Stochastic dynamic switching in fixed and flexible transit services as market entry-exit real options

Qian-wen Guoa, Joseph Y.J. Chowb,\ast, Paul Schonfeldc

a Sun Yat-Sen University, Guangzhou, China
b New York University, NY, USA
c University of Maryland, College Park, MD, USA

ISTTT 22, NORTHWESTERN UNIVERSITY, July 24-26, 2017
Outline

- Background and literature review
- Problem definition
 - Problem illustration
 - Formal definition
- Proposed model
 - Dynamic switching between fixed and flexible transit
 - Model variation: modular vehicle sizes
- Model properties
- Computational evaluations
Background

- **Data-driven** environment
- Demand **uncertainty**
- **Optimal timing and control** of transit systems

Shared autonomous fleets with modular vehicle size
(source: www.next-future-mobility.com).
Background and literature review

- **Fixed-route and flexible-route systems**
 Daganzo, 1984; Chang and Schonfeld, 1991a; Quadrifoglio and Li, 2009; Qiu et al, 2015

- **Integrating fixed-route and flexible-route transit**
 Chang and Schonfeld, 1991b; Kim and Schonfeld, 2013, 2014

- **Artificial intelligence and autonomous vehicle technologies**
 Dubai (Spera, 2016), Ackerman, 2016
Background and literature review

Static policies - Information and Communications Technologies (ICTs)-Dynamic flexible transit services

Some dynamic dual-mode transit fleet operating strategies
- Fixed route vs flexible service e.g. Kim and Schonfeld, 2013
- Vehicle size e.g. Fu and Ishkanov, 2004
- Headway control e.g. Thomas, 2007
- Idle vehicle relocation. e.g. Yuan et al., 2011
- Ridesharing options M to 1, M to Few, M to M.
Contributions

The static fixed/flexible service policy

- Modeling dynamic switching of transit service as a market entry-exit real options model;
- Presenting a variation of this model to address “vehicle modularity”;
Market entry-exit real options

The effect of mean reversion

Tsekrekos, Journal of Economic Dynamic & Control, 2010

ISTTT22, @ NORTHWESTERN UNIVERSITY, July 24-26, 2017
Problem illustration

An urban system: a single rectangular region of length L and width W, and connected to a hub via line haul of length J

Demand density is assumed to be uniformly distributed.

The fixed-route conventional mode subdivided into N_c routes of width r and length L

The flexible service mode subdivided into a grid of N_f zones of area A.

Dynamic choosing which mode in a specific time period based on real time data
Fixed transit operating cost

- $C_{\text{sc}} = \text{the sum of the bus operating cost } C_{\text{o}}, \text{ user in-vehicle cost } C_{\text{v}}, \text{ user waiting cost } C_{\text{w}}, \text{ and user access cost } C_{\text{x}}.$

$$C_{\text{sc}}^{\uparrow} (Q) = 3LWQ(vw \, vx \, aDc / 8Vx \, Vc \, LQ)^{1/3} + bLWQDc / Vc + vlx \, LWQd / 4Vx + vi \, LWQM / Vc$$

If S_{c} is fixed

$$C_{\text{sc}}^{\uparrow} (Q; S_{\text{c}}) = LWQDc (a + bS_{\text{c}}) / Vc \, S_{\text{c}} + vi \, LWMQ / Vc + W \sqrt{vw} \, S_{\text{c}} \, vlx \, LQ / 2Vx + vlx \, LWQ / 4Vx (\sqrt{2Vx} \, vlx \, S_{\text{c}} / vlx \, LQ + d)$$
Flexible transit service cost

- $C_{sf} = \text{the sum of the bus operating cost } C_{o} \text{, user in-vehicle cost } C_{v} \text{, user waiting cost } C_{w} \text{, and user access cost } C_{x}$

$$C_{sf} = LWQ[(v_{w}a_{2}k_{2}D_{f}\gamma_{2}/V_{f}\gamma_{2}uQ)^{1/5} + 1.5(v_{w}a_{2}k_{2}/V_{f}\gamma_{4})^{1/5}(Y_{2}/uQ)^{1/3} + D_{f}(b+v_{i}/2)/V_{f}]$$

