Effect of Information Availability on Stability of Traffic Flow: Percolation Theory Approach

Alireza Talebpour, Hani S. Mahmassani and Samer H. Hamdar
Motivation

• Connected and automated vehicles (CAVs) will soon join the current vehicle fleet.
• Their introduction will re-shape the transportation industry:
 • Safety
 • Congestion
 • Emissions and energy consumption
 • Freight
 • etc.
• Understanding CAVs’ full impact on traffic performance requires accurate modeling of their dynamics/movement.

Source: http://planningforreality.org/
Motivation

- Safety and efficiency are the main motivations behind bringing these technologies to market.
- Developing string stable connected and automated systems is the key to achieve the desired safety and efficiency.

String Stable Platoon

String Unstable Platoon
Many studies investigated string stability in connected, automated systems (mostly CACC systems):

- The benefits of CACC over ACC systems were identified (Zhang and Orosz, 2015; Lu et al., 2002).

- The immediate leader and platoon head were found to be the key to ensuring string stability (Swaroop, 1997).

- The possibility of developing decentralized CACC systems was shown (Naus et al., 2010).
Problem Statement

Telecommunications affect Traffic Pattern
Traffic Pattern affects connectivity (Telecommunications)
Problem Statement

• Communications dynamics and information loss was not captured in these studies.
The main objective of this study is to develop a methodology to incorporate signal interference and information loss into analytical investigations of string stability. This study introduces a methodology based on Percolation Theory.
Percolation Theory

• The propagation of information within the vehicular network is similar to the
 • Transport of a fluid through porous media
 • Spread of a disease among people

Percolation Theory

• **Continuum Percolation**: There exists a critical density (P_c), above which there is certainly a cluster with an infinite size in the system.

• Two types of Continuum Percolation:
 • **Boolean model**
 • Random Connection model

• Boolean model: Each point (x) in the space is a center of a circle with radius r ($C(x,r)$).

• Combination of these circles divide the space into two regions: occupied region and vacant region.

• A pair of nodes is connected if both nodes belong to the same occupied/vacant region.
Definitions

• Communicating Vehicles

\[h(x_i, x_j) = \begin{cases} 1 & \text{if } |x_i - x_j| < \min\{R_i, R_j\} \\ 0 & \text{Otherwise} \end{cases} \]

• Homogeneous Poisson Point Process

\[P(X_\lambda(L) = k) = \frac{(\lambda S L)^k}{k!} e^{-\lambda SL} \]

• Communication Path

[Diagram of communicating vehicles and communication path]
Definitions

• **Connected k-component** \((CC_k) \): A set of \(k \) communicating vehicles that is not a subset of another set of communicating vehicles.

 • Distance between two \(CC_k \)s is the minimum distance between pairs of the vehicles in the \(CC_k \)s.
Percolation of Vehicular Ad-Hoc Networks

Connected Components: Length Estimation

\[P(N_L = k) = \text{prob}\{ R_i \text{ contains a } CC_K \mid (R_{II} \cup R_{III}) \text{ is empty} \} \]

\[
P(N_L = k) = \frac{\left(\int_{X-R}^{X+L+R} \lambda(x)dx \right)^k}{k!} e^{-\int_{X-R}^{X+L+R} \lambda(x)dx} - \left(\int_{X+L}^{X+L+R} \lambda(x)dx \right) = \frac{\left[\lambda(L + 2R) \right]^k}{k!} e^{-\lambda(L+2R)} \]

\[
\int_{X+L}^{X+2R} \lambda(x)dx \cdot e^{-\lambda R} \cdot e^{-\lambda R} = \frac{\left[\lambda(L + 2R) \right]^k}{k!} e^{-\lambda L}
\]
Percolation of Vehicular Ad-Hoc Networks

Critical Density of Connected Components:

At the percolation point, the density of connected k-components within a circle with radius R is given by,

$$\lambda_c(k) = \lambda_c \left(\frac{\lambda_c(3R)^k}{k!} \right) e^{-\lambda_c R}$$

Combining all the above equations:

$$f(\lambda_c, R, k) = \left[1 - (\mu + 1)e^{-\mu} \right] \left[\left(\frac{3\mu}{k!} \right)^k e^{-\mu} \right] - 1 = 0$$

Where

$$\mu = -\log \left(1 - A_c(R) \right) \quad A_c(R) = 1 - e^{-\lambda_c R}$$
Percolation of Vehicular Ad-Hoc Networks

- Results indicate that percolation first occurs at $k=3$ and $A_c(R)=0.785$.

