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Abstract 
The history of research on implicit learning has been driven primarily by studies using 
specialized laboratory tasks that are designed to isolate our ability to extract statistical structure 
from experience, outside of awareness of what is learned. This empirical approach has been 
fruitful and necessary to establish implicit learning phenomena.  It has allowed for systematic 
characterization of the mechanisms and neural systems that are the basis of this type of 
memory. However, the question of how pervasive implicit learning is in our everyday human 
experience is not directly addressed by this laboratory-based approach. The fact that implicit 
learning does not leave a conscious memory trace runs the risk of it being overlooked as an 
important component of complex cognition. Here, applications of implicit learning in three 
established research domains are briefly reviewed as examples of phenomena that appear to 
be driven by knowledge outside of consciousness. This review will show how this type of 
memory plays important roles in domains as diverse as language learning, skill acquisition and 
decision making processes. The principles extracted from implicit learning research can provide 
important theoretical contributions to these other domains and points towards the importance of 
examining relatively unexplored questions about the nature and processes involved in 
interactions between memory systems in complex cognitive processing. 

 

  



 

Introduction & History 
The term “implicit learning” was first published 50 years old in a report titled, “Implicit 

Learning of Artificial Grammars” (A.S. Reber, 1967).  This paper described studies with a novel 
paradigm aimed to create a laboratory analogue of language learning.  The new approach was 
based on using mathematical formalisms for stimulus creation that were similar to ones being 
developed to help understand human language function.  Surprisingly, participants exhibited an 
unusual behavioral pattern in their learning process.  They appeared to be learning to be 
sensitive to the statistical structure of the underlying formalism, but seemingly without any 
awareness that there were any underlying rules.  This report established the possibility of a 
dissociation between learning that could only exhibited through performance and more 
traditional learning and memory that was available to conscious awareness.  Over the next 
several decades a wide variety of additional studies and many more novel paradigms were 
constructed to drive research into understanding the phenomenon of implicit learning (A.S. 
Reber, 1989; P.J. Reber, 2013). 

The historical context in which the original report was published provides some insight 
into why this finding had such a widespread, enduring impact and how the idea of implicit 
learning came to be foundational to the modern characterization of Memory Systems Theory 
(Squire, 1992) and the cognitive neuroscience of memory.  The story of the basis of the original 
studies (A.S. Reber, personal communication) starts with a chance meeting between the author, 
Arthur S. Reber, and George A. Miller in the early 1960s.  Miller had fairly recently published the 
seminal paper on “the magic number 7” and working memory (Miller, 1956) which is often cited 
as one of the core reports demarking the shift in the field of Psychology away from Behaviorism 
and to Cognitive Psychology, known as the Cognitive Revolution.  Other notable publications 
also considered in the same vein include Broadbent (1958), Newell, Shaw & Simon (1958)​ ​and 
a review written by Chomsky (1959) highly critical of a book by B.F. Skinner (1957) titled “Verbal 
Behavior.” 

The Cognitive Revolution was effectively a movement against and away from the 
Behaviorist school that had attempted to put Psychology on robust scientific footing through the 
use of simple, well-characterized task with quantifiable measures that allowed for robust, 
reliable experimental paradigms.  In practice, this meant using tasks from the tradition of 
physiologists (e.g., Pavlov’s conditioning research) that could also be studied in animal models. 
However, the extrapolation from animal cognition to human cognition has always posed some 
difficult questions, in particular when considering complex human cognition and especially the 
process of language, which is effectively unique to humans.  Skinner’s suggestion (1957) that 
language could be explained from reinforcement and conditioning studies was forcefully 
rejected by Chomsky (1959), implying that the study of human cognition needed a different 
approach. 

The new approach favored by Chomsky led to his seminal work developing the field of 
computational linguistics.  Early explorations of this work appeared in the Handbook of 
Mathematical Psychology (1963; ed. R.D. Luce) which includes three chapters authored or 
co-authored by Chomsky outlining how language production and comprehension might be 



 

modeled with formal grammars.  Two of these chapters were co-authored with Miller, which 
provides some context for how Reber, as a graduate student at nearby Brown University, came 
into contact these formalisms through Miller (at Harvard) via their occasional interactions. 

While Chomsky’s research program can be seen as characterizing mathematical 
formalisms that would account for human language production and comprehension, Miller and 
Reber were considering a separate but related problem.  If these grammars were how humans 
accomplished language, how does a human acquire them?  The formalisms seemingly required 
to account for language use appeared to be exceedingly complex and possibly entirely 
unlearnable, especially considering the cognitive abilities of newborns.  One approach was to 
assume they were not learned, necessitating the existence of a pre-wired “universal grammar” 
embedded in the human brain (e.g., genetically endowed).  Another approach was to try to 
capture this learning process in the laboratory using simplified ‘artificial grammars,’ which then 
led to the seminal finding (A.S. Reber, 1967) and observation of a novel type of human learning 
that might solve this ‘unlearnability’ problem for language. 

Researchers familiar with this history are aware that the idea of implicit learning did not 
immediately revolutionize the study of memory or language.  In fact, for much of the next 
several decades, there followed a great deal of debate centered on the difficult problem of 
establishing the ‘implicit’ part of this kind of learning.  With a definition of implicit learning 
founded on ‘not available to consciousness,’ establishing even the existence of this 
phenomenon depends critically on proving a universal null, no awareness, which is an 
essentially intractable problem (Merikle, 1994).  While experimental techniques and 
measurement approaches eventually began to provide guidelines for tackling this issue(Dienes 
& Berry, 1997), important support for the concept also emerged from ideas being developed 
separately and in parallel from research in neuropsychology and neuroscience. 

