Unifiable multi-commodity kinematic wave model

Wen-Long Jin
University of California, Irvine
Outline

• Introduction
• Fundamental diagrams
• Kinematic wave model
• Cell Transmission Model
• Examples
• Conclusion
Introduction
Multi-commodity traffic on SR-91
Motivation

- (Rey, Jin, and Ritchie, 2016) Trajectory estimation with Newell’s model
LWR vs non-FIFO

• LWR for multilane roads
 – empirical observation of FD
 – shock wave analysis
 – queue/delay estimation
 – incident management

• non-FIFO
 – different lanes
 – different aggressiveness
 – pricing schemes: HOT, tradable credits
Notations: Commodity and total variables

• commodity m ($m=1,\cdots,M$):
 – density: $k_{\downarrow m}(x,t)$
 – speed: $v_{\downarrow m}(x,t)$
 – flow-rate: $q_{\downarrow m}(x,t)$
 – unit vector: $e_{\downarrow m}$

• vectors of commodity variables:
 – $k(x,t) = \sum_{m=1}^{M} k_{\downarrow m}(x,t) e_{\downarrow m}$
 – $v(x,t)$
 – $q(x,t)$

• total traffic:
 – density: $k(x,t)$
 – speed: $v(x,t)$
 – flow-rate: $q(x,t)$
Multi-commodity kinematic wave models

• (R1) Additive relations
 – \(k = \sum_{m=1}^{M} \kdown m \), \(q = \sum_{m=1}^{M} qdown m \)

• (R2) Commodity and total constitutive laws:
 – \(qdown m = kdown m \nudown m \)
 – \(q = kv \)

• (R3) Commodity speed-density relations:
 – \(vdown m = \eta down m (k) \)

• (R4) Commodity conservation equations:
 – \(\partial kdown m / \partial t + \partial qdown m / \partial x = 0 \)

• (R5) Weak solutions: discontinuous shock waves

• (R6) Entropy conditions: unique, physical laws

• Multi-commodity kinematic wave model: a system of \(M \) conservation equations:
 – \(\partial kdown m / \partial t + \partial kdown m \eta down m (k) / \partial x = 0 \)
FIFO vs Unifiable

- Total traffic speed: $v = \eta(k) \equiv \sum_{m=1}^{M} k^m \eta^m(k) \equiv \frac{\sum_{m=1}^{M} k^m \eta^m(k)}{\sum_{m=1}^{M} k^m}$

- FIFO: same commodity speeds
 - $v^1 = \ldots = v^M = v$
 - $\eta^1(k) = \ldots = \eta^M(k) = \eta(k)$
 - $q^m / q = k^m / k$
 - FIFO-MCKW: $M \times M$ Temple system of $(k, k^1, \ldots, k^{M-1})$

- Unifiable: $v = \eta(k) = \eta(k)$
 - total fundamental diagram: $q = \phi(k) \equiv k\eta(k)$
 - Greenshields vs triangular
 - LWR model: $\partial k / \partial t + \partial \phi(k) / \partial x = 0$

- FIFO vs unifiable:
 - multi-commodity traffic flows
 - commodity speed-density relations
 - kinematic wave models
Existing MCKW

- both unifiable and FIFO
 - CTM (Daganzo, 1995)
 - (Lebacque, 1996): $v_{\downarrow m} = \eta(k)$
- FIFO but not unifiable: same speed, different contributions
 - (Zhang and Jin, 2002): different free-flow speeds
 - (Jin, 2013): weaving vs non-weaving vehicles
- neither FIFO nor unifiable
 - (Daganzo, 1997): 1-/2-pipe regimes
 - (Benzoni-Gavage and Colombo, 2003): $v_{\downarrow m} = V_{\downarrow m} / V \eta(k)$
 - (Chanut and Buisson, 2003): passenger-car equivalents
- unifiable but not FIFO: no explicit speed-density relations
 - (Khoshyaran and Lebacque, 2012): multi-lane, implicit existence
 - (Rey et al., 2015): Newell’s model with FIFO violation
Existing MCKW

<table>
<thead>
<tr>
<th></th>
<th>Unifiable</th>
<th>Non-unifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO</td>
<td>(Daganzo, 1995)</td>
<td>(Zhang and Jin, 2002)</td>
</tr>
<tr>
<td></td>
<td>(Lebacque, 1996)</td>
<td>(Jin, 2013)</td>
</tr>
<tr>
<td>Non-FIFO</td>
<td>Implicit (Khoshyaran and Lebacque, 2012), Implicit with Newell’s model (Rey et al., 2015)</td>
<td>(Daganzo, 1997)</td>
</tr>
<tr>
<td></td>
<td>This study</td>
<td>(Wong and Wong, 2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Benzoni-Gavage and Colombo, 2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Chanut and Buisson, 2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
This study

