Transfer of implicit perceptual-motor sequence knowledge across spatially-unique cue colors and shapes

Peigen Shu, Rebecca Chen, Y. Catherine Han, Caelie McRobert, Paul J. Reber
Department of Psychology
Northwestern University
Implicit learning, or learning without conscious awareness outside the medial temporal lobe system, has been previously observed to be highly inflexible\(^1\).

Flexibility of the learned representation (such as task perceptual features) can be inferred from transfer amount, which is the expressed knowledge in a novel, unpracticed context.

Research Question: are acquired representations of implicit knowledge tied to perceptual information during learning?

SERIAL INTERCEPTION SEQUENCE LEARNING (SISL) TASK

Participants **intercept moving cues** when they overlap with one of 4 targets by pressing keys corresponding to the target (D, F, J, K).

- Cues follow a covertly-embedded, 12-item **repeating sequence**. Example: K-F-J-D-K-D-F-K-J-F-D-J--...

Implicit learning Measure: SSPA

- **Sequence Specific Performance Advantage** = accuracy for practiced repeating sequence – accuracy for unpracticed novel sequences.

Procedure:

- **Training**: practiced the repeating sequence.
- **Test**: sequence knowledge was assessed under both the training and transfer conditions.

Participants expressed similar levels of sequence knowledge across the test conditions with the Practiced color/shape and the Novel color/shape for both perceptual feature groups, $F(1, 52) = 0.156, p = .695$.

Color change ($n=24$)

<table>
<thead>
<tr>
<th>Blue condition</th>
<th>Brown condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>F</td>
</tr>
</tbody>
</table>

Shape change ($n=30$)

<table>
<thead>
<tr>
<th>Circle condition</th>
<th>Square condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>F</td>
</tr>
</tbody>
</table>

Transfer

Participants expressed similar levels of sequence knowledge across the test conditions with the Practiced color/shape and the Novel color/shape for both perceptual feature groups, $F(1, 52) = 0.156, p = .695$.

Graphical representation

- **X-axis**: Practiced, Novel
- **Y-axis**: SSPA (%)
- **Bars**: Color (Light Gray), Shape (Dark Gray)
- **Legend**: Changed feature (Color, Shape)
- **Statistical result**: n.s.
Participants expressed significantly less sequence knowledge in the transfer tests with **Shuffled** or **Novel** cue colors/shapes than in the **Practiced** condition for both perceptual feature groups, $F(2, 160) = 9.486$, $p < .001$.

\[p < .001 \]
\[p < .001 \]
\[p = 1.000 \]
CONCLUSIONS

- **Implicit learning is only affected by task-relevant feature changes**
 - Cue color or shape changes unrelated to task demands do not affect transfer performance.
 - Changes in cue-feature mapping create inflexible representations and impaired knowledge expression when remapped.
 - Sequence information is integrated in visual and motor cortices, in which the amount of accessible knowledge in a transfer test is determined by the strength of spatial-perceptual association acquired during learning.
REBER LAB

Peigen Shu
PhD student

Additional thanks to:
Rebecca Chen,
Caelie McRobert

Visit our website: https://www.reberlab.psych.northwestern.edu/
Feel free to email me: peigenshu2019@u.northwestern.edu