 
Cognitive Neuropsychology and Systems Neuroscience 
At around the same time as the several famous publications in cognitive psychology that 

launched the Cognitive Revolution were published, a landmark paper in human cognitive 
neuropsychology was also reported. Scoville & Milner (1957) described the famous case of the 
patient H.M., who exhibited severe and selective impairment to his ability to acquire new 
conscious memories after bilateral medial temporal lobe (MTL) removal to treat otherwise 
intractable epilepsy.  While there had been a few prior reports of selective cognitive loss 
following localized brain regions (Broca, Wernicke) the theoretical model of the time was 
dominated by Lashley’s (1929) theory of equipotentiality that hypothesized that any region of the 
brain could support high-level cognitive function.  The case of patient H.M. established that 
memory was dependent on a specific neural region and did not arise from mass action of neural 
changes across the entire brain. 

Research over the next 35 years characterized the structure and function of the memory 
circuitry within the MTL (hippocampus and adjacent cortical areas) and established that this 
system was critical for the acquisition and consolidation of memories for facts and event (Squire, 
1992).  Patients with damage similar to H.M. are unable to acquire new explicit memories, but 
are able to retrieve remote episodic memories of events that occurred prior to the damage to the 
MTL.  More recent memories are partially affected by a temporal gradient of retrograde amnesia 



 

(see Lechner et al., 1999, for a review and history), leading to the development of a theory of 
memory consolidation dependent on a gradual process of memory strengthening and 
reorganization that depends on the MTL after initial learning. 

However, detailed neuropsychological assessment of H.M.’s memory capabilities 
subsequently indicated that not all learning processes in his brain were entirely disrupted. 
Corkin (1968) and Milner, Corkin, Teuber (1968) documented improvements in performance in 
procedural tasks (mirror tracing), maze learning, and picture identification from fragments. 
Shortly after, Weiskrantz & Warrington (1970) described a broader phenomenon of intact 
memory from fragmentary information in amnesic patients (priming) that would come to be 
known as “implicit memory” and very widely studied (Schacter, 1987).  Together these findings 
indicated that another type of memory existed that did not operate in the same manner as 
memory for new facts and events that depended on the MTL memory system. 

These findings were foundational to the development of a ‘memory systems framework’ 
that aimed to connect these observations about human memory to research going on in parallel 
on the neuroscience of memory.  The field of neuroscience also progressed remarkably over the 
course of the 20th century (c.f. Gross 1999 for a highly readble overview) with a notable 
moment in this progression being the founding of the Society for Neuroscience in 1969.  With 
respect to specifically the neurobiology of learning and memory, an important early paper was 
the work of Kandel & Spencer (1968), who began to characterize the underlying biology of 
synaptic change in the nervous system.  It is of note that all three of these then independent 
lines of research on learning and memory saw significant results in a similar time frame in the 
second half of the 1960s.  However, integration of the related ideas across these research 
areas did not emerge until somewhat later during the development of the interdisciplinary field of 
Cognitive Neuroscience. 

A great deal of neuroscientific memory research through the subsequent years was 
focused on establishing and characterizing the role of the MTL in explicit, declarative memory 
(facts and events).  While observations from patients such as H.M. were fascinating, it was 
understood that it would require the establishment of a model system to be able to characterize 
how MTL damage affected memory with experimental control.  The roles of the hippocampal 
formation, the adjacent cortical areas (entorhinal, perirhinal, parahippocampal) and the 
amygdala were all studied in detail (Squire, 1992).  Systems-level analysis eventually 
converged on the key importance of the hippocampus and the adjacent cortical areas with the 
amygdala playing largely a modulatory role related to emotional memory.  In addition, 
examination of the phenomenon of retrograde amnesia following MTL damage led to the 
characterisation of memory consolidation processes as a key feature for how the MTL operates 
to store information. 

Evidence for consolidation theory was also accumulating in parallel in research on the 
neurobiology of synaptic change (McGaugh, 2000).  Synergy across these areas demonstrated 
how cellular and systems neuroscience could inform each other in building a theory of memory 
(Milner, Squire, Kandel, 1998).  Connections to research on psychological phenomena directed 
at studies of complex cognition were not immediately evident.  Animal models do not allow for 
research on processes related to language or subjective measures of consciousness. Instead, 
many of the paradigms used to characterize and quantify learning and memory processes in 



 

these animal model systems were closely related to the tasks developed by the Behaviorist 
researchers (e.g, conditioning models of learning) which were very well suited to neuroscientific 
study of learning and memory. 

 
Implicit learning and the problem of assessing awareness 
Studies of implicit learning through two decades following the original description of the 

AGL task aimed to better characterize this kind of learning (A.S. Reber, 1989) but struggled with 
the question of how to firmly establish when learning was outside awareness.  Assessing a lack 
of awareness depends on an accurate model of the information learned by participants to guide 
assessments of conscious knowledge.  Dulany, Carlson & Dewey (1984) and Perruchet & 
Pacteau (1990) found that asking participants about the letter strings used in the AGL paradigm 
specifically elicited some additional knowledge related to determining whether the strings 
followed the grammar rules or did not.  This raised the possibility that participants were inferring 
another type of representation that allowed them to make ‘grammaticality’ judgments without 
being aware of the specifics of the formal grammar.  However, it was also possible that these 
assessments were not of the awareness of the knowledge that drove the grammaticality 
judgment, but reflected concomitant explicit memory for the study stimuli (which would naturally 
be acquired by cognitively healthy participants but might not contribute to AGL performance). 