• Explicit unifiable MCKW model
 – total speed-density relation, but may violate FIFO
 – commodity speed-density relations from generating functions
 – analytical solutions: Riemann problem
 – numerical simulations: unifiable CTM
 – examples: Riemann solutions, well-defined

• important and relevant
 – empirical evidences: total speed-density relation, FIFO violation
 – conceptual confusion: unifiable ⇒ FIFO
 – computational efficiency: total traffic by Hamilton-Jacobi and link transmission model
Unifiable commodity speed-density relations
More notations

- **Density proportions:**
 - $p_m = k_m / k$
 - $\sum m = 1 \uparrow M \equiv p_m = 1$, $p_m \in [0, 1]$
 - $p = \sum m = 1 \uparrow M \equiv p_m \ e \downarrow m$
 - $k = k \ p$

- **Commodity speed ratios:** $\eta_m (k, p) = \eta(k, p) \cdot \gamma_m (k, p)$
 - $\gamma_m (k, p) = v_m / v > 0$
 - FIFO iff $\gamma_m (k, p) = 1$ for all m
 - Commodity m faster: $\gamma_m (k, p) > \gamma_m \uparrow'$ (k, p)

- **Commodity flow-rate proportions:**
 - $\xi_m (k, p) = q_m / q = p_m \cdot \gamma_m (k, p)$
 - $\sum m = 1 \uparrow M \equiv \xi_m (k, p) = 1$, $\xi_m (k, p) \in [0, 1]$
 - FIFO iff $\xi_m (k, p) = p_m$ for all m
 - $\sum m = 1 \uparrow M \equiv p_m \cdot \gamma_m (k, p) = 1$

- **$g_m (k, p) = \gamma_m (k, p) - 1$**
 - $g_m (k, p) > -1$
 - $\sum m = 1 \uparrow M \equiv p_m \cdot g_m (k, p) = 0$
Unifiable properties

• Unifiable speed-density relations
 \[\sum_{m=1}^{M} k \downarrow m \cdot \eta \downarrow m (k) = k \cdot \eta(k) \]
 \[\sum_{m=1}^{M} p \downarrow m \cdot \eta \downarrow m (k, p) = \eta(k) \]
 \[\eta \downarrow m (k, p) = \eta(k) \cdot \gamma \downarrow m (k, p) \]

• one commodity \(m \): \(p = e \downarrow m \)
 \[\eta \downarrow m (k, e \downarrow m) = \eta(k) \]

• unifiable and FIFO
 \[\gamma \downarrow m (k, p) = 1, \eta \downarrow m (k, p) = \eta(k) \]
Unifiable trajectories
Construction

• \(g \downarrow m (k,p) = f \downarrow m (k,p) - f(k,p) \)
 – generating functions: \(f \downarrow m (k,p) \)
 – weighted average: \(f(k,p) = \sum_{m=1}^{M} p \downarrow m \cdot f \downarrow m (k, p) \)

• properties
 – \(g \downarrow m (k,p) > -1 \)
 – \(g \downarrow m (k,p) \leq b, g \downarrow m (k,p) \leq 1 + b \)
 – FIFO if all generating functions are the same
 – generating functions can depend on density or not
 – other requirements: commodity information propagation speed; concave commodity flux function
Example 1

- \(f_1 (p) = 1 - \frac{1}{4} \)
- \(f_2 (p) = 0 \)
Example 5

- $f_{\downarrow m}(p)H(k/K_{\downarrow c})$

 $- H(y) = 1/4 \max \{1-y,0\}$
Unifiable multi-commodity kinematic wave model and the Riemann problem
Model