If S_{f} is fixed

$$C_{sf} = LWD_{f}Q(a+bS_{f})/V_{f}S_{f} + v_{i}LWD_{f}Q/2V_{f} + v_{w}S_{f}LW/2(v_{w}S_{f}V_{f}/Qk(a+bS_{f})\sqrt{uS_{f}} + v_{i}/2\sqrt{S_{f}/u})^{-2/3} + LWQ/V_{f}(k/\sqrt{uS_{f}}(a+bS_{f}) + v_{i}/2\sqrt{S_{f}/u})(v_{w}S_{f}V_{f}/Q(a+bS_{f})k/\sqrt{uS_{f}} + v_{i}/2\sqrt{S_{f}/u})^{1/3}$$
Incremental cost savings function

- The immediate cost savings accrued from time t to $t + dt$ when operating in one mode relative to the other

$$\Phi(Q(t)) = C_{\downarrow sf \uparrow} (Q(t); S_{\downarrow f}) - C_{\downarrow sc \uparrow} (Q(t); S_{\downarrow c})$$

Demand uncertainty Stochastic process
Demand density

- Demand density $Q(t)$ - a mean-reverting Ornstein-Uhlenbeck (O-U) process (Sarkar, 2003)

$$dQ = \mu(m - Q)dt + \sigma Qdw$$

- μ is a mean reversion coefficient

- m is the long-term demand density

- σ is the process volatility

- $dw \sim N(0, dt)$ is an increment in the Wiener process.

- **An optimal policy** = total realized operating cost + switching cost over an entire daily cycle is expected to be minimized.

$$K(Q(t)) = \max_{a(t)} a(t) \left(\Phi(a(t)) + \rho EV(Q(t)) \right)$$

Switching occurs instantaneously.
Policy valuation

- **Asset equilibrium pricing**
 Dixit, 1989

- The option value of using **flexible bus operating mode** $V_0(Q)$

 \[
 \frac{1}{2} \sigma^2 Q^2 V_0(\downarrow)^{\prime\prime}(Q) + \mu(m - Q)V_0(\uparrow)(Q) - \rho

 V_0(\downarrow)(Q) = 0
 \]

- The option value of using **conventional bus operating mode** $V_1(Q)$

 \[
 \frac{1}{2} \sigma^2 Q^2 V_1(\downarrow)^{\prime\prime}(Q) + \mu(m - Q)V_1(\uparrow)(Q) - \rho V_1(\downarrow)(Q)

 + \Phi(Q) = 0
 \]
Asset equilibrium conditions

- No single threshold (Due to switching cost)

\[
F'^+ = F'^- = 0, \quad Q^\downarrow H = Q^\downarrow L
\]

- Value matching

\[
V^\downarrow 0 (Q^\downarrow H) = V^\downarrow 1 (Q^\downarrow H) - F'^+
\]

\[
V^\downarrow 1 (Q^\downarrow L) = V^\downarrow 0 (Q^\downarrow L) - F'^-
\]

- Smooth pasting

\[
V^\downarrow 0 \uparrow' (Q^\downarrow H) = V^\downarrow 1 \uparrow' (Q^\downarrow H)
\]

\[
V^\downarrow 0 \uparrow' (Q^\downarrow L) = V^\downarrow 1 \uparrow' (Q^\downarrow L)
\]

\(Q^\downarrow L\) - from fixed to flexible
\(Q^\downarrow H\) - from flexible to fixed

\(F'^+\) is the cost assumed for switching from flexible bus service to conventional bus service

\(F'^-\) is the cost of switching from conventional bus service to flexible bus service;
Asset equilibrium conditions

- General solution of $V \downarrow 0 (Q)$ and $V \downarrow 1 (Q)$

\[
V \downarrow 0 (Q) = [A \downarrow 0 \ H(-\gamma \downarrow 0, w \downarrow 0, x) + B \downarrow 0 \ (2\mu m/\sigma \uparrow 2 Q) \uparrow 1 - w \downarrow 0 \ H(1-\gamma \downarrow 0, -w \downarrow 0, 2-w \downarrow 0, x)]Q \uparrow \gamma \downarrow 0
\]

\[
V \downarrow 1 (Q) = [A \downarrow 1 \ H(-\gamma \downarrow 1, w \downarrow 1, x) + B \downarrow 1 \ (2\mu m/\sigma \uparrow 2 Q) \uparrow 1 - w \downarrow 1 \ H(1-\gamma \downarrow 1, -w \downarrow 1, 2-w \downarrow 1, x)]Q \uparrow \gamma \downarrow 1 + E \downarrow t \left[\int t \uparrow \infty \Phi(Q(s))e \uparrow -\rho(s-t) \ ds \right]
\]