Similar questions were being raised about studies of implicit memory​ ​(e.g., Roediger, 
1990)​.​  To show that this type of memory did not depend on explicit memory for previously seen 
stimuli, it would be necessary to show robust priming in the absence of conscious memory.  In 
cognitively healthy participants, this proved to be extremely difficult as a participant with an 
intact MTL memory system will always have some explicit memory of the study items.  The 
inability to show a strong dissociation made it impossible to rule out the hypothesis that implicit 
memory phenomena simply reflected a weaker form of explicit memory (similar to familiarity) 
rather than a separate form of memory entirely. 

A new paradigm for studying implicit learning was described by Nissen & Bullemer 
(1987), the Serial Reaction Time (SRT) task that became quite widely popular. This task 
embedded a covert repeating sequence into a simple choice reaction time task.  Participants 
were found to increase their speed of responding to a practiced sequence compared with 
unpracticed sequences without seemingly being aware of the repetitions.  In addition to the 
dissociation with awareness, this paradigm was also shown to exhibit intact learning in 
memory-impaired patients (Korsakoff’s) in the original report.  Like with the AGL paradigm, 
concerns emerged over the content of the representation (Reed & Johnson,1994) which led to 
protocol improvements without changing the basic character of the finding.  However, the 
development of increasingly sensitive measures of explicit sequence knowledge (Perruchet & 
Amorim, 1992; Willingham, Greeley & Bardone, 1993) started to show the same pattern 
observed in other tasks used in implicit memory research.  Participants with intact explicit 
memory tended to have at least some memory for the covertly embedded (implicit) information, 
even if it was not clear that it contributed to task performance. 

 
Memory Systems Theory 



 

The emergence of an integrated memory systems theory that used an interdisciplinary 
Cognitive Neuroscience approach eventually showed how the neural basis of memory function 
in the brain could be used to help understand the type of learning observed in implicit learning 
paradigms.  Squire (1992) described a taxonomy of memory types within a single major 
subdivision based on the importance of the MTL memory system.  Declarative memory referred 
to information that required the MTL memory system to store (and consolidate) and produced 
representations that were generally available to awareness and verbal report.  Nondeclarative 
memory described a collection of other phenomena that did not depend on the MTL memory 
system but were instead supported by synaptic change in other circuits. 

Applying this framework to phenomena of implicit learning, Knowlton, Ramus & Squire 
(1992), and Knowlton & Squire (1996) showed that as predicted, AGL was intact in patients with 
severely impaired memory due to MTL damage. P.J. Reber & Squire (1994; 1998) established 
the same parallel finding for the SRT task with techniques in protocol design and awareness 
assessment that had been advanced since Nissen & Bullemer (1987).  Research on implicit 
memory with particularly severely memory-impaired patients indicated that it was possible to 
observe intact priming in the complete absence of explicit (declarative) memory for stimuli 
(Hamann & Squire, 1997; Stark & Squire, 2000).  In each case, the tasks studied with 
cognitively healthy participants as implicit learning, lined up well with neuropsychological studies 
that showed an important role for nondeclarative memory. P.J.  Reber (2013) reviewed these 
areas and described a general framework for memory based on the MTL memory system 
together with general, pervasive neuroplasticity mechanisms that shape processing everywhere 
else in the brain to adaptively improve functioning via practice (repetition). 

This framework provides a neurocognitive foundation for studies of memory that depend 
on implicit or explicit learning, or a complex interaction between the two types of memory.  It 
also allows for a theoretical approach to the small handful of exceptions in which memory 
phenomena that appear implicit with cognitively healthy participants appear to depend on the 
MTL memory system.  The contextual cuing paradigm (Chun & Jiang, 1998) has been used to 
study implicit learning in attentional search such that improved search performance occurs with 
repeated stimuli, even when the participants are unaware of the repetition.  However, this type 
of learning is disrupted with hippocampal damage (Chun & Phelps, 1999).  The pattern is similar 
to observations from a paradigm of ‘priming of new associations’ (Graf & Schacter, 1985; 
Shimamura & Squire, 1989) that described a type of priming that was not preserved in amnesic 
patients.  However, if the mechanism of implicit learning is pervasive throughout the brain, we 
can expect that it would apply even to shaping representations that were initially acquired from 
MTL-based (explicit) memory processes.  This type of process would also support the statistical 
effects on explicit memory retrieval processes hypothesized by Anderson (Anderson & Milson, 
1989) to account for how human memory adaptively responds to the observed demands of the 
environment. 

Allowing for this interplay between types of memory allows for a very flexible theoretical 
account of a wide variety of observed human memory phenomena.  However, it is based on a 
different approach than the original findings of robust dissociations between types of memory 
and might be criticized as exceedingly difficult to falsity.  Even though the description is 
consistent with a very wide range of findings across memory systems research, it does not 



 

directly rule out alternate hypotheses.  The primary alternate view of memory has historically 
been that human memory is largely based by a single system with the idea that this more 
parsimonious approach needs to be ruled out before accepting the more complex memory 
systems framework (Shanks & St. John, 1994; Nosofsky & Zaki, 1998).  A single system or type 
of memory is largely inconsistent with neuroscientific observations of memory and the many 
systems demonstrating synaptic plasticity.  However, a skeptic might suggest that although 
there is clearly neuroplasticity in the brain that operates outside awareness, the cognitively 
important aspects of human cognition depend exclusively on operations of explicit memory. 
Because human implicit learning phenomena have traditionally been studied with artificial 
paradigms aimed to dissociate implicit and explicit memory, it could be suggested that implicit 
learning is merely a vestigial reflex or a trick that can be elicited in the psychology or 
neuroscience laboratory. 