- Model: \(m=1, \cdots, M-1 \)
 - \(\frac{\partial k}{\partial t} + \frac{\partial \phi(k)}{\partial x} = 0 \)
 - \(\frac{\partial p}{\partial t} + \frac{\partial \gamma}{\partial x} = 0 \)
- \(M=2, \)
 - \(p_1 = p, p_2 = 1-p \)
 - \(g(k,p), \gamma(k,p) = 1+g(k,p), \xi(k,p) = p\gamma(k,p) \)
 - \(\frac{\partial p}{\partial t} + \frac{\partial p\gamma}{\partial x} = 0 \)
 - \(\frac{\partial \rho}{\partial t} + \frac{\partial \xi}{\partial x} = 0 \)
- quasilinear form
 - \([k\downarrow t \downarrow \rho \downarrow t] + \Lambda[k\downarrow x \downarrow \rho \downarrow x] = 0 \)
 - two eigenvalues: \(\lambda_1(k) = \phi(k), \lambda_2(k,\rho/k) = 1/k \xi p(k,\rho/k) \)
- non-strictly hyperbolic: \(\lambda_1(k) = \lambda_2(k,\rho/k) \)
- linearly degenerate
 - the second Riemann invariant: \(z(k,\rho) = k \)
 - the first Riemann invariant: \(\omega(k,\rho) \)
The Riemann problem

• Initial condition:
 – \((k(x,0), p(x,0)) = \begin{cases} (k↓L, p↓L), & x<0 \\ (k↓R, p↓R), & x>0 \end{cases}\)

• Total traffic entropy conditions:
 – Lax entropy condition: deceleration shock; acceleration rarefaction
 – Hamilton-Jacobi: minimum principle, variational principle, Hopf-Lax formula
 – junction flux flux in Cell Transmission Model

• Total traffic wave (1-wave):
 – wave region: \(v↓1↑− t ≤ x ≤ v↓1↑+ x\)
 – \(k(x,t) = \begin{cases} k↓L, & x < v↓1↑− t \\ v↓1↑+ tk↓R, & x > v↓1↑+ t \end{cases}\)
Commodity (2-) waves
FIFO case

- $g(k,p)=0$, $\gamma(k,p)=1$, $\xi(k,p)=p$
- $\partial p/\partial t + \eta(k)\partial p/\partial x = 0$
 - Commodity density proportion propagates along with vehicles’ trajectories
- $\lambda \downarrow 2 (k, \rho/k) = \eta(k)$, $r \downarrow 1 = [1, \rho/k] \uparrow$, $w(k,\rho) = k$
- Solution of commodity density proportion:
 - $p(x,t) = \begin{cases} p \downarrow L, & x < v \downarrow R \, tp \downarrow R, & x > v \downarrow R \, t \end{cases}$
- Three constant states
 - 1-wave
 - 2-wave: contact wave
non-FIFO case

• Four constant states + three waves
 – one 1-wave
 – two 2-waves
• variables:
 – $v\downarrow 0 \uparrow -$ and $v\downarrow 1 \uparrow +$ solved
 – unknown: $v\downarrow 0 \uparrow -$, $v\downarrow 0 \uparrow +$, $v\downarrow 2 \uparrow -$, $v\downarrow 2 \uparrow +$; $p\downarrow \ast$, $p\uparrow \ast$
• across commodity waves:
 – upstream: $\partial p/\partial t + \partial \eta (k\downarrow L)\xi (k\downarrow L ,p)/\partial x = 0$
 • with $p(x,0) = \{\begin{array}{ccc} p\downarrow L & , x<0 p\downarrow \ast & , x>0 \end{array}$
 – downstream: $\partial p/\partial t + \partial \eta (k\downarrow R)\xi (k\downarrow R ,p)/\partial x = 0$
 • with $p(x,0) = \{\begin{array}{ccc} p\uparrow \ast & , x<0 p\downarrow R & , x>0 \end{array}$
non-FIFO case (cont’d)

- **1-wave**
 - shock wave:
 - \[q_{\downarrow L} - q_{\downarrow R} / k_{\downarrow L} - k_{\downarrow R} = \xi(k_{\downarrow L}, p_{\downarrow \ast}) q_{\downarrow L} - \xi(k_{\downarrow R}, p_{\uparrow \ast}) q_{\downarrow R} / p_{\downarrow \ast} k_{\downarrow L} - p_{\uparrow \ast} k_{\downarrow R} \]
 - rarefaction wave:
 - \[\frac{dk}{dy} = \frac{1}{\phi_{\downarrow}k(k)} \]
 - \[\frac{dp}{dy} = \phi_{\downarrow}k(k)[p - \xi(k,p)] - \phi(k)\xi_{\downarrow}k(k,p)/[\phi(k)\xi_{\downarrow}p(k,p) - \phi_{\downarrow}k(k)k]\phi_{\downarrow}k(k) \]
 - \[k(\lambda_{\downarrow}1(k_{\downarrow L})) = k_{\downarrow L}, p(\lambda_{\downarrow}1(k_{\downarrow L})) = p_{\downarrow \ast} , k(\lambda_{\downarrow}1(k_{\downarrow R})) = k_{\downarrow R}, p(\lambda_{\downarrow}1(k_{\downarrow R})) = p_{\uparrow \ast} \]