$H(\cdot)$ is the confluent hypergeometric function or Kummer function

\[
H(\gamma, w, x) = 1 + \gamma/w \ x + \gamma(\gamma+1)x \uparrow 2/\!w(\!w\!+\!1)2! + \gamma(\gamma+1)(\gamma+2)x \uparrow 3/\!w(\!w\!+\!1)(\!w\!+\!2)3! + ...$

The function has two asymptotic expressions.
Asset equilibrium conditions

\[\mathbf{F} (\mathbf{X}) = \mathbf{Q} \quad (A \downarrow H) \quad Q \text{ is uniquely determined by solving} \]

\[A \downarrow 1 \quad H \downarrow 1 \quad (Q \downarrow H) \quad Q \downarrow H \uparrow \gamma \downarrow 1 \quad -E \downarrow t \]

\[\int_{t}^{\infty} \Phi (Q(s) | Q(t) = Q \downarrow H) e^{-\rho(s-t)} \, ds \] + \mathbf{F} \uparrow + \mathbf{A} \downarrow 0 \quad H \downarrow 0 \quad (Q \downarrow L) \quad Q \downarrow L \uparrow \gamma \downarrow 0 \quad + (\Delta \downarrow 1 \quad A \downarrow 0 \quad -A \downarrow 1 \quad) \quad H \downarrow 1 \quad (Q \downarrow L) \]

\[Q \downarrow L \uparrow \gamma \downarrow 1 \quad -E \downarrow t \quad \int_{t}^{\infty} \Phi (Q(s) | Q(t) = Q \downarrow H) e^{-\rho(s-t)} \, ds \] - \mathbf{F} \downarrow - \mathbf{A} \downarrow 0 \quad M \downarrow 0 \quad (Q \downarrow H) \quad Q \downarrow H \uparrow \gamma \downarrow 0 \quad + (\Delta \downarrow 1 \quad A \downarrow 0 \quad -A \downarrow 1 \quad) \quad M \downarrow 1 \quad (Q \downarrow L) \quad Q \downarrow L \uparrow \gamma \downarrow 0 \quad + \partial E \downarrow t \]

\[\int_{t}^{\infty} \Phi (Q(s) | Q(t) = Q \downarrow H) e^{-\rho(s-t)} \, ds \] / \partial Q \quad \mathbf{A} \downarrow 0 \quad M \downarrow 0 \quad (Q \downarrow L) \quad Q \downarrow L \uparrow \gamma \downarrow 0 \quad + (\Delta \downarrow 1 \quad A \downarrow 0 \quad -A \downarrow 1 \quad) \quad M \downarrow 1 \quad (Q \downarrow L) \]

Due to the complexity of the equations, we have to obtain the solution numerically.
Model properties

- Sensitivity of switching policy to transportation system parameters

<table>
<thead>
<tr>
<th>Solutions</th>
<th>(Q(0) =32 \text{ trips/mile}^2/\text{hr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Transit</td>
<td></td>
</tr>
<tr>
<td>Headway, (h \downarrow c)</td>
<td>0.42</td>
</tr>
<tr>
<td>Vehicle size, (S \downarrow c)</td>
<td>75</td>
</tr>
<tr>
<td>Fleet size, (F \downarrow c)</td>
<td>5</td>
</tr>
<tr>
<td>Route spacing, (r)</td>
<td>1.41</td>
</tr>
<tr>
<td>Total cost, (C \downarrow sc)</td>
<td>2881.1</td>
</tr>
<tr>
<td>Flexible Transit</td>
<td></td>
</tr>
<tr>
<td>Headway, (h \downarrow f)</td>
<td>0.08</td>
</tr>
<tr>
<td>Vehicle size, (S \downarrow f)</td>
<td>7</td>
</tr>
<tr>
<td>Fleet size, (F \downarrow f)</td>
<td>58</td>
</tr>
<tr>
<td>Service zone, (A)</td>
<td>3.02</td>
</tr>
<tr>
<td>Total cost, (C \downarrow sf)</td>
<td>2883.0</td>
</tr>
<tr>
<td>(\Phi(Q))</td>
<td>1.9</td>
</tr>
<tr>
<td>(E \downarrow t [\int_t^\infty \Phi(Q)e^{-\rho(s-t)} , ds])</td>
<td>-39.4</td>
</tr>
<tr>
<td>(V \downarrow 0 (Q(0)))</td>
<td>23.5</td>
</tr>
<tr>
<td>(V \downarrow 1 (Q(0)))</td>
<td>17.4</td>
</tr>
<tr>
<td>(Q \downarrow L)</td>
<td>28.7</td>
</tr>
<tr>
<td>(Q \downarrow H)</td>
<td>41.8</td>
</tr>
</tbody>
</table>
Model properties