![Graph showing percolation of vehicular ad-hoc networks](image-url)
Communication Probability

- For $A_c(R) \geq 0.785$: all the vehicles receive the information.
- For $A_c(R) < 0.785$: the probability that there is only one point in any circle with radius R is:

$$P(N_{2R} = 1) = 2R\lambda e^{-2R\lambda}$$
Stability Analysis Approach

In line of the definition of string stability, the following criteria guarantees the string instability of a heterogeneous traffic flow (Ward, 2009):

\[\sum_n \left[\frac{f_v^n}{2} - f_{\Delta v}^n f_v^n - f_s^n \right] \left[\prod_{m \neq n} f_s^m \right]^2 < 0 \]

where

\[f_s^n = \left. \frac{\partial f(s_n, \Delta v_n, v_n)}{\partial s_n} \right|_{(s^*, 0, V(s^*)}} \]

\[f_v^n = \left. \frac{\partial f(s_n, \Delta v_n, v_n)}{\partial s_v} \right|_{(s^*, 0, V(s^*)}} \]

\[f_{\Delta v}^n = \left. \frac{\partial f(s_n, \Delta v_n, v_n)}{\partial \Delta v_n} \right|_{(s^*, 0, V(s^*)}} \]
Traffic Simulation Framework

<table>
<thead>
<tr>
<th>No Automation Not Connected</th>
<th>No Automation Connected</th>
<th>Self-Driving Not Connected</th>
</tr>
</thead>
</table>

- **Acceleration Behavior:** Probabilistic
- **Perception of Surrounding Traffic Condition:** Subjective
- **Reaction Time:** High
- **Safe Spacing:** High
- **High-Risk maneuvers:** Possible

- The car-following model of Talebpour, Hamdar, and Mahmassani (2011) is used.
 - Probabilistic
 - Recognizes two different driving regimes:
 - Congested
 - Uncongested
 - Consider crashes endogenously
Traffic Simulation Framework

- No Automation, Not Connected
- No Automation, Connected
- Self-Driving, Not Connected

- Acceleration Behavior: Deterministic
- Perception of Surrounding Traffic Condition: Accurate
- Reaction Time: Low
- Safe Spacing: Low
- High-Risk maneuvers: Very Unlikely

- The Intelligent Driver Model (Treiber, Hennecke, and Helbing, 2000) is used.
Traffic Simulation Framework

- Speed should be low enough so that the vehicle can react to any event outside of the sensor range (v_{max}) (Reece and Shafer, 1993 and Arem, Driel, Visser, 2006).

$$v_{\text{max}} = \sqrt{-2a_n^{\text{acc}} \Delta x}$$

$$a_n(t) = \min(a_n^d(t), k(v_{\text{max}} - v_n(t)))$$

$$a_n^d(t) = k_a a_{n-1}(t - \tau) + k_v (v_{n-1}(t - \tau) - v_n(t - \tau)) + k_d (s_n(t - \tau) - s_{\text{ref}})$$
Stability Analysis Results

\[\bar{a} = 1.4 m/s^2 \quad \bar{b} = -2.0 m/s^2 \]

Full Connectivity

\[a = 1.4 m/s^2 \]
\[b = -2.0 m/s^2 \]
Stability Analysis Results

\[
\bar{a} = 3.0 \text{m/s}^2 \quad \bar{b} = -4.0 \text{m/s}^2
\]
Conclusion

• This paper presents a Percolation Theory based approach to incorporate partial communication and information loss into analytical investigation of string stability.

• The analytical studies reveal that as communication range increases, the system becomes more stable.

• At communication ranges above 130m, the system performs very similar to the system with full connectivity assumption.
Questions and Comments
Model Parameters

- Automated vehicle parameters are
 \(k_a = 1.0, k_v = 0.58, \) and \(k_d = 0.1 \)
- Regular and connected vehicles parameters are shown in the tables.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity Exponents of the Generalized Utility</td>
<td>(\gamma = 0.2)</td>
</tr>
<tr>
<td>Asymmetry Factor for Negative Utilities</td>
<td>(w_m = 2.0)</td>
</tr>
<tr>
<td>Velocity Uncertainty Variation Coefficient</td>
<td>(\alpha = 0.08)</td>
</tr>
<tr>
<td>Weighing Factor for Accidents</td>
<td>(w_c = 10000.0)</td>
</tr>
<tr>
<td>Maximum Anticipation Time Horizon</td>
<td>(\tau_{\text{max}} = 4.0\text{s})</td>
</tr>
<tr>
<td>Logit Uncertainty Parameter (Intra-Driver Variability)</td>
<td>(\beta = 5.0)</td>
</tr>
<tr>
<td>Maximum Acceleration</td>
<td>(a_{\text{max}} = 4\text{m/s}^2)</td>
</tr>
<tr>
<td>Minimum Acceleration</td>
<td>(a_{\text{min}} = -8\text{m/s}^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Acceleration Exponent</td>
<td>(\delta = 4.0)</td>
</tr>
<tr>
<td>Desired Time Gap</td>
<td>(T = 4.5\text{s})</td>
</tr>
<tr>
<td>Jam Distance</td>
<td>(s_o = 2.0\text{m})</td>
</tr>
<tr>
<td>Maximum Acceleration</td>
<td>(\bar{a} = 1.4\text{m/s}^2)</td>
</tr>
<tr>
<td>Desired Deceleration</td>
<td>(\bar{b} = -2.0\text{m/s}^2)</td>
</tr>
</tbody>
</table>