Pareto-improving policies for an idealized two-zone city served by two congestible modes

Shu-Xian Xu a,b, Ronghui Liu b, Tian-Liang Liu a and Hai-Jun Huang a

a School of Economics and Management, Beihang University

b Institute for Transport Studies, University of Leeds

The 22nd International Symposium on Transportation and Traffic Theory
24-26 July, 2017, Northwestern University
OUTLINE

1. Introduction
2. Two-zone city model
3. General properties
4. Pareto-improving policies
5. Numerical discussions
6. Summary
Background

◆ Rapid urbanization (e.g., Beijing)

Expansion in city’s size — Longer travel distance — More serious traffic congestion
Background

Rapid developments of urban subways and railway networks (e.g., Beijing)

First-stage (2012.12.30)

Second-stage (2014.12.28)

These rapid and complex developments in cities raise challenging research questions, especially on the agenda of sustainable urban development.
Background

◆ Interplays between urban land use and transportation developments

- Population distribution and migration
- Changes in work place

Land use

Travel choices

Location choices

- Development of transport system
- Traffic management policies

Transportation

Therefore, understanding the interplays between urban economic activities and transportation developments, is important in shaping the city’s development.
Literature review—introduction to urban model

Monocentric city—only one workplace (Central Business District)

![Diagram](image1)

Fig. 2. Rail line configuration along a linear urban corridor with an integrated rail-property development.

- **Linear city**

- **Circular city**
 - ● represents CBD

- **Two zone city**

![Diagram](image2)

Fig. 1 A simple core-suburb city structure.
Literature review - introduction to urban model

- Single transportation mode + residential location choice
 - No traffic congestion
 - Single transportation mode + residential location choice
 - Considering static traffic congestion
 - Solow (1972), Kanemoto (1980), Anas & Xu (1999), Li et al. (2013)
 - Single transportation mode + residential location choice
 - Considering dynamic traffic congestion
Literature review - introduction to urban model

- **Multi transportation modes + residential location choice**

 No traffic congestion

- **Multi transportation modes + residential location choice**

 No dynamic traffic congestion

 ✓ Haring et al. (1976), Buyukeren & Hiramatsu (2016)

- **Multi transportation modes + residential location choice + dynamic congestion-induced departure time choice**

 ✓ This paper
Motivation

Q1: What are the impacts of transit improvement on the performance of urban system when considering dynamic congestion and mode split effect?

Q2: How land-use and transport policies can be designed to maintain sustainable urban developments?
Model framework

◆ The interactions in a city

- Government’s decision
- Land use regulation
- Urban spatial structure
- Residents’ residential location
- Commuting cost
- Spatial distribution
- Residents’ travel choice equilibrium (mode choice, departure time)

Railway Policies

◆ Equilibria of the urban system

(i) Transportation equilibrium with mode and departure time choices;
(ii) Urban spatial equilibrium with residential location choice.
Assumptions

n_i, number of residents in area i; R_i, Land rent in area i; H_i, Land supply in area i.

- A closed, two-zone, monocentric city;
- The intra-zonal travel costs are ignored;
- Two congestible transportation modes;
- Homogeneous and rational residents;
- Fixed land size at the core, fixed land price at the suburb.
Equilibrium of mode and departure time choices

◆ Highway travel cost (bottleneck model, bottleneck capacity is w)

$$C_h(t) = \alpha[T_h + T_w(t)] + \beta[t^* - T_h + T_w(t)]_+ + \gamma[T_h + T_w(t) - t^*]_+ + F_h$$

- Travel time cost
- Schedule delay cost
- Monetary cost

➢ Highway equilibrium cost

$$C_h = \alpha T_h + \frac{\beta \gamma}{\beta + \gamma} \frac{n_{2h}}{w} + F_h$$

◆ Railway travel cost

$$C_r(t) = \alpha T_r + \beta(t^* - T_r - t)_+ + \gamma(t - t^* + T_r)_+ + \psi^2 T_r r_r(t) + (F_r - \phi)$$

- Travel time cost
- Schedule delay cost
- Crowding cost
- Fare

➢ Railway equilibrium cost

$$C_r = \alpha T_r + \sqrt{2\beta \gamma \psi \xi T_r n_{2r} / (\beta + \gamma)} + (F_r - \phi)$$
Equilibrium of mode and departure time choices

◆ Mode-choice equilibrium: all residents who travel from the suburb to the core should have the same and minimal trip cost, regardless of their transport modes.

\[C_h = C_r \]

To ensure both modes are used, the mode-choice equilibrium requires the following two conditions:

\[C_h (n_2) > C_r (0) \]
\[C_h (0) > C_r (n_2) \]

If all suburb residents choose to travel by only one mode, their travel cost would be higher than the cost of unused mode.
General urban spatial equilibrium

◆ Residents’ consumption and location choice behaviors

- Residents earn Y each year and the income will be spent on transportation, housing and other non-housing composite good. The objective of the residents is to maximize their respective utilities within their budget constraint.

$$\max U(z_i, q_i)$$ Utility function

$$s.t. \quad z_i + R_i q_i = Y - TC_i$$ Average annual travel cost

- Average unit annual rental price at area i
- Average consumption of housing at area i
- Composite goods consumed at area i
General urban spatial equilibrium

- Urban spatial equilibrium conditions
 (a) Migration equilibrium
 \[V(R_1, Y - TC_1) = V(R_2, Y - TC_2) = u \rightarrow \text{Equilibrium utility} \]

 (b) Land-market equilibrium
 \[n_1q_1(R_1,u) = H_1 \quad n_2q_2(R_2,u) = H_2 \]

