Vulnerability Bounds for Transportation Networks under Simultaneous Multi-Link Disruptions

Xiangdong Xu (Tongji University, Shanghai, China)
Anthony Chen (The Hong Kong Polytechnic University, Hong Kong)
Chao Yang (Tongji University, Shanghai, China)

The 22nd International Symposium on Transportation and Traffic Theory
24-26 July, 2017, Northwestern University
Outline

• Motivation
• Mathematical Formulation
• Solution Algorithm
• Numerical Examples
• Concluding Remarks
Disasters and Transport Networks

Disasters (Natural or Manmade)

- Natural Disaster: Earthquake, Tsunami, Avalanche, Flood, Wildfire, Volcano
- Structural Collapse: Bridge, Tunnel, Overpass
- Terrorist: 9/11 Attack, London Tube, Riot
- Incident: Accidents, Road Closure, Work zone, Special events
- Regulation, Policy: Hazard Material Routes

Disruption to Transportation Network and Economic Impact

(Thailand Mega Flood in 2011)
Estimates of economic losses = 1,425 billion THB (~$ 45.7 billion)
(World Bank, 2012)

(Hurricane Sandy in 2012)
Estimates of losses due to the shutdown of business activity in the East Coast = $30 billion-$50 billion (IHS Global Insight, 2013)
Related Topics

- Reliability (supply degradation)
- Flexibility (demand fluctuation)
- Resiliency (pre & post disaster)
- Redundancy (resiliency enhancement)
- **Vulnerability**

\[Pre \]
\[\begin{align*}
\text{• Redundancy} \\
\text{• Robustness}
\end{align*} \]

\[Post \]
\[\begin{align*}
\text{• Rapidity} \\
\text{• Resourcefulness}
\end{align*} \]
Transportation Network Vulnerability

- Vulnerability is the susceptibility of a system to threats and incidents that results in operational degradation (Berdica, 2002).
- The core is to **identify the critical/vulnerable/important components** (links/nodes), whose disruptions have a significant impact on user behaviors and network performance.
- A great deal of attention has been devoted to this topic (e.g., Bell and Cassir, 2000; Berdica, 2002; Bell and Iida, 2003; Nicholson and Dantas, 2004; Sumalee and Kurauchi, 2006; Chen et al., 2007a,b; Murray and Grubesic, 2007; Kurauchi and Sumalee, 2008; Kurauchi et al., 2009; Schmocker and Lo, 2009; Nagurney and Qiang, 2010; Levinson et al., 2010, 2012; Luathep et al. 2011; Lam et al., 2012; Chen et al., 2012; Ho et al., 2013; Jansuwan and Chen, 2015; Jenelius and Mattsson, 2015, Wang et al., 2016; Bell et al., 2017).
Vulnerability Assessment Approaches

<table>
<thead>
<tr>
<th>Category</th>
<th>References</th>
<th>Logic</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruption scenario enumeration approach</td>
<td>Reviewed by Mattsson and Jenelius (2015)</td>
<td>One link/node is removed at a time, and the impact of each link/nodal removal is evaluated and ranked according to different indictors</td>
<td>Combinatorial complexity when considering simultaneous disruption of multiple links/nodes</td>
</tr>
</tbody>
</table>
| Disruption scenario enumeration approach | Bell (2000); Bell and Cassir (2002); Szeto *et al.* (2007) | Critical links are likely to be destroyed by the demon as a consequence of the game | •Only consider the worst-case scenario
•Pessimistic evaluation |
| **Game theoretic approach** | Nicholson and Du (1997); Chen *et al.*, (2002); Luathep *et al.* (2011); Yang *et al.* (2013) | Link criticality is the proportion of overall uncertainty of performance measure contributed by its link capacity uncertainty | •Only valid for minor perturbations
•Inapplicable to large perturbations in disruption scenarios |
| **Sensitivity and uncertainty analyses** | | | |
Simultaneous Disruption of Multiple Links

- A network could be resilient to a single-link failure, but simultaneous disruptions can be very problematic, resulting in disruption propagations and widespread disruptions.
Combinatorial Complexity

- Simulation may miss some important/phantom scenarios that are unapparent due to the large scale and complex network structure.
- To consider the range of all potential disruption scenarios.

There are a total of 100 links.

- Large number of possible scenarios.
- Unknown occurrence possibility of each scenario.

