The Astrophysical Multimessenger Observatory Network

Derek B. Fox
Penn State University
HotWiredVI
21 Aug 2019
The AMON Idea
amon.psu.edu

Ayala Solares+19
Astrophysical Multimessenger Observatory Network: Multimessenger subthreshold coincidence searches
Astrophysical Multimessenger Observatory Network: Multimessenger subthreshold coincidence searches

Evoke: Discovery of transient multimessenger sources
The AMON Idea
amon.psu.edu

- **Astrophysical Multimessenger Observatory Network:** Multimessenger subthreshold coincidence searches
- **Evoke:** Discovery of transient multimessenger sources
- **Exploit:** Trigger follow-up observations to identify & study counterparts

Ayala Solares+19
The AMON Idea
amon.psu.edu

- **Astrophysical Multimessenger Observatory Network:** Multimessenger subthreshold coincidence searches
- **Evoke:** Discovery of transient multimessenger sources
- **Exploit:** Trigger follow-up observations to identify & study counterparts
- **Explore:** Archival analyses in search of multimessenger activity

Ayala Solares+19
AMON Members
AMON Members

CR
Pierre Auger
AMON Members

CR Pierre Auger

ν ANTARES IceCube
AMON Members

CR Pierre Auger

\(\gamma \)

SWIFT
VERITAS
HESS
MAGIC
FACT
Fermi
HAWC

\(\nu \)

ANTARES
IceCube
AMON Members

CR
Pierre Auger

γ
SWIFT
VERITAS
HESS
MAGIC

FACT
Fermi
HAWC

ν
ANTARES
IceCube

GCN/TAN

AMON
AMON Members

- CR Pierre Auger
- ANTARES IceCube
- GW LIGO-Virgo*
- SWIFT VERITAS HESS MAGIC
- FACT Fermi HAWC
- LMT GROWTH/ZTF MASTER
AMON Members

- CR Pierre Auger
- SWIFT VERITAS HESS MAGIC FACT Fermi HAWC
- ANTARES IceCube
- LIGOVirgo*
- LMT GROWTH/ZTF MASTER

*LVC Council approval of first data-sharing agreement pending†

† Indicates an uncertain or pending status.
*LVC Council approval of first data-sharing agreement pending

† Or complete, maybe
A Multimessenger Menagerie

<table>
<thead>
<tr>
<th>Possible</th>
<th>Predicted</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.CR\text{EeV}</td>
<td>Gravitational Wave</td>
<td>G.SN ν\text{MeV}</td>
</tr>
<tr>
<td>G.SN GW</td>
<td>GRB ν\text{TeV}</td>
<td></td>
</tr>
<tr>
<td>Faint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G.PBH</td>
<td>Orphan BNS/NS-BH</td>
<td>ν\text{TeV}</td>
</tr>
<tr>
<td>G.ν\text{TeV}</td>
<td>SN ν\text{TeV}</td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark G.PBH</td>
<td>Kilonova BNS/NS-BH</td>
<td></td>
</tr>
<tr>
<td>GW+ν\text{TeV}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G: Galactic
SN: Supernova
GRB: Gamma-Ray Burst
PBH: Primordial Black Hole

—Transient—

- Gravitational Wave
- Neutrino
- Cosmic Ray

Persistent

July 2017
A Multimessenger Menagerie

<table>
<thead>
<tr>
<th></th>
<th>Possible</th>
<th>Predicted</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright</td>
<td>G.CR$_{EeV}$</td>
<td>G.SN GW</td>
<td>G.SN ν_{MeV}</td>
</tr>
<tr>
<td></td>
<td>G.SN GW</td>
<td>GRB ν_{TeV}</td>
<td>GRB BNS/NS-BH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ν_{TeV}</td>
</tr>
<tr>
<td>Faint</td>
<td>G.PBH</td>
<td>SN ν_{TeV}</td>
<td>ν_{TeV}</td>
</tr>
<tr>
<td></td>
<td>G.ν_{TeV}</td>
<td>Orphan BNS/NS-BH</td>
<td>Kilonova BNS/NS-BH</td>
</tr>
<tr>
<td>Dark</td>
<td>Dark G.PBH</td>
<td></td>
<td>BBH</td>
</tr>
<tr>
<td></td>
<td>GW+ν_{TeV}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G: Galactic
SN: Supernova
GRB: Gamma-Ray Burst
PBH: Primordial Black Hole