- **Another constraint**
 - \[v_{\downarrow 0 \uparrow \ast} \leq v_{\downarrow 0 \uparrow \ast} \leq v_{\downarrow 1 \uparrow \ast} \leq v_{\downarrow 1 \uparrow \ast} \leq v_{\downarrow 2 \uparrow \ast} \leq v_{\downarrow 2 \uparrow \ast} \]

- **No general theory for existence and uniqueness**
 - examples in Section 5
 - numerical method based on a unifiable multi-commodity CTM
Unifiable multi-commodity Cell Transmission Model
Numerical method

• Godunov method
 – Riemann solutions for two-commodity flow
 – \(q(x=0,t>0), q \downarrow m (x=0,t>0) \)

• Cell Transmission Model
 – \(M \geq 2 \)
 – networks
 – simple calculations
Link model

- **demand/supply:**
 - \(\delta(k) = \phi(\min\{k, K\downarrow c\}) \)
 - \(\sigma(k) = \phi(\max\{k, K\downarrow c\}) \)
 - Lemma 4.1. \(\delta(k) \leq \min\{k, K\downarrow c\} \cdot \lambda \downarrow 1(0); \sigma(k) \leq -(K - \max\{k, K\downarrow c\}) \cdot \lambda \downarrow 1(k) \)

- **cell \(i \), time step \(j \):**
 - densities and density proportions: \(k\downarrow i\uparrow j, p\downarrow m, i\uparrow j, k\downarrow m, i\uparrow j \)
 - demand and supply: \(\delta\downarrow i\uparrow j = \delta(k\downarrow i\uparrow j), \sigma\downarrow i\uparrow j = \sigma(k\downarrow i\uparrow j) \)
 - commodity flow-rate proportions: \(\xi\downarrow m, i\uparrow j \)

- **boundary fluxes:**
 - \(q\downarrow i\uparrow j = \min\{\delta\downarrow i-1\uparrow j, \sigma\downarrow i\uparrow j\} \), vs \(q\downarrow m, i\uparrow j = q\downarrow i\uparrow j \cdot \xi\downarrow m, i-1\uparrow j \)

- **Conservation equation:**
 - \(k\downarrow i\uparrow j + 1 = k\downarrow i\uparrow j + \Delta t/\Delta x \cdot (q\downarrow i\uparrow j - q\downarrow i+1\uparrow j) \); \(k\downarrow m, i\uparrow j + 1 = k\downarrow i\uparrow j \cdot p\downarrow m, i\uparrow j + \Delta t/\Delta x \cdot (q\downarrow m, i\uparrow j - q\downarrow m, i+1\uparrow j); p\downarrow m, i\uparrow j + 1 = k\downarrow m, i\uparrow j+1/k\downarrow i\uparrow j+1 \)

- **\(\Delta x/\Delta t \geq \max_{k\in[0,K]} |\lambda \downarrow 1(k)| \cdot \max_{p, m=1, \ldots, M} \gamma\downarrow m(k, p) \):**
 - stronger than the traditional CFL condition for the total CTM: \(\Delta x/\Delta t \geq \max_{k\in[0,K]} |\lambda \downarrow 1(k)| \)
 - Theorem 4.2 The unifiable multi-commodity CTM is well-defined.
General junction model

• Notations:
 – U: set of upstream cells; D: set of downstream cells
 – $\Omega \downarrow a \ (a \in U \cup D)$: set of commodities
 – $\delta \downarrow a \uparrow j \ (a \in U)$: upstream demand; $\xi \downarrow a, m \uparrow j$: upstream commodity flow-rate proportions
 – $\sigma \downarrow b \uparrow j \ (b \in D)$: downstream supply
 – $q \downarrow a \uparrow j$, $q \downarrow a, m \uparrow j$: out-fluxes; $q \downarrow b \uparrow j$, $q \downarrow b, m \uparrow j$: in-fluxes
General junction model (cont’d)

• Turning proportions: \(\xi_{a \to b} = \sum_{m \in \Omega a \cap \Omega b} \xi_{a,m} \to b \)

