The output preferences for English y-hypocoristics (e.g., Lappe 2007) are contrary to the output preference of English schwa syncope [ESS] (Zwicky 1972, Hooper 1978, Polgardi 2015). First, let us consider ESS, which deletes a schwa between word-internal consonants. The well-known structural observation is that ESS is likely to occur if the resulting consonant cluster has rising sonority as in (1) (on the following page), but not if it has falling sonority (2) (where the target schwa is underlined). Thus, while the underlined schwa vowel is deletable in (1), where the resultant cluster after syncope has rising sonority (e.g., [ml] in [fæmli] ‘family’), it would be highly unusual in (2) when the resultant cluster has falling sonority. Hooper (1978) emphasizes this structural condition noting that even very high frequency words disfavor ESS if the structural condition isn’t met. Thus, melody disfavors syncope since the resulting cluster after syncope would have falling sonority. The generalization that ESS favors rising sonority clusters has never been explained. ESS is typologically unusual since falling sonority clusters are favored in situations of syllable contact not rising sonority ones. There are virtually no other reported cases of syncope where syncope only occurs if it creates rising sonority clusters. Moreover, if ESS had the reverse pattern, where syncope would be favored by the items in (2), then the explanation would be straightforward: there would be an emergence of the unmarked effect with respect to falling sonority over syllable boundaries, that is, syncope would result in preferred syllable contact. It is interesting to contrast the ESS pattern above with English y-hypocoristics as in the data in (3) and (4) below. As shown in (3) and (4), English y-hypocoristics favor falling sonority clusters, avoiding rising ones, as seen in comparing Barbara-Barby with Gabriella-Gabby (not Gabry). Consequently, from an output (product) perspective, ESS and English y-hypocoristics are contradictory. This talk offers an explanation for this difference. First, following Lappe (2007), English y-hypocoristic is a syllable-based process whereby the hypocoristic suffix attaches to the maximal syllable given the string of phonemes in the base name (regardless of the syllabification of the base name). Thus, the hypocoristic of Sandra is Sandy where the hypocoristic suffix attaches to SAND (the maximal syllable given the string SANDRA) resulting in Sandy. This contrasts with Gabby where the hypocoristic suffix attaches to GAB (the maximal syllable given the string GABRIELLA). Thus, English y-hypocoristics is syllable-based. Second, concerning ESS in (1), an issue arises regarding the location of the syllable boundary after ESS has applied. Hooper (1978) states that the initial consonant of the resulting clusters in (1) is ambisyllabic (e.g. the [p] in opera). Under a new conception of ESS being developed, ESS is viewed as foot structure reduction: ESS reduces a dactylic foot into a preferred trochaic one. (That foot structure is at issue can be seen in the comparison of Marga where ESS applies with Marga where it doesn’t, or comparing separate (adj.) with separate (verb).) We maintain that the preferred English trochee has unclear (ambiguous) syllabification as evidenced by the lack of clear judgments of English speakers on the precise location of the syllable boundary in trochaic words like lemon (Steriade 1999). Deletion in (1) provides evidence that the preferred trochee in English avoids distinct foot-internal syllable boundaries. The application of ESS to (2) would result in a clear foot-internal syllable boundary (e.g. [man.tor] from moniter), so ESS is avoided. Further evidence for this view comes from rarely discussed ESS forms in (5) where ESS results in a sequence of three consonants. (5b) compared to (5a) shows ESS is favored if the medial consonant in the resulting triconsonantal cluster can be syllabified either as a coda or onset, thus displaying ambiguous syllabification. Functionally, ambiguous syllabification within the foot helps enhance the salience of the foot-initial boundary.
Data

1. English Schwa Syncope favored: chocolate opera family happening javelin Deborah
2. English Schwa Syncope disfavored: pelican felony monitor canopy parody melody
3. English y-hypocoristics with 2 consonants: Barbara-Barby, Sandra-Sandy, Martin-Marty
4. English y-hypocoristics with 1 consonant: Gabriella-Gabby (*Gabry), Patricia-Patty (*Patry)
5a. ESS disfavored: carnival balcony Baltimore ultimate
5b. ESS favored: corpora [korpra], Margaret [mægrət], Mandarin [mændrɪn], Barbara [bəbərə]

References