To address this concern, it is necessary to examine how implicit learning affects 
cognitive behavior in designs that better capture the demands of memory imposed by activities 
in the world outside the laboratory.  The utility of the memory systems framework needs to be 
shown as leading to a better understanding of complex learning processes and should be driven 
by a program of research in Applied Implicit Learning.  This will entail eventually moving past 
reliance on the creative and unusual learning and memory paradigms (e.g., AGL, SRT) that 
were highly effective for isolating types of memory and developing the scientific framework. 
Among the immediate challenges for this new approach is that a theory of memory systems 
interactions is needed (e.g., Nomura & Reber, 2012) that the focus on dissociation has often 
overlooked (with notable exceptions, such as Poldrack et al. 2001). 

In the remainder of this review, three research areas will be presented in which there is 
already evidence of influence of the core ideas behind implicit learning and memory systems 
and in which it appears further integration of the neurocognitive framework will be valuable.  The 
first of these, “statistical learning” (Saffran, 2003) reflects a research area very much in the 
same tradition as the original AGL paradigm aimed at understanding the automatic extraction of 
statistical regularities to support language learning.  Second, the process of “skill learning” and 
performance also naturally incorporates ideas about separate forms of learning from explicit 
instruction and repetitive practice. The memory systems framework captures these descriptions 
well and can guide theoretical accounts of the development of skilled expertise.  Third, research 
on decision making (Tversky & Kahneman, 1975) developed in parallel a structurally similar 
multi-system approach to differentiate processes for rapid, intuitive decision making and slower, 
deliberate reasoning.  This approach maps on fairly well to the memory systems framework and 
highlights interesting questions about the interaction of systems.  This framework has been 
highly valuable in helping to understand certain classes of errors where implicit learning can 
lead to implicit bias affecting judgments.  Across these three areas, consideration of the roles 
and interplay of multiple types of memory allows for better characterization and understanding 
of complex, real-world, human learning processes than can be supported by a simple, single 
system theory. 

 



 

Statistical Learning and Language  
The original AGL paradigm used to introduce the idea of implicit learning was developed 

in response to the introduction of computational linguistics.  If human language can be 
represented in formal structures (finite state machines) that account for important aspects of 
syntax, how are these structures learned. While the AGL paradigm explicitly represented the 
underlying formal grammar structure, a different approach to the same idea was taken by 
Saffran,  Aslin, & Newport (1996) with a paradigm described as “statistical learning.”  This 
approach used much simpler stimuli but was designed to be used to assess how pre-verbal 
infants could extract statistical structure from auditory speech-like input.  The findings that 
emerged from this field of research were strongly influenced by considerations of the formal 
linguistics model of Chomsky (Saffran, 2003), just as the original A.S. Reber (1967) paper was. 
The paradigm developed by Saffran and colleagues focused on the statistics embedded in 
speech that could be used to determine word boundaries, rather than the syntactic structure 
implied by an AGL, and were designed to be amenable for developmental studies with 
pre-verbal infants. 

In the statistical learning paradigm, infants (or other participants) listened to 2-3 minutes 
of artificial speech (synthesized) that contained an essentially undifferentiated stream of 
syllables.  Statistical structure was covertly embedded by constraining the transitional 
probabilities between syllables in a manner similar to natural speech.  In natural speed, 
phonemes within words are highly constrained but phonemes at the end of a word (on the 
boundary) can be followed by the initial phoneme of a much wider range of possibilities.  After 
familiarization with artificial phoneme streams following this structure, infants exhibit differential 
preferential looking to stimuli that follow or violate this statistical structure.  By careful control of 
the underlying frequency and conditional probabilities (Aslin et al., 1998) in a manner 
reminiscent of the controls discovered to be necessary with the SRT task (Reed & Johnson, 
1994), it was established that these very young infants were essentially computing the 
transitional conditional probabilities among phonemes. 

The statistical learning paradigm established a key idea behind the original AGL 
paradigm in that it showed that pre-verbal infants, in the process of natural language acquisition, 
exhibited a sophisticated learning ability that could support key aspects of language learning.  In 
addition to the findings showing that word boundaries could be statistically extracted from 
continuous auditory input, additional findings extended this type of learning to more abstract 
relational rules (Marcus et al. 1999) and to some kinds of non-adjacent dependencies (Newport 
& Aslin, 2004).  These paradigms do not attempt the complexity of formal linguistic structures 
necessary to acquire and produce well-formed, syntactic language.  However, the statistical 
learning findings do show a core learning ability that emerges from experience and shapes 
processing of auditory input to support language processing.  Of particular note, this implicit 
learning mechanism is available and  relatively computationally complex even in young infants 
who are acquiring language. 

Extensions of this line of research further suggested that statistical learning ability is not 
restricted to linguistic stimuli, with statistical learning being exhibited by infants in the visual 



 

domain as well (Fiser & Aslin, 2002; Kirkham et al. 2002).  Using paradigms that parallel the 
auditory presentation of covertly embedded statistical information, infants and adults exhibit 
sensitivity to this structure in sequences of visual objects (Fiser & Aslin, 2002; Turk-Browne et 
al. 2005).  These findings suggest that the ability to extract statistical structure are present 
across sensory modalities, generally supporting the idea of widespread neural plasticity 
supporting implicit learning to reshape processing throughout the brain (P.J. Reber, 2013). 