Transient

Gravitational Wave
Neutrino
Cosmic Ray
Asynchronous real-time ingest, calculation, distribution of coincidence search results
AMON INFRASTRUCTURE

- Asynchronous real-time ingest, calculation, distribution of coincidence search results
- VOEvent protocol
Asynchronous real-time ingest, calculation, distribution of coincidence search results

- VOEvent protocol
- Python implementation with Celery, Twisted, Comet
Asynchronous real-time ingest, calculation, distribution of coincidence search results

- VOEvent protocol
- Python implementation with Celery, Twisted, Comet
- Receive alerts directly or via GCN
AMON Infrastructure

- Asynchronous real-time ingest, calculation, distribution of coincidence search results
- VOEvent protocol
- Python implementation with Celery, Twisted, Comet
- Receive alerts directly or via GCN
- Exploring integration with ZTF/LSST broker/TOM systems

Ayala Solares+19
AMON Infrastructure

- Asynchronous real-time ingest, calculation, distribution of coincidence search results
- VOEvent protocol
- Python implementation with Celery, Twisted, Comet
- Receive alerts directly or via GCN
- Exploring integration with ZTF/LSST broker/TOM systems
- AmonPy on GitHub: github.com/AMONCode/Analysis

Ayala Solares+19
Memorandum of Understanding between observatories participating in the Astrophysical Multimessenger Observatory Network

AMON Executive Board
May 24, 2019

The Astrophysical Multimessenger Observatory Network (AMON) provides a framework for correlating high energy astrophysical signals across all possible astronomical messengers: photons, neutrinos, cosmic rays, and gravitational waves. The primary goals of the program are: (1) To allow participating observatories to share their data with one another with strict anonymity, confidentiality and in accordance with their blind analysis procedures, (2) To enhance the combined sensitivity of participating observatories to astrophysical transients by enabling them to search for coincidences in their sub-threshold archival data and then in their sub-threshold real-time data and (3) To enable follow-up imaging of possible astrophysical sources with minimal latency.

Membership

Participants in AMON can be characterized as either “triggering,” “follow-up” or both. Triggering participants are generally wide field-of-view observatories that feed a stream of sub-threshold
Memorandum of Understanding between observatories participating in the Astrophysical Multimessenger Observatory Network

AMON Executive Board

May 24, 2019

The Astrophysical Multimessenger Observatory Network (AMON) provides a framework for correlating high energy astrophysical signals across all possible astronomical messengers: photons, neutrinos, cosmic rays, and gravitational waves. The primary goals of the program are: (1) To allow participating observatories to share their data with one another with strict anonymity, confidentiality and in accordance with their blind analysis procedures, (2) To enhance the combined sensitivity of participating observatories to astrophysical transients by enabling them to search for coincidences in their sub-threshold archival data and then in their sub-threshold real-time data and (3) To enable follow-up imaging of possible astrophysical sources with minimal latency.

Membership

Participants in AMON can be characterized as either “triggering,” “follow-up” or both. Triggering participants are generally wide field-of-view observatories that feed a stream of sub-threshold signals into the AMON collaboration site, where they are analyzed in near real-time, and triggers are issued if significant events are observed. Follow-up participants, on the other hand, are typically more specialized instruments that respond to triggers and conduct follow-up observations. This division allows for optimized resource allocation and maximizes the chances of discovering new astrophysical phenomena.

* “As simple as possible, but no simpler”
Memorandum of Understanding between observatories participating in the Astrophysical Multimessenger Observatory Network

AMON Executive Board

May 24, 2019

The Astrophysical Multimessenger Observatory Network (AMON) provides a framework for correlating high energy astrophysical signals across all possible astronomical messengers: photons, neutrinos, cosmic rays, and gravitational waves. The primary goals of the program are: (1) To allow participating observatories to share their data with one another with strict anonymity, confidentiality and in accordance with their blind analysis procedures, (2) To enhance the combined sensitivity of participating observatories to astrophysical transients by enabling them to search for coincidences in their sub-threshold archival data and then in their sub-threshold real-time data and (3) To enable follow-up imaging of possible astrophysical sources with minimal latency.

