case of no default. Denote by Πy the I × I transition matrix

conditional on an endowment shock, which columns sum to 1. Define

Λ = (Πy − II)⊗ IJ , (14)

where ⊗ is the Kronecker product, and I is the identity matrix. Λ is a JI × JI matrix with I2J

non-zero elements. Λ̄n is a (JI −Dn)× (JI −Dn) matrix, and is quite similar to Λ. The difference

between the two is that in Λ̄n, an endowment shock that would move the sovereign into default

moves it instead to default frontier. Recall that the value at the default frontier is equal to the value

of default, so that for calculating the value function it is equivalent whether we consider the value

wi when the sovereign defaults or vdi,i. Λ̄n is constructed of I2 blocks. The number of rows and

columns of block bi1,i2 are J −Dn
i1 and J −Dn

i2, respectively. The last min{J −Dn
i1, J −Dn

i2} rows

and columns of block bi1,i2 are a diagonal matrix with πyi1,i2 in all the elements on the diagonal. It

may be simpler to understand by looking at Figure 7. Note that endowment shocks that move the

sovereign into default appear only in the right panel, these are the non-zero elements that are at

the first column but not on the diagonal.

Figure 7: Block bi1,i2 of the Λ̄n matrix

I. # rows < # columns II. # rows = # columns III. # rows > # columns


0 πyi1,i2 0 · · · 0

0 0 πyi1,i2 0 0

0 0 0
. . . 0

0 0 0 0 πyi1,i2




πyi1,i2 0 · · · 0

0 πyi1,i2 0 0

0 0
. . . 0

0 0 0 πyi1,i2





πyi1,i2 0 · · · 0
... 0 · · · 0

πyi1,i2 0 · · · 0

0 πyi1,i2 0 0

0 0
. . . 0

0 0 0 πyi1,i2
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We can rearrange equation (13) to have

v̄n+1 =

[(
1

∆
+ ρ

)
I− Ān − λyΛ̄n

]−1( 1

∆
v̄n + ūn

)
.

So to update the value function we simply need to invert a highly sparsed matrix. Turning now

to finding the value function when the sovereign has no access to financial markets, let vn+1
0 be a

vector of length I containing the value function when the sovereign has access to financial markets

and assets are equal to 0. I can rewrite equation (5) as follows

wn+1 −wn

∆
+ ρwn+1 = uw + λy (Πy − I) wn+1 + λD

(
vn+1

0 −wn+1
)
,

where uw is simply given by the flow utility of the endowment of the sovereign, when it has no

access to financial markets. Rearranging I get

wn+1 =

[(
1

∆
+ ρ+ λD

)
I− λy (Πy − I)

]−1( 1

∆
wn + uw + λDvn+1

0

)
.

So we immediately obtain wn+1 once we have vn+1. The final step is to update the default decision

as described in section 3.1, check whether the value functions converged, and if not repeat the

procedure.

B.2 Solving the Kolmogorov Forward equations

Consider the stationary Kolmogorov Forward equations:

0 =− ∂a
[
s(a, y)Γ̄ND (a, y)

]
− λyΓ̄ND (a, y) + λy

∫ ∞
0

f(y, ỹ)Γ̄ND (a, ỹ) dỹ + λDΓ̄D (y)1 (a = 0) ,

0 =− λyΓ̄D(y) + λy

∫ ∞
0

D(a, y)f(y, ỹ)Γ̄ND (a, ỹ) dỹ − λDΓ̄D(y) .

The corresponding discretized version of the Kolmogorov Forwards equations are given by,

0 =− ∂a
[
si,jΓ̄

ND
i,j

]
− λyΓ̄NDi,j + λy

∑
i′

π(yi, yi′)Γ̄
ND
i′,j + λDΓ̄Di 1 (aj = 0) , (15)

0 =− λyΓ̄Di + λy
∑
i′

Di,jπ(yi, yi′)Γ̄
ND
i′,j − λDΓ̄Di . (16)

As in Achdou et al. (2014), I use an upwinding scheme to obtain ∂a
[
si,jΓ̄

ND
i,j

]
. In particular,

∂a
[
si,jΓ̄

ND
i,j

]
=

Γ̄NDi,j (si,j,F )+ − Γ̄NDi,j−1 (si,j−1,F )+

da
+

Γ̄NDi,j+1 (si,j+1,B)− − Γ̄NDi,j (si,j,B)−

da
.