Although the statistical learning paradigm was also extended to adults, attempts to 
assess the conscious accessibility of the statistical structure did not immediately follow.  Since 
this research area emerged from developmental studies, the tools developed to assess 
awareness of learning were not applied to the adult learning paradigms.  Even so, the 
commonalities between implicit and statistical learning were noted as likely emerging from the 
same underlying mechanism (Perruchet & Pacton, 2006).  Batterink et al (2015) systematically 
evaluated contributions from both implicit and explicit memory to statistical learning to support 
the idea that even in adults, this form of statistical learning depends on mechanisms that 
support implicit learning. 

While statistical learning is able to play an important role in language learning, it is clear 
that not all language processing depends on or can be learned entirely implicitly.  Some crucial 
elements such as reference and work meaning seem to depend on the MTL memory system 
that is better suited to supporting memorization of the connection between a vocabulary word 
and its referent.  This observation has led to the description of language processing as 
depending on both kinds of memory (Ullman, 2004; Paradis, 2004) contributing materially to 
different aspects of this complex process.  Morgan-Short et al. (2010) applied this theory to 
questions of second language acquisition suggesting that a multiple systems model of language 
acquisition can provide valuable insight into how a second language is learned. 

As seen across the three areas of ‘applied implicit learning’ considered here, 
connections of implicit learning and memory systems theory to non-laboratory applications 
generally require considering both types of memory and also potential interactions between 
memory systems.  Considering learning a second language as an example, we would 
hypothesize that the new syntactic structures to be learned might be best acquired by high 
levels of exposure to speech to allow for statistical learning to proceed. Memorization of new 
vocabulary would be facilitated by strategies that facilitate explicit learning (e.g., deep semantic 
encoding).  However, an unanswered question in this area is how these two types of memory 
interact during the learning process.  Do statistical learning and word memorization support 
each other, proceed independently or even interfere with each other?  To date, within language 
studies questions about system interactions have not been thoroughly explored.  As in many 
areas within implicit learning, the drive to isolate this type of learning has led to the development 
of tasks aimed at separating memory types rather than examining interactions. 

Skill Learning 
A research area in which the potential importance of interactions among memory types 

has begun to be considered is the acquisition of expert skill.  While skills are often initially 
learned with some explicit instruction, the importance of practice in acquiring expert levels of 



 

skilled performance has long been understood.  What is learned during the process of repetition 
is not easily available to conscious awareness but accrues through experience.  Early research 
in psychology aimed to characterize this process of skill learning and improvements in 
performance due to repeated practice (e.g., Fitts, 1964).  The course of learning measured as 
performance improvements from practice has been extensively studied and is often described 
as following a power-law (Newell & Rosenbloom, 1981; or some similarly negatively-accelerated 
curve) that continues over remarkably extended periods of time, even up to millions of 
repetitions (Crossman, 1959).  Within this field, there are active debates over the role of rote 
practice, structured deliberate practice (Ericsson et al. 1993) and other factors (such as talent) 
that predict expertise (Campitelli & Gobet, 2011).  However, this process is fundamentally a 
memory phenomenon that must be supported by the learning and memory mechanisms of the 
brain. 

There is a basic assumption embedded in any approach based on practice that the 
information acquired during practice could not have been acquired by explicit, verbal instruction, 
which would otherwise be much more efficient.  The information learned during practice is 
generally not available to later verbal report, suggesting that implicit learning mechanisms are 
playing an important role.  The nonverbal nature of this knowledge might alternately be ascribed 
to the type of representation, i.e., “motor learning” might not support verbally accessible 
representations.  However, the memory systems framework incorporates this idea by including 
learning within specific neural systems such as motor execution (or perceptual learning) as 
varieties of implicit learning in that they do not depend on the MTL memory system and produce 
knowledge representations that cannot be described. 

Many of the tasks examined in the general domain of skill learning are not simple motor 
or perceptual learning tasks.  Cognitively complex skill such as playing chess are initially 
learned through explicit instruction but expertise only emerges after extensive practice (Ericsson 
et al. 1993).  Within music cognition, the different roles of explicit memorization and learning 
from practice are well-understood.  Chaffin, Logan & Begosh (2011) describe in detail two 
parallel processes of preparing for expert music performance, one based on building associative 
chains while repeatedly practicing and a separate process of explicitly memorizing the written 
score (as a backup in case of error).  The memory systems framework provides a useful way of 
characterizing these learning processes.  Memorization of the music piece depends on explicit 
memory and the MTL memory system.  Practicing the piece allows for the pervasive 
neuroplasticity mechanisms supporting implicit learning to hone neural processing to make 
execution of performance smooth, precise and accurate. 

However, the fact that this framework is consistent with descriptions of skill learning does 
not establish that the account is accurate.  One of the challenges in studies of complex skill 
learning is the necessity of both explicit and implicit instruction during the learning process. 
Because these always co-occur, alternate hypotheses about skilled knowledge representations 
need to be considered.  One possibility is that skill learning produces a functionally integrated 
representation across memory types such that a independent systems model cannot aid our 
understanding of this process.  Another possibility is that repeated practice changes the 
character of an initially explicit memory representation such that retrieval becomes so rapid, 
effortless and automatic that there is no role (or need) for implicit learning processes. 