Flexible

Fixed transit

Flexible

Fixed transit

\(Q_H \)

\(Q_L \)

\(t_1 \)

\(t_2 \)

\(t_3 \)

T (15 min)

ISTTT22, @ NORTHWESTERN UNIVERSITY, July 24-26, 2017
Verification of policy

Experimental design

For the same simulated demand density trajectory, each policy’s outcome decisions are made as follows in three scenarios:

- **Perfect information scenario**: determine the optimal switching points deterministically as if the operator knew the demand outcome beforehand;

- **Myopic policy scenario**: determine the optimal switching points whenever the incremental cost threshold ($\Phi=0$) is crossed;

- **Proposed policy scenario based on market entry-exit switching option**: switch to fixed transit whenever $Q(t) > Q_{\downarrow H}$ or switch to flexible transit whenever $Q(t) < Q_{\downarrow L}$.
Experimental design

\[Q_{n+1} = Q_n + \mu(m - Q_n)\Delta t + \sigma Q_n \Delta w_n \]

- The performance of the proposed policy

\[\sigma(\pi) = R_{my} - \pi / R_{ph} \]

- \(R_{ph} \) perfect information scenario
- \(R_{my} \) myopic scenario

Fixed vehicle sizes \(S_f = 8 \), \(S_c = 80 \) seats/vehicle

Average demand density of 40 trips/mile^2/hr

ISTTT22, @ NORTHWESTERN UNIVERSITY, July 24-26, 2017
Experimental Results

- When switching cost is 0, there is just one threshold $Q^*_{\uparrow} = 35.6$.
- When there is a switching cost $F_{\uparrow} = F_{\uparrow}^{-} = 10$, then the optimal thresholds are $Q_{\downarrow L} = 28.7$ and $Q_{\downarrow H} = 41.8$.

Proposed policy

ISTTT22, @ NORTHWESTERN UNIVERSITY, July 24-26, 2017
Experimental Results

the switching costs > the cumulative discounted cost saving

<table>
<thead>
<tr>
<th></th>
<th>Perfect hindsight</th>
<th>Proposed policy</th>
<th>Myopic policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total discounted cost</td>
<td>46093.77</td>
<td>46150.62</td>
<td>46293.73</td>
</tr>
<tr>
<td>$\omega(\pi)$</td>
<td>1.0000</td>
<td>0.7157</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

The proposed policy can reduce the excess cost by 72% relative to myopic policy.

ISTTT22, @ NORTHWESTERN UNIVERSITY, July 24-26, 2017
Model properties

- Switching policy sensitivity to demand density

Fig. 4. (a) Incremental operational cost from fixed to flexible transit
(b) option value of conventional and flexible bus service with respect to demand density.
Model properties

- Switching policy value sensitivity to stochastic process parameters

Hysteresis effect

Fig. 5. Relation between (a) upper and (b) lower demand density threshold and switching cost for different reversion speed.
Model properties

- Switching policy value sensitivity to stochastic process parameters

Fig. 6. Relation between upper and lower demand density threshold and volatility
Model properties

- Switching policy value sensitivity to stochastic process parameters

Table 5. Relation between discount rate and trigger demand density thresholds.

<table>
<thead>
<tr>
<th>Discount rate ρ (%)</th>
<th>Single trigger demand density Q^*</th>
<th>Upper demand density $Q_{H}\downarrow$ (trips/mile²/hr)</th>
<th>Lower demand density $Q_{L}\downarrow$ (trips/mile²/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>35.2</td>
<td>41.0 (+5.8)</td>
<td>28.3 (-6.9)</td>
</tr>
<tr>
<td>7</td>
<td>35.6</td>
<td>41.8 (+6.2)</td>
<td>28.7 (-6.9)</td>
</tr>
<tr>
<td>9</td>
<td>36.1</td>
<td>42.6 (+6.5)</td>
<td>29.1 (-7.0)</td>
</tr>
<tr>
<td>11</td>
<td>36.7</td>
<td>43.4 (+6.7)</td>
<td>29.5 (-7.2)</td>
</tr>
</tbody>
</table>

not symmetric
Model variation: modular vehicle size

This general structure can manage autonomous fleets such as the Next Future Mobility system

- Two different vehicle sizes $S\downarrow 1$ and $S\downarrow 2$, $S\downarrow 2 = 2S\downarrow 1$
- $C\downarrow sf1 (Q;S\downarrow 1)$ = the cost of operating flexible service with vehicle size $S\downarrow 1$
- $C\downarrow sf2 (Q;S\downarrow 2)$ for operating flexible service with vehicle size $S\downarrow 2 = 2S\downarrow 1$.