Using the equation above, I can rewrite equations (15) and (16) in matrix notation as follows,

TΓ̄ = 0 , (17)
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where T is a (JI−D+ I)× (JI−D+ I) transition matrix, and Γ̄ is a vector of length (JI−D+ I).

D is the number of states in which the sovereign chooses to default. The first (JI−D) elements of

Γ̄ correspond to states in which the government has access to international financial markets and

chooses to repay its debt. The last I elements of Γ̄ correspond to the I endowment states when the

sovereign is in the state of default. Each column of transition matrix T sums to 1. This transition

matrix is constructed as follows,

T =

[
TNW TNE

TSW TSE

]
.

The matrix TNW is a (JI−D)× (JI−D) matrix which corresponds to movements between states

of no-default to other states of no-default. It is combined of two matrices,

TNW = AT + λyΛ̃
T ,

where A is the one from equation (13), and represents moving across states due to savings beha-

vior. Λ̃ represents the transition between no-default states due to endowment shocks. To construct

it we use the full transition matrix Λ from equation (14), and truncate it in all rows and columns

which corresponds to a state of default (so that Λ̃ is a (JI −D)× (JI −D) matrix).

The matrix TNE is of size (JI−D)×I and corresponds to movements from the default states to

the no-default states. Recall that the Poisson intensity of regaining access to international financial

markets is ΛD. TNE is constructed as follows. First, construct

T̃NE = λD (II×I ⊗ ej0) ,

where ej0 is a J × 1 vector which has a single non-zero element in the j0’th row where it is equal

to 1. j0 is the index which corresponds to aj0 = 0. T̃NE is therefore a JI × I matrix. Then, TNE is

equal to the truncation of T̃NE , where the rows corresponding to states of default are deleted.

TSE corresponds to movements between default states due to endowment shocks and is given

by

TSE = λy (Πy − I) .

Finally, the matrix TSW corresponds to movements between states of no-default into states of

default. Such movements can arise only due to endowment shocks that move the sovereign into

the default region. The size of TSW is I × (JI −D). It is easy to compute it using Λ̃. Let
(∑

Λ̃
)

denote the summation of the Λ̃ across columns, so that
(∑

Λ̃
)

is of size (JI − D) × 1. While

the columns of Λ sum to 0, the columns of Λ̃ sum to a negative number as some columns with

only positive elements have been truncated. So −
(∑

Λ̃
)

represents the probability of each no-

default state to default conditional an endowment shock. We still need to rearrange the elements

of −
(∑

Λ̃
)

into a I × (JI −D) matrix. Define Θ̃ = (II ⊗ 1J×1), and let Θ be the truncation of Θ̃

where the rows corresponding to default states are truncated. Then we have that,

TSE = −λy
{[(∑

Λ̃
)
× 11×I

]
�Θ

}T
,
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where 1M×N is an M ×N matrix of ones, and � is elementwise multiplication.

Note that the rows of matrix T sum to 0, so it is not invertible. In addition, notice that Γ̄ is

pinned down only to a normalization as multiplying it by a constant would satisfy equation (17).

I normalize the sum of Γ̄ to 1. While there are many ways to compute Γ̄, I follow the one proposed

in the numerical appendix of Achdou et al. (2014). I set the element of Γ̄ which corresponds to

the median income and zero assets to 1, call it n̄. This means solving equation (17) but instead

of a vector of zeros on the right hand side, I set the n̄’th element to 1. In addition, I set the n̄’th

row of T to zeros except for the n̄’th element which is 1. The transformed T matrix can now be

inverted. So we can solve for Γ̄ by inverting the sparse transformed T matrix. Finally, we divide

each element of the resulting Γ̄ by the sum of Γ̄ so that it sums to 1.