 

Laboratory research aimed to capture the skill learning process in order to address these 
alternatives has largely focused on tasks of perceptual-motor skill learning such as the Serial 
Reaction Time (SRT) task. 

The SRT task (Nissen & Bullemer, 1987) is a highly studied task that appears to be 
largely supported by implicit learning.  Participants perform a serial 4-alternate forced choice 
response task in which the sequence of cues covertly follows an embedded sequence.  Faster 
reaction times when the cues follow a practiced sequence compared with conditions where the 
cues follow an unfamiliar sequence are evidence that the practiced sequence has been learned. 
Establishing that this learning is solely implicit would provide robust evidence for the memory 
systems framework in skill learning.  This kind of direct implicit learning without initial explicit 
memorization makes it clear that skilled performance does not necessarily depend on either an 
integrated implicit/explicit knowledge representation or automation of initially explicit knowledge. 

However, while the first demonstration of learning with the SRT task suggested both 
knowledge outside of awareness and intact learning by memory-impaired patients (indicating 
lack of dependence on the MTL memory system), debates about the character of knowledge 
acquired during the SRT task have persisted.  Thorough investigations of the conscious access 
of sequence knowledge (Perruchet & Amorim, 1992; Willingham, Greely & Bardone, 1993) 
suggested that sensitive tests of sequence recognition almost always indicate some explicit 
knowledge in healthy participants. Having some conscious memory of the repeating sequence 
might reflect the concomitant operation of the MTL memory system (in cognitively healthy 
undergraduate participants) or might reflect evidence for the alternate hypothesis that skill 
learning depends on integrated representations. Studies of amnesic patients (Reber & Squire, 
1994; 1998) showed that reliable learning could be observed in the absence of explicit memory, 
but concerns remained about the ability to prove intact learning in patients (which necessarily 
depends on a finding of a null difference between patients and controls). Destrebecqz & 
Cleeremans (2001) reported a strong dissociation between implicit and explicit sequence 
knowledge for a specific variant on the SRT design (zero delay in the interval between response 
and next cue).  Overall, while the evidence supported the idea that learning was implicit, the 
difficulty of regularly finding evidence for process-pure implicit learning with the SRT task meant 
questions about representation persisted. 

A new variation of the sequence learning paradigm was described by Sanchez, Gobel & 
Reber (2010) as a Serial Interception Sequence Learning (SISL) task.  This paradigm changed 
the basic task performed by the participant.  Rather than a simple speeded response to the 
onset of a cue (in one of four locations), cues appear, then move vertically down the screen 
toward a target area, and the participant has to time an ‘interception’ response of pressing the 
correct response key precisely as the cue reaches the target area.  Just like in the SRT task, the 
cues follow a repeating covertly embedded sequence but the additional cognitive demands of 
the response task appears to reduce the degree to which explicit knowledge is acquired. 
Sequence knowledge is measured by accuracy (a properly timed response is correct, mis-timed 
or incorrect keypress are incorrect) during the repeating sequence compared with accuracy 
during an unfamiliar sequence.  Sanchez, Gobel & Reber (2010) showed that learning on the 
SISL task is solely implicit for a substantial subset of cognitively healthy participants in a typical 
experiment.  Showing robust learning with zero apparent explicit knowledge in approximately a 



 

third of participants provided strong evidence that the SISL task could be learned in the absence 
of explicit knowledge, arguing against integrated representations.  In a follow-up study, Sanchez 
& Reber (2013) found that giving participants full explicit knowledge of the embedded sequence 
did not affect performance on the core task, providing strong evidence that implicit learning 
drives performance and that any explicit knowledge obtained by noticing the repeating cues 
does not materially contribute to accurate responding in the SISL task (in contrast to the SRT 
task where explicit knowledge can lead to negative reaction times where participants respond 
before cue onset).  Neuroimaging during the SISL task found that learning was associated with 
greater efficiency in neural processing for the practiced, repeated sequence as would be 
predicted by adaptive neuroplasticity (Gobel, Parrish & Reber, 2011).  Neural changes were 
largely in cortical regions, although increased activity suggested a role for the ventral striatum. 
A neuropsychological study of memory-impaired (amnestic MCI) patients and patients with 
Parkinson’s disease (PD) found impaired learning in the PD patients but intact learning in the 
MCI patients, reinforcing the importance of the basal ganglia rather than the MTL for sequence 
learning (Gobel et al. 2013). 

Across each of these studies, knowledge of the embedded repeating sequence was 
found to be extracted implicitly from practice and used to enhance task performance (when the 
cues follow that sequence).  Because this happens without initial explicit cue knowledge and 
independently of the MTL, the memory systems framework provides the best account of the 
learning process as based on separate neural systems for implicit and explicit sequence 
knowledge.  Theoretical accounts based on skilled performance emerging from integrated 
representations or explicit knowledge automated through practice can not account for these 
findings.  Beyond a consistent description, the memory systems framework also guided a series 
of additional studies seeking to better characterize the implicit learning component of skill 
learning with a goal of understanding skill training and education outside the laboratory. 

A key challenge in skill learning is the degree to which learning is inflexible, leading to 
poor performance in novel but related transfer tasks (Adams, 1987) which may be due to the 
role of relatively inflexible implicit learning (Cleeremans, Destrebecqz & Boyer, 1998).  Using the 
SISL task, sequence learning was found to be highly specific and inflexible such that small 
changes in inter-cue timing (Gobel, Sanchez & Reber, 2011) or perceptual characteristics 
(Sanchez, Yarnik & Reber, 2015) led to nearly complete elimination of the accuracy advantage 
for practiced sequences.  This inflexibility may have the practical consequence of making 
implicit knowledge occasionally inaccessible, perhaps explaining the need for expert musicians 
to separately memorize the written score prior to performance (so that explicit memory could be 
used to rescue performance if implicit knowledge was unexpectedly unavailable).  