Number of Disrupted Links

- \(\binom{100}{2} \)
- \(\binom{100}{3} \)
- \(\binom{100}{4} \)
- \(\binom{100}{5} \)
- \(\binom{100}{6} \)
- \(\binom{100}{7} \)
- \(\binom{100}{8} \)

Number of Possible Scenarios
Research Objective

- No analytical approach of transportation network vulnerability with a systematic consideration and quantification of all possible simultaneous disruptions
- To develop an optimization approach for deriving the upper and lower bounds of network vulnerability, while circumventing the need of enumerating all possible disruption scenarios
Mathematical Formulation (1)

- **Upper-level**

\[
\max \text{ or } \min \ f_n (x, z) = \sum_{w \in W} q^w z^w
\]

s.t. \(x_a = \{0, 1\}, \ \forall a \in A \) \hspace{0.5cm} 1: Link \(a \) is disrupted

\(z^w = \{0, 1\}, \ \forall w \in W \) \hspace{0.5cm} 1: O-D \(w \) is connected

\[
\sum_{a \in A} x_a = n \hspace{0.5cm} \text{Total number of simultaneously disrupted links}
\]

\[-M \left(1 - z^w\right) + \varepsilon \leq V^w - p \leq M z^w, \ \forall w \in W \hspace{0.5cm} \text{auxiliary variables } V^w: \text{virtual maximum flow}\]

\[
\begin{align*}
z^w = 1 & \iff \varepsilon \leq V^w - p \leq M \\
z^w = 0 & \iff V^w - p \leq 0 \iff V^w \leq p
\end{align*}
\]

Binary integer linear program

Remaining network throughput or capacity after disruptions

Binary decision variables

Total number of simultaneously disrupted links

\(x_a \rightarrow z (V) = ? \)
Mathematical Formulation (2)

• Lower-level I: virtual link capacity-based maximum flow
 maximum number of distinct paths

\[
\max_x \quad V^w (\text{or } V_{rs}) \\
\text{Virtual maximum flow b/t O-D } rs \\

\text{s.t.} \\
\sum_{a \in O_i} y_a - \sum_{a \in I_i} y_a = \begin{cases}
+V^w, & \text{if } i = r \\
-V^w, & \text{if } i = s \\
0, & \forall i \in N, i \neq r, s
\end{cases} \\

\text{Flow conservation} \\
0 \leq y_a \leq 1, \quad \forall a \in A \\
1: \text{Link } a \text{ is selected} \\
\text{Decision variable} \\
y_a \leq 1 - x_a, \quad \forall a \in A \\
\text{Mutual exclusion b/t } x_a \text{ and } y_a \\
y_a \leq 1 - x_a \equiv \begin{cases}
\text{if } x_a = 1 \text{ (disrupted), } y_a = 0 & \text{(not usable in any path)} \\
\text{if } x_a = 0 \text{ (connected), } y_a = 0 \text{ or } 1 & \text{(usable)}
\end{cases} \\
\text{Integral Flow Theorem: integral capacity of each link } \rightarrow \text{ integral maximal flow}
Mathematical Formulation (3)

- **Lower-level II: virtual link cost-based shortest path problem**

\[
\begin{align*}
\min_{y} & \quad u^w = \sum_{a \in A} \left(t_a + M \cdot x_a \right) y_a \quad \text{Minimum cost b/t O-D rs} \\
\text{s.t.} & \quad \sum_{a \in O_i} y_a - \sum_{a \in I_i} y_a \begin{cases}
= 1 & \text{, if } i = r \\
= -1 & \text{, if } i = s \\
= 0 & \text{, otherwise}
\end{cases} \quad \text{Node conservation} \\
y_a \geq 0, \quad \forall a \in A \quad 1: \text{Link } a \text{ is used in SP} \quad \text{Binary decision variable}
\end{align*}
\]

\[
- Mz^w + \varepsilon \leq u^w - \bar{u}^w \leq M \left(1 - z^w \right), \quad \forall w \in W
\]

\[
\begin{cases}
\begin{align*}
z^w = 1 & \iff \frac{1}{M \cdot \varepsilon} \leq u^w - \theta u^w_0 \leq 0 \iff u^w \leq \theta u^w_0 & \text{exist usable path} \\
\text{unrestrictive} & \\
\end{align*}
\end{cases}
\]

\[
\begin{cases}
\begin{align*}
z^w = 0 & \iff \varepsilon \leq u^w - \theta u^w_0 \space \underline{\notin} M \iff u^w > \theta u^w_0 & \text{no usable path} \\
\text{unrestrictive} & \\
\end{align*}
\end{cases}
\]
Modeling Flexibility

1. Flexible specifications of **vulnerability measures** (i.e., objective functions) for different modeling purposes
 - Remaining travel throughput (or network capacity) after disruptions
 - Remaining route diversity (or network redundancy) after disruptions.