B.3 Algorithm for the Long Term Debt Model

The algorithm for solving the long-term debt model presented in section 5.1 is very similar to

the one of short-term debt. The main difference is in the computation of the bond pricing sched-

ule. While in the short-term debt model the pricing schedule depends only on the default policy

function, with long-term debt it also depends on the debt issuance policy of the sovereign.

As in the short-debt model, the algorithm consists of three main steps: (i) computing the bond

pricing schedule, (ii) solving the HJB equation of the sovereign, (iii) updating the default decision

and check for convergence. However, as Chatterjee and Eyigungor (2012) explains, the long-term

debt model is prone to oscillations which can prevent the convergence of the model. To remedy

this risk, the main part of the algorithm consists of two nested loops instead of one loop. In the

inner loop the default decision of the sovereign is kept fixed so that only the debt issuance policy

function of the sovereign and the bond pricing schedule are being updated. Once the latter two

converge, the default decision of the sovereign is being updated and the inner loop starts again.

The algorithm is solved when the default policy function is equivalent to one of the previous de-

fault policy functions. This convergence criteria is discussed in details below. To start the outer

loop from a good guess for the default policy function, the algorithm first solves 200 iterations

while updating the default policy function after every inner loop iteration. In summary, the al-

gorithm for the long-term debt model is as follows:

1. To start from a good guess for the default policy function, I repeat the following loop for 200

iterations:18

(a) Compute the bond pricing schedule.

(b) Solve the HJB equations.

(c) Update default and debt issuance policy function, and repeat from step (a).
18The first iteration starts from a default policy function of always repaying debt (never defaulting), and debt issuance

policy function of always not changing the debt position.
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2. Main part of the algorithm. The outer loop:

(a) Update default policy function. The inner loop:

i. Update bond pricing schedule.

ii. Solve HJB equations.

iii. Update debt issuance policy function and check for convergence.

(b) Check whether default policy function converged, if not repeat.

Computing the bond pricing schedule with long-term debt. Recall that this pricing schedule

depends not only on the default decision but also on the savings behavior of the sovereign. The

matrix form of equation (12) is

q̄n+1rf = z + λb − λbq̄n+1 + λyΛ̃
n+1q̄n+1 + Ānq̄n+1 ,

where q̄n+1 is a vector of length JI − Dn+1. The matrix Ān is the same as in section B.1 so we

do not need to compute it. Finally, the matrix Λ̃n is the Λ matrix where the rows and columns

corresponding to default states, Dn+1, are truncated so that Λ̃n is (JI −Dn)× (JI −Dn). Due to

the truncation the columns of Λ̃n do not sum to 1. This represents the possibility of an endowment

shock moving the sovereign to default where the value of the bond is equal to zero. We can

rearrange the equation above to obtain

q̄n+1 =
[
(rf + λb) I− λyΛ̃n+1 − Ān

]1
(z + λb) .

So finding the bond price schedule amounts to a simple sparse matrix inversion. Note that in

theory, this method for finding the bond price schedule can also be applied in discrete time. How-

ever, in the continuous time formulation the matrix inverted in the procedure is sparse and not

very different from a tri-diagonal matrix. This is not the case in discrete time. So, while theoretic-

ally possible, inverting the matrix above in the discrete time environment is very computationally

costly. To prevent the bond pricing schedule from oscillating, instead of using q̄n+1 in the follow-

ing iteration I use a convex combination of q̄n and q̄n+1. In particular, the bond pricing schedule

is updated according to

q̃n+1 = ∆qq̄
n+1 + (1−∆q)q̃

n ,

where ∆q is an updating scalar.

