Pitch accent and the three-way laryngeal contrast in North Kyungsang Korean

Young Hwang Samson Lotven Kelly Berkson
(hwang24@indiana.edu) (slotven@indiana.edu) (kberkson@indiana.edu)
Indiana University

Korean is typologically unusual in that it has a three-way contrast between phonetically voiceless stops in word-initial position. The three different categories are often called fortis, lenis, and aspirated, and they are differentiated by both voice onset time (VOT) and fundamental frequency (f0) on following vowels (Cho et al. 2002; Hardecastle 1973; Kang & Han 2013; Kang 2014). VOT is shortest for fortis, intermediate for lenis, and longest for aspirated. The fortis and aspirated categories have higher f0, while the lenis category has lower f0 on the following vowels.

Traditionally, VOT was considered to be the primary acoustic correlate to the stop distinction, while f0 was considered to be a redundant cue (Kang & Han 2013; Kang & Guion 2006, 2008; Silva 2006). However, recent studies have reported that Korean stops are undergoing a diachronic sound change and that VOT values of lenis and aspirated stops have merged due to a lengthened VOT for lenis stops and a shortened VOT for aspirated stops (Silva 2006). As a result, the distinction between the lenis and aspirated stops is now coded primarily by an f0 difference on the following vowels (Kang & Guion 2008; Lee et al. 2013; Silva 2006).

The new pattern is generally observed in Standard Korean, but not all dialects in Korea are reported to have undergone this change. The South Kyungsang (SK) dialect, one of two Kyungsang dialects which retain the pitch accent system from Middle Korean, has not undergone the change, and even younger speakers keep the traditional pattern (Lee & Jongman, 2012). Lee et al. (2013) assert that VOT is still used as a main cue of the stop distinction in the SK dialect since f0 is already used for the pitch accent system.

However, the change seems to be happening in North Kyungsang (NK), the other pitch accent dialect. Holliday & Kong (2011) reported that female speakers of the NK dialect have more VOT overlap between the lenis and aspirated stop categories than male speakers. Very little other work on the NK dialect exists, however, raising questions about how robust this sound change is in NK and how it is progressing. With this in mind, we report on an apparent time study investigating the change-in-progress affecting VOT and f0 in NK stop consonants and its interaction with the pitch accent system. To examine age and gender effects, 4 groups of native NK speakers were included: 6 older males, 5 older females, 6 younger males, and 6 younger females (N = 23 talkers). Stimuli include 36 bisyllabic words with Low-High and High-Low tone patterns beginning with bilabial, alveolar, and velar stops of each of the three types (fortis, lenis, and aspirated) in the onset of the first syllable embedded in a carrier sentence. VOT measured from stop burst to the onset of periodicity and average f0 extracted from the 10% point of the following vowel are reported.

The results indicate that the four groups of talkers are in different stages of the VOT change, as shown in Figure 1. The younger groups and the female talkers are more likely to produce the innovative pattern, with longer lenis and shorter aspirated VOT values (meaning lenis and aspirated pattern together). For f0, younger speakers tend to have greater f0 ranges for the stop distinction than older speakers. Aspirated stops are not well differentiated from lenis stops by VOT for many younger speakers, in other words, and for these speakers f0 differences are more robust. Younger speakers also have a more minimal f0 distinction between High and Low tones than older speakers as in Figure 2. We suggest that for younger speakers f0 is used less for the pitch accent system and more for the stop distinction. The possible diachronic ramifications are discussed.
Pitch accent and the three-way laryngeal contrast in North Kyungsang Korean

References

Figure 1. Group difference in VOT

![Figure 1](image1.png)

Figure 2. Generational difference in f0

![Figure 2](image2.png)

Hwang, Lotven, and Berkson