2. Flexible modeling approaches in the **lower-level to check the O-D connectivity** under a network disruption scenario without path enumeration

3. Flexible thresholds to implicitly define route availability/usability and to capture the **travelers’ tolerance** for accepting these alternative routes when checking O-D connectivity under disruptions
Model Reformulation

• BLP is not directly solvable
• We reformulate it as a single-level MILP by substituting the lower-level with its KKT conditions along with linearization techniques of complementarity conditions and bilinear terms

\[
\begin{align*}
\tau_{a1} & \leq M \cdot (1 - y_a) \\
\tau_{a1} & \geq 0 \\
y_a & \in \{0, 1\}
\end{align*}
\]

\[
\begin{align*}
\tau_{a2} & \leq M \cdot (1 - (1 - x_a - y_a)) \\
1 - x_a - y_a & \geq 0 \\
\tau_{a2} & \geq 0 \\
y_a & \in \{0, 1\}
\end{align*}
\]

\[
\begin{align*}
\min \ u^w = \sum_{a \in A} (t_a + M \cdot x_a) y_a \\
P_a^w & \leq x_a, \quad P_a^w \geq x_a + y_a^w - 1 \\
P_a^w & \leq y_a^w, \quad P_a^w \geq 0
\end{align*}
\]
Equivalent MILP Reformulations

\begin{align*}
\text{max or min } & \sum_{w \in W} q^w z^w \\
\text{subject to :} & \\
\sum_{a} x_a &= n \\
-M \left(1 - z^w\right) + \varepsilon & \leq V^w \leq Mz^w, \ \forall w \\
x_a &= \{0, 1\}, \ \forall a \\
z^w &= \{0, 1\}, \ \forall w \\
V^w &= \sum_{\omega \in \Omega} y^w_{\omega} - \sum_{\omega \in \Omega} y^w_{s\omega} \\
\left(\delta_a^{r+} - \delta_a^{r-}\right) + \lambda^w \left(\delta_a^{r+} - \delta_a^{r-} + \delta_a^{s+} - \delta_a^{s-}\right) \\
+ & \sum_{i \in N, i \neq r, s} \mu_i^w \left(\delta_a^{i+} - \delta_a^{i-}\right) - \tau_{a1}^w + \tau_{a2}^w = 0, \ \forall a \\
\left(\sum_{\omega \in \Omega} y^w_{\omega} - \sum_{\omega \in \Omega} y^w_{s\omega}\right) + \left(\sum_{\omega \in \Omega} y^w_{s\omega} - \sum_{\omega \in \Omega} y^w_{s\omega}\right) &= 0 \\
\sum_{\omega \in \Omega} y^w_{\omega} - \sum_{\omega \in \Omega} y^w_{s\omega} &= 0, \ \forall i \in N, i \neq r, s \\
\tau_{a1}^w & \leq M \cdot \left(1 - y_{a}^w\right), \ \forall a \\
\tau_{a2}^w & \leq M \cdot \left(1 - (1 - x^w_a - y_a^w)\right), \ \forall a \\
1 - x^w_a - y_a^w & \geq 0, \ \tau_{a1}^w \geq 0, \ \tau_{a2}^w \geq 0, \ y_a^w \in \{0, 1\}, \ \forall a
\end{align*}

\begin{align*}
\text{max or min } & \sum_{w \in W} q^w z^w \\
\text{subject to :} & \\
\sum_{a} x_a &= n \\
-Mz^w + \varepsilon & \leq u^w - \bar{u}^w \leq M \left(1 - z^w\right), \ \forall w \\
x_a &= \{0, 1\}, \ \forall a \\
z^w &= \{0, 1\}, \ \forall w \\
u^w &= \sum_{a} t_a y_a^w + Mp_a^w \\
p_i^w & \leq x_a, \ p_s^w \leq y_s^w, \ p_r^w \geq x_a + y_a^w - 1, \ p_s^w \geq 0, \ \forall a \\
\left(t_a + Mx_a\right) + \mu_r^w \left(\delta_a^{r+} - \delta_a^{r-}\right) + \mu_s^w \left(\delta_a^{s+} - \delta_a^{s-}\right) \\
+ & \sum_{i \in N, i \neq r, s} \mu_i^w \left(\delta_a^{i+} - \delta_a^{i-}\right) - \tau_{a1}^w = 0, \ \forall a \\
\left(\sum_{\omega \in \Omega} y^w_{\omega} - \sum_{\omega \in \Omega} y^w_{s\omega}\right) &= 1, \ \text{if } i = r \\
\sum_{\omega \in \Omega} y^w_{\omega} - \sum_{\omega \in \Omega} y^w_{s\omega} &= -1, \ \text{if } i = s \\
& = 0, \ \text{otherwise} \\
\tau_{a1}^w & \leq M \cdot \left(1 - y_{a}^w\right), \ \tau_{a2}^w \geq 0, \ y_a^w \in \{0, 1\}, \ \forall a
\end{align*}

Existing algorithms in commercial software packages
Global optimal solution: exact upper and lower bounds with an implicit consideration of all possible combinations of multiple disruptions
Numerical Examples

• **Example 1**: verify the correctness of the optimal upper and lower bounds by comparing with the complete enumeration approach, and explore the implication of the vulnerability envelope.