In contrast to this constraining aspect of implicit learning, Sanchez & Reber (2012) found 
robust implicit learning for surprisingly long repeating sequences in the SISL task (up to 90 
items) and that learning appeared to be log-linear with practice regardless of sequence length, 
meaning long sequences were learned as rapidly as short ones (except that they took longer to 
complete).  The ability to learn very long sequences indicates that implicit learning can support 
the kind of memory described by musicians during the ‘learning’ phase of repetitive practice in 
which performance is honed for a piece that will contain large numbers of sequential actions. An 
extension of this kind of long sequence learning into an applied context was described by 



 

Bojinov et al. (2012) in which participants implicitly learned a long sequence that was then used 
as part of security authentication as an implicit password.  A password learned this way has 
useful security implications as it cannot be shared (or coerced) and reflects the use of implicit 
learning and memory systems theory in an attempt to guide non-laboratory applications. 

This theoretical framework has also been applied to research examining the effect of 
stress (pressure) on the performance of trained skills (DeCaro et al., 2011).  Beilock and 
colleagues described a theory of ‘choking’ under pressure in which explicit monitoring of a skill 
learned implicitly led to decrements in expert performance (Beilock & Carr, 2001).  Flegal and 
Anderson (2008) reported a similar phenomenon in skilled performance in experts as verbal 
overshadowing reflecting competition between memory systems.  These types of findings are 
difficult to understand without utilizing the memory systems framework that incorporates 
different types of memory with different operating characteristics and separate neural 
mechanisms.  Being able to study each system independently has also recently revealed that 
implicit learning and/or performance can be influenced by factors such as mental fatigue (ego 
depletion; Thompson et al., 2014), motivation (Chon et al., in press) or even hypnosis (Nemeth 
et al., 2013).  As skill learning is foundational to education (cognitive skills), training and the 
development of expertise, implicit learning and the memory systems framework will provide 
critical guidance to basic science research applied to improving learning in skill learning 
contexts.  

Decision Making 
A research area in which the roles and interactions among multiple systems has a fairly 

substantial history is the process of decision making.  In his remarks upon accepting the Nobel 
prize in economics, Kahneman (2003) described the framework developed by his work with 
Amos Tversky as emerging from two cognitive systems.  Intuitive reasoning depends on System 
1, a  processing system characterized as: rapid, automatic, effortless, associative, slow-learning 
and emotional.  In contrast, System 2 reasoning is deliberate, slow, controlled, effortful, 
rule-governed and flexible. These system definitions mirror the memory systems model of 
implicit and explicit learning with many of the same descriptive terms applied to features of each 
type of processing.  However, this line of research was largely developed independently and 
was primarily applied to research on behavioral economics and decision-making without direct 
connection to the role of memory. 

Within this line of research, a notable difference is the focus on the speed of processing 
rather than the availability of knowledge to conscious awareness or underlying neural systems. 
Descriptions of decision-making within this framework typically describe a fast System 1 
response than can be then reviewed and potentially overridden by a slower System 2 response. 
This type of interaction across systems is different than those considered within skilled expertise 
(or language processing) but might be hypothesized to play a role in those domains as well.  

This approach lends itself to research examining the phenomenon of intuition (e.g., Klein 
2004) defined as a System 1 process that rapidly identifies an action to take that is often 
subjectively described as based on a ‘gut hunch’ or instinct.  This type of intuitive decision 
making (IDM) has been studied for its potential to support rapid, expert, accurate decisions that 



 

are of great value in complex and/or stressful environments. That approach is somewhat 
different than the early focus of Tversky & Kahneman (1975) that focused on erroneous 
(non-rational) decisions driven by biases that could emerge from System 1 processes. 
Kahneman & Klein (2009) contrasted and compared a System 1 and 2 account of this process 
with research obtained through naturalistic decision making research based on analysis of 
experts making complex, high leverage decisions in the field.  They determined that their 
approaches were largely in sync and suggested that prior experience in the decision-making 
context was an effective predictor of the accuracy of intuition.  This idea was explored and 
directly supported empirically by Dane, Rockmann & Pratt (2012) by comparing the accuracy of 
intuition across different levels of domain expertise.  High domain expertise led to much more 
accurate intuitive judgments, as would be expected if intuition was supported by implicit 
extraction of the statistics of the environment during the acquisition of domain knowledge. 

This conclusion fits well with the memory systems model derived from laboratory studies 
of implicit and explicit memory.  Implicit knowledge of a specific domain is accumulated as part 
of the development of expertise based on refining and honing processing (as in skill learning) in 
addition to statistical learning of environmental features (as in language learning). The resulting 
implicit knowledge structures reside outside awareness due to their dependence on plasticity 
separate from the MTL memory system (which will provide episodic memory of specific 
examples and salient events from experience).  We can also connect this idea to laboratory 
studies of implicit learning where participants are asked to make a response, e.g, about 
grammaticality of an unfamiliar letter string, but report they feel as though they are just guessing 
even when their performance is significantly above chance (Reber, Beeman, & Paller, 2013). 