The incremental cost savings function variation $\Phi (Q)$:

$\Phi (Q(t)) = C\downarrow sf1 (Q(t);S\downarrow 1) - C\downarrow sf2 (Q(t);S\downarrow 2)$
Application to vehicle modularity

The experiment is designed to compute the option premium for the added flexibility to switch between two vehicle sizes: $S\downarrow 1 = 10$ and $S\downarrow 2 = 20$.

- **Scenario 1**: flexible service with only one fixed vehicle size $S\downarrow 0$ (static policy),
- **Scenario 2**: flexible service with two vehicle sizes in which the proposed policy is used to determine optimal switching, assuming the system initiates at $S\downarrow 1$ and having symmetric switching costs $F\downarrow S = 10$.
Application to vehicle modularity

Fig 10. Proposed switching policy for vehicle modularity.

- $F_{\downarrow}S = 10$
- $Q_{\downarrow}H = 33.5, S_{\downarrow}1 \rightarrow S_{\downarrow}2$
- $Q_{\downarrow}L = 22.8, S_{\downarrow}2 \rightarrow S_{\downarrow}1$
- $F_{\downarrow}S = 0$
- $Q_{\uparrow}* = 28.2$

The flexibility to switch vehicle size in this case leads to an improvement over a static policy of $373.45 over the 24 hrs.

<table>
<thead>
<tr>
<th>Cumulative total cost ($)</th>
<th>Proposed policy</th>
<th>Static policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>45946.64</td>
<td>46320.09</td>
<td></td>
</tr>
</tbody>
</table>

ISTTT22, @ NORTHWESTERN UNIVERSITY, July 24-26, 2017
Conclusion

- Optimize dynamic switching of transit service as a market entry-exit real options model with mean-reverting demand density;
- Adapt this model to analysis “vehicle modularity”;
- Compare with Chang and Schonfeld (1991a):
 - A hysteresis effect is observable;
 - The values and sensitivity of the switching thresholds with respect to the transportation system conditions are not necessarily symmetric;
 - The cost-free switching threshold ≠ the deterministic cost savings threshold.
- Relative to a myopic policy, the performance of the proposed policy can eliminate up to 72% of the excess cost;
- An option premium exists for having the flexibility to switch between two vehicle sizes.
Further research

- When the Ornstein–Uhlenbeck process is changed to a Geometric Brownian Motion process, the model may be applicable to long term regional planning and staging of flexible-route and fixed-route transit services.

- Further research should also be undertaken to address some shortcomings or simplifications assumed in this study. e.g. from a single many-to-one demand pattern to more realistic ones.

- Adding significant switching duration as a research extension should be feasible, given similar considerations of construction duration in other transit real options studies (e.g. Li et al, 2015).

- An empirical study using this methodology on a real transit service with performance validation would be highly valuable.
THANK YOU!

Qian-wen Guo: guoqw3@mail.sysu.edu.cn
Joseph Y.J. Chow*: joseph.chow@nyu.edu
Paul Schonfeld: pschon@umd.edu
Model properties

- Sensitivity of switching policy to transportation system parameters-local service speed

