Finding your way to work, packing up the trunk of your car for a trip, or even inserting your credit card at the gas station all require spatial skill. Although spatial knowledge is central to human functioning this was a neglected area in human cognition and in human development until recently. This talk presents data on what preschoolers know about the properties of geometric forms, about children’s ability to engage in spatial assembly, and the factors that might facilitate this learning. Moreover, the link—now established in children as young as three years of age—between spatial and mathematical skill will also be discussed.

Monday, October 15th 2018
2:00-3:00pm
James Allen Center, Room 164
2196 Campus Drive, Evanston Campus

Roberta Golinkoff
Unidel H. Rodney Sharp Professor
School of Education and Department of Linguistics and Cognitive Science and Department of Psychological and Brain Sciences
University of Delaware

Roberta Michnick Golinkoff, Ph.D., is the Unidel H. Rodney Sharp Professor of Education, Psychology, and Linguistics at the University of Delaware and runs the Child’s Play, Learning, and Development Laboratory. She has received numerous awards for her contributions to developmental science in the areas of language development, playful learning, media, and spatial learning. Passionate about the dissemination of psychological science for improving schools and families’ lives, she and Kathy Hirsh-Pasek wrote How Babies Talk (Penguin), A Mandate for Playful Learning in Preschool (Oxford), and Einstein Never Used Flash Cards (Rodale). Her latest book Becoming Brilliant: What Science Tells Us About Raising Successful Children (APA Press), reached the New York Times bestseller list. She has appeared on numerous radio and television shows, and in print media. She never turns down an opportunity to spread the findings of psychological science to the lay public.

You can follow Roberta on Twitter at @KathyandRo1

SILC is Northwestern University’s Spatial Intelligence and Learning Center. We aim to understand and enhance the teaching, learning, and practice of topics that require reasoning about spatial information. Through basic and applied research, we seek to enhance the learning of Science, Technology, Mathematics, and Engineering (STEM) by understanding and improving people’s ability to reason about spatial relations.