• **Example 2**: demonstrate the flexibility of the proposed framework in terms of allowing different models in the lower-level subprogram, and implicitly defining route availability without path enumeration.

• **Example 3**: compare the vulnerability envelope between individual link disruption and pairwise link disruption.
Example Network

- For simplicity, all O-D pairs have the same demand of 1 unit
- Examples 1 and 2 consider **14 O-D pairs**: (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3), (5, 6), (6, 5)
- Example 3 considers all **30** (i.e., 6×5) O-D pairs
Example 1

Maximum flow-based model, $p=0$
Shortest path-based model, $\theta=M$

Objective Value

Number of Disrupted Links (n)

Largest Range = 13

Largest Slope of Upper Bound

Largest Slope of Lower Bound

Completely Disconnected
Example 1

Complete enumeration: $C_{16}^4 = 1820$

Combinatorial complexity: solve 25,480 (1820 scenarios \times 14 O-D pairs) SP
Example 1

Maximum flow-based model, $p=0$
Shortest path-based model, $\theta=M$

Number of Disrupted Links (n)

Objective Value

Largest Range = 13

Largest Slope of Upper Bound

Largest Slope of Lower Bound

Completely Disconnected

$U(n=10)$

$L(n=2)$

$L(n=4)$

$L(n=12)$
Example 2
Shortest path-based model: $\theta=1.5, 2, 3$
Example 2

Maximum flow-based model: $p=0, 1$

Objective Value

- **Best Case ($p=0$)**
- **Worst Case ($p=0$)**
- **Best Case ($p=1$)**
- **Worst Case ($p=1$)**

Largest Range

- Largest Range = 12 ($p=1$)
- Largest Range = 13 ($p=0$)

Link 5

![Graph showing the relationship between the number of disrupted links and objective value for different cases.](image)
Example 3 Individual vs. pairwise link disruption

Number of Disrupted Links (n)

Objective Value

- Best Case-Individual Disruption
- Worst Case-Individual Disruption
- Best Case-Pairwise Disruption
- Worst Case-Pairwise Disruption

Additional Disruptions on Links 9 & 10

Additional Disruptions on Links 5 & 6 or 13 & 14
Concluding Remarks

- Developed an optimization framework for deriving both the upper and lower bounds of network vulnerability envelope under simultaneous disruptions of multiple links, without the need of enumerating/evaluating all possible multi-disruption scenarios (but it is capable of considering all scenarios)
- Formulated it as a bi-level program
- Reformulated as a single-level MILP (w/t path enumeration)
- Demonstrated the validity, capability, and flexibility
- The vulnerability envelope could be used as a network assessment tool to more cost-effectively plan for system protection against disruptions, and prioritize improvements to minimize disruption risks with limited resources.
Main Information Summary

- **Small range & Large lower bound**
 - Stable across various possible scenarios

- **LARGE range & SMALL lower bound**
 - Vulnerable to target disruptions
 - Resilient to most random failures

- **SMALL range & SMALL lower bound**
 - Susceptible to most possible scenarios
Future Research

- Traveler’s rerouting effect on the remaining network travel throughput
- Node-based disruptions and interdependent infrastructures
- More efficient algorithms with a better utilization of the problem/model structure (e.g., use parallel computing due to the O-D pair specific lower-level subprogram)
 - Add $z_{js} - z_{is} \leq x_{ij}, \forall (i, j) \in A$
 - Add bounds of stage $n-1$ as a constraint of stage n
 -
Thank You!
Example 1

Best case at $n=10$

Worst case at $n=2$
Example 1

Worst case at $n=4$

Worst case at $n=12$
Formulation with Path Enumeration

\[
\begin{align*}
\text{min or max } & \quad f_n(x, y, z) = \sum_{w \in W} q_w^w z^w \\
\text{s.t.} & \quad \begin{cases}
 y_k^w & \leq \sum_{a \in A} x_a \delta_{ak}^w, \quad \forall k \in K^w, \ w \in W \\
 y_k^w & \geq x_a, \quad \forall a \in \Gamma_k^w, k \in K^w, \ w \in W \\
 z^w & \leq \sum_{k \in K^w} (1 - y_k^w), \quad \forall w \in W \\
 z^w & \geq 1 - y_k^w, \quad \forall k \in K^w, \ w \in W \\
 \sum_{a \in A} x_a & = n \quad x_a = \{0, 1\}, \ \forall a \in A \\
 y_k^w & = \{0, 1\}, \ \forall k \in K^w, \ w \in W \quad z^w = \{0, 1\}, \ \forall w \in W
\end{cases}
\end{align*}
\]