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Fixed Transit</th>
<th>Flexible Transit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Headway, $h_{\downarrow c}$</td>
<td>Headway, $h_{\downarrow f}$</td>
</tr>
<tr>
<td></td>
<td>0.43</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.39</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle size, $S_{\downarrow c}$</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleet size, $F_{\downarrow c}$</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route spacing, r</td>
<td>1.46</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost, $C_{\downarrow sc}$</td>
<td>3044.0 (+5.65%)</td>
<td>3153.2 (+9.37%)</td>
</tr>
<tr>
<td></td>
<td>2881.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2626.1 (-8.85%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Transit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible Transit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service zone, A</td>
<td>Service zone, A</td>
</tr>
<tr>
<td></td>
<td>2.85</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>3.02</td>
<td>3.02</td>
</tr>
<tr>
<td></td>
<td>3.34</td>
<td>3.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cost, $C_{\downarrow sf}$</td>
<td>3153.2 (+9.37%)</td>
<td>3153.2 (+9.37%)</td>
</tr>
<tr>
<td></td>
<td>2883.0</td>
<td>2883.0</td>
</tr>
<tr>
<td></td>
<td>2470.1 (-14.32%)</td>
<td>2470.1 (-14.32%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Phi(Q)$</td>
<td>109.2</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-156</td>
</tr>
<tr>
<td>$E[t \int_0^\infty \Phi(Q)e^{\int_0^s -\rho(s-t)} ds]$</td>
<td>654.8</td>
<td>-39.4</td>
</tr>
<tr>
<td>$V_{\downarrow 0}(Q(0))$</td>
<td>16.5</td>
<td>23.5</td>
</tr>
<tr>
<td>$V_{\downarrow 1}(Q(0))$</td>
<td>35.9</td>
<td>17.4</td>
</tr>
<tr>
<td>$Q_{\downarrow L}$</td>
<td>12.2 (-57.5%)</td>
<td>28.7</td>
</tr>
</tbody>
</table>
Model properties

Table 4. Sensitivity of variable bus operating cost on fixed and flexible transit total cost with baseline-relative changes in parentheses.

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Scaling factor α of basic value of operational variable cost β</th>
<th>$\alpha=0.8$</th>
<th>$\alpha=1.0$</th>
<th>$\alpha=1.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Transit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headway, $h_{\downarrow}c$</td>
<td></td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Vehicle size, $S_{\downarrow}c$</td>
<td></td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Fleet size, $F_{\downarrow}c$</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Route spacing, r</td>
<td></td>
<td>1.41</td>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>Total cost, $C_{\downarrow}sc$</td>
<td></td>
<td>2873.1 (-0.28%)</td>
<td>2881.1</td>
<td>2888.9 (+0.27%)</td>
</tr>
<tr>
<td>Flexible Transit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headway, $h_{\downarrow}f$</td>
<td></td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Vehicle size, $S_{\downarrow}f$</td>
<td></td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Fleet size, $F_{\downarrow}f$</td>
<td></td>
<td>57</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>Service zone, A</td>
<td></td>
<td>3.13</td>
<td>3.02</td>
<td>2.91</td>
</tr>
<tr>
<td>Total cost, $C_{\downarrow}sf$</td>
<td></td>
<td>2799.0 (-2.91%)</td>
<td>2883.0</td>
<td>2996.2 (+3.93%)</td>
</tr>
</tbody>
</table>

$\Phi(Q)$

$E\downarrow t \left[\int_{t}^{\infty} \Phi(Q)e^{t-\rho(s-t)} ds \right]$

-74.1 1.9 107.3

$\nabla \nabla (Q(0))$

86.4 23.5 19.8

$\nabla \nabla (Q(0))$

44.5 17.4 33.5

$\nabla \nabla L$

42.4 (+47.7%) 28.7 21.5 (-25.1%)
Application to vehicle modularity

Fig. 9. (a) Total cost of two vehicle sizes (b) cost savings of vehicle size 2 over vehicle size 1, with respect to demand density.
\[Q_{n+1} = Q_n + \mu(m - Q_n) \Delta t + \sigma Q_n \Delta w_n \]

\(\Delta w_n \) are independent identically distributed Wiener increments, normal variates with zero mean and variance \(\Delta t \). Thus, \(w_{t+n+1} - w_{t+n} = \Delta w_n \sim N(0, \Delta t) = \sqrt{\Delta t} N(0,1) \). \(N(0,1) \) is the standard normal variate. In implementation, \(\Delta t = 0.5 \).
\[E \downarrow 0 \; [Q(t)] = m + (Q(0) - m) \exp(-\mu t) \]
\[\text{Var} \downarrow 0 \; [Q(t)] = m^2 \sigma^2 / 2 \mu - \sigma^2 - \exp(-2\mu t) \]
\[(Q(0) - m)^2 + 2m\sigma^2 (Q(0) - m) / \mu - \sigma^2 \exp(-\mu t) + 2 \mu^2 (Q(0) - m)^2 - \mu \sigma^2 Q(0)(3Q(0) - 2m) + \sigma^2 Q^2(0) / (\mu - \sigma^2)(2\mu - \sigma^2) \exp(-(2\mu - \sigma^2)t) \]

O-U processes are generalizations of the geometric Brownian motion (GBM) that allow for stationarity, and have been shown to fit the data in investment models better than GBM despite the increased complexity (Tsekrekos, 2010).