Default convergence criterion. When the endowment and asset grids are dense there is a higher

probability the outer loop of the default policy function may still oscillate despite the nested loop

structure of the problem. Consider a case in which the asset grid is fine so that the default frontier

varies between (only) two adjacent asset grid points for every endowment level. Notice that since

the grid is fine, whether the default frontier is in one asset point or the adjacent one makes almost

no difference at all in the quantitative solution of the model. However, this can be a major problem
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for convergence. If the endowment grid consists of 25 points, there are more than 33 million

possible default frontiers. So the outer loop may not converge in a reasonable amount of time.

To avoid such oscillations, the first convergence criteria of the outer loop is to stop whenever

the default frontier is equivalent to the default frontier in any previous iteration. This avoids "hard

oscillations" - oscillations that may create infinite loops. The difficult challenge is to avoid "soft

oscillations" - oscillations that do not cause infinite loops but rather that do not converge for a very

long period of time, such as the 33 million default frontier possibilities discussed above. To avoid

such oscillations, which may be costly when performing estimations, the researcher can put an

upper limit on the number of outer loop iterations. For all computations in this paper, such upper

limit was not imposed. As a rule of thumb, numerical simulations suggest that after 50 iterations

the default frontier has only extremely small changes so that an upper limit of 50 iterations may

suffice.

An alternative approach to avoid "soft oscillations" is to set the convergence criterion such that

the default frontier is not changing more than some level of tolerance from one iteration to the

other. Such criterion would significantly reduce the maximum possible number of default frontier

options. It is worth noting again that this problem occurs only for dense asset and endowment

grids, and that considering very fine grids does not change the quantitative results of the model

substantially.

Figure 8 presents an example of such soft oscillation. The endowment grid consists of 25 points

and the asset grid consists of 801 points. The convergence criteria is met only after almost 300

outer loop iterations. The left panel presents the default thresholds for different endowment levels

(colors) across iterations. As can be seen in the figure, the default frontier for each endowment

level does not vary much across iterations. The solution to the default frontier corresponds to the

points with the highest outer loop iteration (the extreme right of the x-axis). This indicates that

the initial guess, after the first 200 iterations, is quite close to the actual solution of the problem.

The right panel presents the difference in each iteration, for every endowment level, between

the asset default threshold in each iteration to the solution of the default frontier. The difference

is quite small and almost all points fall between 2 asset grid points below or above the solution to

the default frontier (the difference between every two asset grid points is 0.0025).

This example suggests that stopping the algorithm prior to the convergence criterion would

result in very minor quantitative differences.
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Figure 8: Example of Soft Oscillation
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This figure presents an example in which the algorithm takes a long period of time to converge due to

a soft oscillation problem. The left panel presents the asset level point in which the sovereign is indif-

ference between default and repaying its debt for each outer loop iteration, for different endowment

levels. In the right panel each dot represents the difference between the asset default threshold at

iteration i to the fixed point default threshold. Each color represents a different endowment level.

C World Interest Rate Fluctuations

C.1 HJB Equations

ρw(y, r) = u(y − φ(y)) + λy

∫ ∞
0

(
w(y′, r)− w(y, r)

)
dFy(y

′, y)

+ λr

∫ ∞
0

(
w(y, r′)− w(y, r)

)
dFr(r

′, r) + λD [v(0, y, r)− w(y, r)] ,

ρv(a, y, r) = max
c
{ρw(y, r), u(c) + va(a, y, r) (y − c+ r(a, y, r)a)

+λy

∫ ∞
0

(
v(a, y′, r)− v(a, y, r)

)
dF (y′, y) + λr

∫ ∞
0

(
v(a, y, r′)− v(a, y, r)

)
dFr(r

′, r)

}
.
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C.2 Fit of Exogenous Interest Rate Process

Figure 9: World Interest Rate Fluctuations - Targeted and Non-targeted Moments
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This figure includes data moments and the moments of the exogenous compound Poisson process for

the world interest rate. The data used is 5-year treasury constant maturity rate of the US between

1983:Q3 and 2001:Q4. The three columns marked with a star are the moments the exogenous process

is calibrated to perfectly match.
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