• Demand levels:
 – cell \(a \in U \): \(\mu_{a \to j} = \delta_{a \to j} / C_a \)
 – average for non-empty \(U \cap U \) for \(b \in D \): \(\theta_{b} = \pi_{b} + \sum_{a \in U \cap U} \mu_{a \to j} C_{a \to b} / \sum_{a \in U \cap U} C_{a \to b} \)
 – maximum for \(b \in D \): \(\Theta_{b} = \max_{U \cap U \neq \emptyset, U \subseteq U} \theta_{b} \)
 – critical demand level: \(\Theta_{j} = \min_{b \in D} \{ \theta_{b} \} \)

• Out-fluxes of \(a \in U \)
 – total: \(q_{a \to j} = \min \{ \delta_{i \to j}, \Theta_{j} C_{a} \} \)
 – commodity: \(q_{a,m} = q_{a \to j} \xi_{a,m} \to j \)

• In-fluxes of \(b \in D \)
 – total: \(q_{b \to j} = \sum_{a \in U \cap U} q_{a \to j} \xi_{a \to b} \)
 – commodity: \(q_{b,m} = q_{a,m} \to j, m \in \Omega a \cap \Omega b \)

• unifiable junction model
 – FIFO unifiable junction model in (Jin, 2012c): a special case
Examples
Set-up for two-commodity flow

• Total Greenshields FD: \(\eta(k) = 1 - k \)
• non-FIFO, unifiable
 – commodity flow-rate proportion: \(\xi(k,p) = p(2 - 5/4 \ p + 1/4 \ p^{1/2}) \);
 concave
 – \(\gamma(k,p) = 2 - 5/4 \ p + 1/4 \ p^{1/2} \); increasing
• two characteristic wave speeds:
 – \(\lambda_{\downarrow 1}(k) = 1 - 2k \)
 – \(\lambda_{\downarrow 2}(k,p) = (1 - k)(2 - 5/2 \ p + 3/4 \ p^{1/2}) \in [1/4 \ (1 - k), 2(1 - k)] \)
 – non-strictly hyperbolic: \(\lambda_{\downarrow 1}(k) = \lambda_{\downarrow 2}(k,p) \)
• \(\Delta t = 1/2 \ \Delta x \) stronger than traditional CFL condition
 – \(\max_{k \in [0,K]} |\lambda_{\downarrow 1}(k)| = 1 \)
 – \(\max_{k \in [0,K], p \in [0,1]} \gamma(k,p) = 2 \)
Total shock wave

• Riemann problem
 – \(k \downarrow L = 0, \quad k \downarrow R = 1/8, \quad p \downarrow L = 1, \quad p \downarrow R = 0.8 \)

• Analytical solution
 – 1-wave: shock wave, \(v \downarrow 1 \uparrow – = v \downarrow 1 \uparrow + = v \downarrow R = 7/8 \)
 – upstream 2-wave: \((k \downarrow L, p \downarrow L) \rightarrow (k \downarrow L, p \downarrow *) \), rarefaction wave \(p \downarrow * = 0.5363 \)
 - \(\lambda \downarrow 2 (k \downarrow L, p \downarrow L) = 1/4 < v \downarrow 1 \uparrow – \)
 - across 1-wave: \(p \uparrow * = 0 \)
 - downstream 2-wave: shock wave \(v \downarrow 2 \uparrow – = v \downarrow 2 \uparrow + = 1.16 \)

• Numerical solution
 – \(\Delta x = 1/8 \)
 – Neumann boundary condition
Total rarefaction wave

- Riemann problem
 - $k\downarrow L = 0.9$, $k\downarrow R = 0.6$, $p\downarrow L = 0.5$, $p\downarrow R = 0.7$

- Analytical solution
 - 1-wave: rarefaction wave, $v\downarrow 1 \uparrow - = -0.8$, $v\downarrow 1 \uparrow + = -0.2$
 - no upstream 2-wave: $\lambda\downarrow 2 (k\downarrow L, p\downarrow L) = 0.08125 > v\downarrow 1 \uparrow -$
 - across 1-wave: $p\uparrow * = 0.4438$
 - downstream 2-wave: shock wave $v\downarrow 2 \uparrow - = v\downarrow 2 \uparrow + = 0.3279$

- Numerical solution
 - $\Delta x = 1/8$
 - Neumann boundary condition
Convergence

- \(k(x,t=100), p(x,t=100)\)
 - \(e\downarrow n\): between \(\Delta x = 1/2 \uparrow n\) and \(\Delta x = 1/2 \uparrow n - 1\)
 - \(L^1\), \(L^2\), \(L^\infty\) norms
- Convergence rate: \(r\downarrow n = \log \downarrow 2 (e\downarrow n - 1 / e\downarrow n)\)
- Unifiable multi-commodity CTM: first-order convergent scheme