Membership

Participants in AMON can be characterized as either “triggering,” “follow-up” or both. Triggering participants are generally wide field-of-view observatories that feed a stream of sub-threshold

* "As simple as possible, but no simpler”

* Follow-up as you will and report results internally (if private)
Memorandum of Understanding between observatories participating in the Astrophysical Multimessenger Observatory Network

AMON Executive Board

May 24, 2019

The Astrophysical Multimessenger Observatory Network (AMON) provides a framework for correlating high energy astrophysical signals across all possible astronomical messengers: photons, neutrinos, cosmic rays, and gravitational waves. The primary goals of the program are: (1) To allow participating observatories to share their data with one another with strict anonymity, confidentiality and in accordance with their blind analysis procedures, (2) To enhance the combined sensitivity of participating observatories to astrophysical transients by enabling them to search for coincidences in their sub-threshold archival data and then in their sub-threshold real-time data and (3) To enable follow-up imaging of possible astrophysical sources with minimal latency.

Membership

Participants in AMON can be characterized as either “triggering,” “follow-up” or both. Triggering participants are generally wide field-of-view observatories that feed a stream of sub-threshold

• “As simple as possible, but no simpler”
• Follow-up as you will and report results internally (if private)
• Don’t publish on someone else’s private alert without their participation or permission
Memorandum of Understanding between observatories participating in the Astrophysical Multimessenger Observatory Network

AMON Executive Board

May 24, 2019

The Astrophysical Multimessenger Observatory Network (AMON) provides a framework for correlating high energy astrophysical signals across all possible astronomical messengers: photons, neutrinos, cosmic rays, and gravitational waves. The primary goals of the program are: (1) To allow participating observatories to share their data with one another with strict anonymity, confidentiality and in accordance with their blind analysis procedures, (2) To enhance the combined sensitivity of participating observatories to astrophysical transients by enabling them to search for coincidences in their sub-threshold archival data and then in their sub-threshold real-time data and (3) To enable follow-up imaging of possible astrophysical sources with minimal latency.

Membership

Participants in AMON can be characterized as either “triggering,” “follow-up” or both. Triggering participants are generally wide field-of-view observatories that feed a stream of sub-threshold

- “As simple as possible, but no simpler”
- Follow-up as you will and report results internally (if private)
- Don’t publish on someone else’s private alert without their participation or permission
- Ultimately: Joint or separate (but coordinated) publication
AMON: A Brief History

Prehistory: Archival multimessenger analyses + partner negotiations

\[
\lambda = 2 \ln \frac{(P_{\gamma_1}(\vec{x})P_{\gamma_2}(\vec{x})...P_{\gamma_n}(\vec{x}))n!(P_\nu(\vec{x}))}{B_1(\vec{x}, E_1, \theta_1)B_2(\vec{x}, E_2, \theta_2)...B_n(\vec{x}, E_n, \theta_n)}
\]

Keivani+15, Turley+18
AMON: A BRIEF HISTORY

Prehistory: Archival multimessenger analyses + partner negotiations

Serendipity: An FRB gamma-ray counterpart (DeLaunay+16), Nov 2016

DeLaunay+16
AMON: A Brief History

- **Prehistory:** Archival multimessenger analyses + partner negotiations
- **Serendipity:** An FRB gamma-ray counterpart (*DeLaunay+16*), Nov 2016
- **First Alerts:** IceCube likely-cosmic neutrino pass-through alerts, April 2016

Bacodine

To: Derek Fox

Reply-To: Scott Barthelmey

AMON IceCube HESE Notice type added to GCN

TO: All GCN Notice recipients

RE: AMON IceCube HESE Notice type is available

DT: 08 April 2016

INTRODUCTION:

The GCN system has been modified to incorporate the distribution of candidate coincidence events produced within a single instrument and/or between multiple instruments within the AMON project. Currently, only HESE (High Energy Starting Event) notices within the IceCube instrument are being produced. This will expand to include the AMON,ICECUBE_COINC type and others in the future.