 (c) Budget constraints
 \[E(R_1,u) - Y = E(R_2,u) + TC_h - Y = E(R_2,u) + TC_r - Y = 0 \]

 (d) Population conservation
 \[n_1 + n_2 = N \]

 Where \(E(R_i,u) = z(R_i,u) + R_iq(R_i,u) \) represents the minimum expenditure.
Effects of reducing transit dispatching headway (ξ) and increasing transit subsidy (ϕ)

<table>
<thead>
<tr>
<th></th>
<th>Proposition 1: Reduce ξ</th>
<th>Proposition 2: Increase ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium utility u</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population n_1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Land rent R_1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suburb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highway users n_{2h}</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Land area H_2</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Highway peak-period D_h</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Railway peak-period D_r</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Considering the modal substitution and dynamic congestion, transit improvement methods cause: increase of utility level, decrease of the core population, increase of the suburb area.
Effects of reduce railway dispatching headway (ξ) and increasing railway subsidy (ϕ) on departure rate

When transit demand is endogenously determined, the transit improvement policies have a more significant impact on commuters’ travel behaviour. Therefore, it is necessary to analyze the equilibrium of travel behaviours in an urban spatial equilibrium modeling framework.
Land-use and transit policy instruments

(a) **Land-use tax** \(\{s\} \): a tax charged to suburb land use \(R_2 = R_a + s \)

(b) **Cross land use taxation and rail service enhancement** \(\{s, \xi\} \): simultaneous sets \(s > 0 \) and reduce service headway \(\xi \)

(c) **Cross land use taxation and direct railway fare subsidy** \(\{s, \sigma\} \): a proportion (\(\sigma \)) of land-use tax revenue is used to finance transit subsidy \(\phi \):
\[
\phi = \sigma n_2 q_2 s / 2 \kappa n_{2r}
\]

(d) **Cross optimal road toll and direct railway fare subsidy** \(\{\tau, \sigma\} \): a proportion (\(\sigma \)) of the toll revenue equally among rail users through a transit subsidy \(\phi \):
\[
\phi = \sigma \delta (n_{2h})^2 / (2wn_{2r})
\]
Effects of land-use and transit policy instruments

Effects of land-use and transport policy instruments

<table>
<thead>
<tr>
<th>Policy Instrument</th>
<th>{s}</th>
<th>{s, \xi}</th>
<th>{s, \sigma}</th>
<th>{\tau, \sigma}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway user n_{2h}</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Equilibrium utility u</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>Suburb land use H_2</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>+</td>
</tr>
</tbody>
</table>

There is a trade-off between the centralizing effect caused by land-use tax and the decentralizing effect caused by improvements of transit services.
Pareto-improving policy designs

◆ **Definition:** A design scheme is said to be **Pareto-improving** if it holds that

\[u^p \geq u^e \rightarrow \text{Residents’ utility level improves} \]

and

\[H_2^p \leq H_2^e \rightarrow \text{Urban land does not sprawl} \]

where \(u^p \) and \(H_2^p \), \(u^e \) and \(H_2^e \) are the utility level and size of suburb land area corresponding to Pareto-improving equilibrium and the base equilibrium case.
Joint land use tax and transit headway instrument

For a given land-use tax, as headway decreases, the equilibrium utility increases, the suburb size increases.

Pareto-improving solutions

<table>
<thead>
<tr>
<th>s ($/acre$)</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ (min)</td>
<td>3.56</td>
<td>2.60</td>
<td>1.90</td>
<td>1.40</td>
<td>1.03</td>
<td>0.75</td>
</tr>
<tr>
<td>η (min)</td>
<td>4.05</td>
<td>3.30</td>
<td>2.70</td>
<td>2.20</td>
<td>1.80</td>
<td>1.39</td>
</tr>
</tbody>
</table>
Joint land use tax and transit subsidy instrument

For a given land-use tax, as the transit subsidy ratio increases, the resident’s equilibrium utility level increases, the suburb size increases.

Pareto-improving solutions

<table>
<thead>
<tr>
<th>s ($/acre$)</th>
<th>1000</th>
<th>2000</th>
<th>3000</th>
<th>4000</th>
<th>5000</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>40.0%</td>
<td>43.4%</td>
<td>46.0%</td>
<td>49.2%</td>
<td>51.8%</td>
<td>54.8%</td>
</tr>
<tr>
<td>$\bar{\sigma}$</td>
<td>71.7%</td>
<td>80.9%</td>
<td>89.6%</td>
<td>97.8%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Joint land use tax and transit subsidy instrument

- For a given subsidy ratio, the relationships between tax and equilibrium utility are not straight-forward.
- At higher subsidy ratios the utility level - land tax forms a concave curve.
- Setting land use tax ($s = 7400 \$/acre) and using all tax revenue to subsidy transit makes residents’ utility level maximize.
Conclusions

◆ We introduce dynamical departure-time choices into commuters’ travel behaviour in a monocentric city with two alternative transport modes.

➢ The improvement of transit service has a definitive effect on the city structure: it limits the centralization effect, attracts more residents to relocate in the suburb, thus leads to urban sprawl.

➢ If the government improves development of transit at a high level, they must either accept a high level of urban sprawl or implement strict land use regulation to curb urban sprawl.
Further studies

➢ To shift the model from the two-zone city to a more realistic city structure (e.g. a continuous city model or polycentric city structure).

➢ To extend to a city model considering intra-zonal travel behaviours.

➢ To incorporate the influence of environmental externality (e.g., negative effects incurred by residential density and vehicle emissions) so as to create a sustainable urban city system and correct the distortion.
Thank you for listening!
Welcome your comments!