<table>
<thead>
<tr>
<th>(n)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k, L^1)</td>
<td>1.39e-03</td>
<td>8.53e-04</td>
<td>5.09e-04</td>
<td>2.98e-04</td>
<td>1.71e-04</td>
<td>9.66e-05</td>
<td>5.40e-05</td>
<td>2.99e-05</td>
</tr>
<tr>
<td>Rate</td>
<td>0.70</td>
<td>0.74</td>
<td>0.77</td>
<td>0.80</td>
<td>0.82</td>
<td>0.84</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>(k, L^2)</td>
<td>2.43e-03</td>
<td>1.59e-03</td>
<td>1.02e-03</td>
<td>6.41e-04</td>
<td>3.96e-04</td>
<td>2.42e-04</td>
<td>1.47e-04</td>
<td>8.88e-05</td>
</tr>
<tr>
<td>Rate</td>
<td>0.61</td>
<td>0.64</td>
<td>0.67</td>
<td>0.69</td>
<td>0.71</td>
<td>0.72</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>(k, L^\infty)</td>
<td>6.23e-03</td>
<td>4.74e-03</td>
<td>3.54e-03</td>
<td>2.60e-03</td>
<td>1.89e-03</td>
<td>1.36e-03</td>
<td>9.77e-04</td>
<td>6.98e-04</td>
</tr>
<tr>
<td>Rate</td>
<td>0.39</td>
<td>0.42</td>
<td>0.44</td>
<td>0.46</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>(p, L^1)</td>
<td>1.55e-03</td>
<td>8.74e-04</td>
<td>4.76e-04</td>
<td>2.47e-04</td>
<td>1.26e-04</td>
<td>6.65e-05</td>
<td>3.44e-05</td>
<td>1.78e-05</td>
</tr>
<tr>
<td>Rate</td>
<td>0.82</td>
<td>0.88</td>
<td>0.95</td>
<td>0.97</td>
<td>0.92</td>
<td>0.92</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>(p, L^2)</td>
<td>5.48e-03</td>
<td>4.23e-03</td>
<td>3.05e-03</td>
<td>2.16e-03</td>
<td>1.54e-03</td>
<td>1.09e-03</td>
<td>7.76e-04</td>
<td>5.53e-04</td>
</tr>
<tr>
<td>Rate</td>
<td>0.38</td>
<td>0.47</td>
<td>0.50</td>
<td>0.50</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>(p, L^\infty)</td>
<td>3.53e-02</td>
<td>3.93e-02</td>
<td>3.99e-02</td>
<td>4.12e-02</td>
<td>4.22e-02</td>
<td>4.09e-02</td>
<td>4.17e-02</td>
<td>4.27e-02</td>
</tr>
<tr>
<td>Rate</td>
<td>-0.16</td>
<td>-0.02</td>
<td>-0.04</td>
<td>-0.03</td>
<td>0.04</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.03</td>
</tr>
</tbody>
</table>
Conclusion
Summary

• unifiable multi-commodity KW model
 – total traffic: LWR model
 – FIFO may be violated
• unifiable commodity speed-density relations
 – generating functions
• two-commodity model
 – properties
 – Riemann problem: total and commodity waves
• unifiable multi-commodity CTM
 – non-FIFO general junction model
 – CFL condition: well-defined
• Examples
 – consistency between analytical and numerical solutions
 – convergence of CTM
Contributions

• first explicit unifiable, non-FIFO model
• LWR model may violate FIFO
 – unifiable, non-FIFO commodity speed-density relations
• simpler analytically and numerically
 – than non-unifiable, non-FIFO models
• unifiable multi-commodity CTM
 – heterogeneous traffic: trucks, automated/connected/electrified vehicles
 – multi-lane roads
Future studies

• theoretical solutions
 – non-strictly hyperbolic
 – existence/uniqueness
 – two or more commodities

• unifiable multi-commodity CTM
 – non-FIFO general junction model: invariant?
 – new non-FIFO phenomenon?

• empirical calibration
 – generating functions, commodity speed-density relations
 – multi-lane fundamental diagrams

• Hamilton-Jacobi formulation
 – non-FIFO unifiable commodity flows?
 – linear order-changing model vs generating functions
Multilane FD (Yan and Jin, 2017. TRB)

Figure 3. A freeway segment on SR-91E

Figure 6. Comparison of near-steady and calibrated lane flow-rates in the congested regime.
Questions?