Like all the other sources of transient information within the GCN system, users can elect to receive this AMON,ICECUBE_COINC Notice type.

OCURRENCE RATE:

There will be about 4 AMON,ICECUBE_COINC Notices per year.

TIME DELAY:

The time delays for this notice type will range from 0.5 to 3 minutes after the neutrino interacts in the IceCube detector.

LOCATION ERROR:

The location uncertainties are in the 2-9 deg range (radius, stat+sys, 90% containment).

The uncertainty in the location will depend on:

(a) the energy of the neutrino, and

(b) the track or cascade nature of the energy deposited in IceCube.
AMON: A Brief History

- **Prehistory:** Archival multimessenger analyses + partner negotiations
- **Serendipity:** An FRB gamma-ray counterpart (DeLaunay+16), Nov 2016
- **First Alerts:** IceCube likely-cosmic neutrino pass-through alerts, April 2016
- **First MM Discovery:** IceCube 170922A neutrino & TXS 0506+056 (IceCube et al. 2018) + Swift/NuSTAR obs. (Keivani+18), Sep 2017+
AMON: A Brief History

Prehistory: Archival multimessenger analyses + partner negotiations

Serendipity: An FRB gamma-ray counterpart (*DeLaunay+16*), Nov 2016

First Alerts: IceCube likely-cosmic neutrino pass-through alerts, April 2016

First MM Discovery: IceCube 170922A neutrino & TXS 0506+056 (*IceCube et al. 2018*) + Swift/NuSTAR obs. (*Keivani+18*), Sep 2017+

First MM Alerts: *Fermi* + ANTARES private alert stream (see *Turley+19*), July 2019

Turley+19
Hotwiring the Transient Universe with AMON
'Hotwiring the Transient Universe with AMON'

- Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos.
Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

Open questions
Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

Open questions

GW: Genericity of 170817, NS+BH, r-process, H_0 …
Hotwiring the Transient Universe with AMON

- Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

- Open questions
 - **GW**: Genericity of 170817, NS+BH, r-process, H_0 …
 - **ν**: Non-blazar sources, blazar physics…
Hotwiring the Transient Universe with AMON

- Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

- Open questions
 - **GW**: Genericity of 170817, NS+BH, r-process, H_0 …
 - **v**: Non-blazar sources, blazar physics…

- *We want more!*
Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

Open questions

- **GW**: Genericity of 170817, NS+BH, r-process, H_0 …
- **v**: Non-blazar sources, blazar physics…

We want more!

- Wait, or…
Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

Open questions

- **GW**: Genericity of 170817, NS+BH, r-process, H_0 …
- **v**: Non-blazar sources, blazar physics…

* We want more!
 - Wait, or…
 - Improve MM facilities – GW sensitivity, IceCube upgrade, or…
Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

Open questions

* **GW**: Genericity of 170817, NS+BH, r-process, H_0 …
* **ν**: Non-blazar sources, blazar physics…

We want more!

* Wait, or…
* Improve MM facilities – GW sensitivity, IceCube upgrade, or…
* **Seek MM events in subthreshold data** (ahem!) or…

Hotwiring the Transient Universe with AMON
Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

Open questions

- GW: Genericity of 170817, NS+BH, r-process, H_0 …
- ν: Non-blazar sources, blazar physics…

We want more!

- Wait, or…
- Improve MM facilities – GW sensitivity, IceCube upgrade, or…
- Seek MM events in subthreshold data (ahem!) or…
- All of the above
Hotwiring the Transient Universe with AMON

- Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

- Open questions
 - GW: Genericity of 170817, NS+BH, r-process, H_0 …
 - ν: Non-blazar sources, blazar physics…

- We want more!
 - Wait, or…
 - Improve MM facilities – GW sensitivity, IceCube upgrade, or…
 - Seek MM events in subthreshold data (ahem!) or…
 - All of the above

- AMON has played a key enabling role in recent MM successes
Tremendous recent multimessenger success via both gravitational waves and high-energy neutrinos

Open questions
- **GW**: Genericity of 170817, NS+BH, r-process, H_0 …
- **ν**: Non-blazar sources, blazar physics…

We want more!
- Wait, or…
- Improve MM facilities – GW sensitivity, IceCube upgrade, or…
- *Seek MM events in subthreshold data* (ahem!) or…
- All of the above

AMON has played a key enabling role in recent MM successes

AMON is carrying out near real-time subthreshold MM coincidence searches today
Why Join AMON?
amon.psu.edu/join-amon/
If you want to follow up candidate multimessenger events from AMON private alerts streams (follow-up partner)
Why Join AMON?
amon.psu.edu/join-amon/

- If you want to follow up candidate multimessenger events from AMON private alerts streams (follow-up partner)
 * Current: ANTARES $\nu + \text{Fermi} \gamma$
If you want to follow up candidate multimessenger events from AMON private alerts streams (follow-up partner)

- Current: ANTARES \(\nu \) + *Fermi* \(\gamma \)
- Soon: LIGO+Virgo GW + *Swift* \(\gamma \)
Why Join AMON?
amon.psu.edu/join-amon/

- If you want to follow up candidate multimessenger events from AMON private alerts streams (follow-up partner)
 - Current: ANTARES $\nu + \text{Fermi } \gamma$
 - Soon: LIGO+Virgo GW + Swift γ
 - Soon: IceCube $\nu + \text{HAWC } \gamma$, IceCube $\nu + \text{Fermi } \gamma$
If you want to follow up candidate multimessenger events from AMON private alerts streams (follow-up partner)

- Current: ANTARES $\nu + \text{Fermi } \gamma$
- Soon: LIGO+Virgo GW + Swift γ
- Soon: IceCube $\nu + \text{HAWC } \gamma$, IceCube $\nu + \text{Fermi } \gamma$

If you want to provide candidate MM sources under MoU terms (triggering partner)

Why Join AMON?
amon.psu.edu/join-amon/
If you want to follow up candidate multimessenger events from AMON private alerts streams (follow-up partner)
- Current: ANTARES $\nu + \text{Fermi } \gamma$
- Soon: LIGO+Virgo GW + $\text{Swift } \gamma$
- Soon: IceCube $\nu + \text{HAWC } \gamma$, IceCube $\nu + \text{Fermi } \gamma$

If you want to provide candidate MM sources under MoU terms (triggering partner)

Joining is straightforward, constraints on ability to follow-up alerts and publish your data are *de minimis*, infrastructure may already exist (e.g. GCN), if not AMON can help
If you want to follow up candidate multimessenger events from AMON private alerts streams (follow-up partner)

- Current: ANTARES $\nu + \textit{Fermi} \gamma$
- Soon: LIGO+Virgo GW + $\textit{Swift} \gamma$
- Soon: IceCube $\nu + \text{HAWC} \gamma$, IceCube $\nu + \textit{Fermi} \gamma$

If you want to provide candidate MM sources under MoU terms (triggering partner)

- Joining is straightforward, constraints on ability to follow-up alerts and publish your data are \textit{de minimis}, infrastructure may already exist (e.g. GCN), if not AMON can help

- AMON is also open to collaborating with new partners on novel MM coincidence analyses and alert streams

Why Join AMON?
amon.psu.edu/join-amon/
Memorandum of Understanding between observatories participating in the Astrophysical Multimessenger Observatory Network

AMON Executive Board
May 24, 2019

The Astrophysical Multimessenger Observatory Network (AMON) provides a framework for correlating high energy astrophysical signals across all possible astronomical messengers: photons, neutrinos, cosmic rays, and gravitational waves. The primary goals of the program are: (1) To allow participating observatories to share their data with one another with strict anonymity, confidentiality and in accordance with their blind analysis procedures, (2) To enhance the combined sensitivity of participating observatories to astrophysical transients by enabling them to search for coincidences in their sub-threshold archival data and then in their sub-threshold real-time data and (3) To enable follow-up imaging of possible astrophysical sources with minimal latency.

Membership

Participants in AMON can be characterized as either “triggering,” “follow-up” or both. Triggering participants are generally wide field-of-view observatories that feed a stream of sub-threshold