However, an unanswered question in memory research is the route by which this 
information proceeds through the brain in order to actually guide action selection.  Using 
laboratory studies of visual category learning in which participants are required to learn 
categories through a process of trial and error as a model, Nomura & Reber (2012) described a 
multi-system model of category learning and performance, PINNACLE, that incorporated two 
separate processing streams for information extracted implicitly during learning and memorized 
knowledge of the category stimuli.  This model has the structure of a “mixture of experts” model 
at the decision-making level with the response decision (the participant’s response about which 
category the stimulus was thought to belong to) being influenced by either implicit knowledge 
via intuition or explicit knowledge by deliberate application of conscious task knowledge. 

The PINNACLE model was developed in reference to a well-established laboratory 
paradigm for studying category learning (Ashby et al., 1998; Ashby & Maddox 2005) in which 
known manipulations to the underlying category structure could lead participants to rely on an 
explicit, rule-based (RB) strategy or an implicit strategy based on integration information across 
dimensions (II).  In this task, participants are shown artificial stimuli that vary in two dimensions, 
such as sine-wave gratings that vary in spatial frequency (line thickness) and tilt.  They attempt 
to learn how the stimuli are organized into two underlying categories by trial-and-error with 
feedback after each response.  When the structure is determined by a simple rule, participants 
generally discover the rule, use it to make their category membership decisions and verbally 
report the rule after learning.  Complex, multi-dimensional rules often drive behavior differently 



 

with participants exhibiting gradually increasing accuracy at the task but without being able to 
report the basis of their judgments. 

Using neuroimaging, Nomura et al. (2007) showed that neural activity associated with 
rule-based learning occurred within the MTL memory system.  In contrast, II learning was 
associated with increased activity in posterior regions of the caudate, brain areas often 
associated with implicit learning plasticity (Seger & Miller, 2010).  Using the PINNACLE model to 
probe the neuroimaging data in more detail, regions in the prefrontal cortex were identified that 
were associated with the cognitive process of selecting which strategy to apply on a single 
decision.  The resulting model lines up well structurally with the Kahneman (2003) framework 
with separate neural systems contributing to rapid, intuitive decisions and slower, deliberate and 
explicit decisions.  Interactions between the two modes of decision-making would occur within 
the dorsolateral prefrontal cortex which would reflect a meta-level decision such as knowing 
when to ‘trust one’s instinct’ to guide behavior. 

The PINNACLE model provides a method for translating the laboratory studies of 
multiple brain systems into non-laboratory applications.  P. Squire et al. (2014) described how 
research in this direction could be used to study the processes of intuitive decision making and 
generate hypotheses about how decision making expertise could be trained more rapidly.  A 
similar approach was used by Dane & Pratt (2007) in their analysis of how treating intuitive and 
non-intuitive decision making in managerial contexts could be informed by the multiple memory 
systems model.  In a number of these cases, attention is also paid to erroneous decision 
making that can emerge from reliance on intuition (Kahneman & Klein, 2009).  A balanced 
model of the value of intuitive decision making emerges naturally from an implicit learning 
approach.  Implicit learning can only reflect experience and the statistical structure of the 
environment in which it was acquired.  Thus intuitions may be quite inaccurate in novel contexts 
where the environmental statistics are different than prior experience.  In addition, implicit 
learning through practice can just as easily reinforce consistently erroneous decisions, i.e., bad 
habits can be learned as easily as expert performance. 

A research area focused directly on the potential negative consequences of our 
automatic implicit learning is studies of stereotype prejudice that are based on ‘implicit attitudes’ 
(Greenwald et al., 2002).  The core idea in these studies is that experience in an environment 
shaped by the existence of stereotypes will tend to shape individual’s cognitive processes to 
reflect these prejudices.  The result of this process is that stereotypical information is 
represented outside awareness, leading individuals to not even realize that their responses and 
decisions are being influenced by this implicitly acquired bias.  This implies a very different 
model of prejudice in which stereotype-driven decisions and responses are not knowingly based 
on dislike of an outgroup but are based on something closer to a negative form of intuition.  This 
model fits very well with the initial descriptions of decision-making biases originally 
characterized by Tversky & Kahneman(1975) in accounts of apparently non-rational 
decision-making behavior.  Thus, statistically-induced biases in cognition that are acquired via 
implicit learning can enhance decision-making performance, but there is also a potential 
negative side where environmental bias will become reinforced through the same mechanism. 
 



 

Conclusions 
While neuroscientific studies of memory leave little doubt that there are multiple 

mechanisms of synaptic change in different systems across the brain, this observation does not 
indicate what roles different types of memory in complex human behavior.  Phenomena 
characterized as implicit learning in laboratory studies have shown how prior experience can 
influence current behavior without awareness of the information previously acquired.  However, 
the cognitive consequences of this type of memory are most clearly seen when examining 
applications of memory systems theory outside the laboratory.  Research examining human 
decision making, skill acquisition and language learning have all converged on theoretical 
frameworks that are highly consistent with the basic multiple memory systems model derived 
from cognitive neuroscience research.  Whether these separate processes are called System 1 
and 2, instruction and practice, or syntax and semantics, independent roles are seen for 
learning from both the statistics of experience and also conscious memorization of prior 
episodes.  Thus applied learning and memory research is well captured by the memory systems 
model of P.J. Reber (2013) which posits widespread non-MTL neuroplasticity as the basis for 
implicit learning as a separate type of memory than that supported by the MTL. 

Applying the memory systems framework to questions of learning in non-laboratory 
contexts highlights some gaps in many current programs of memory research.  In language use, 
skill learning and decision making, identifying important roles for both types of memory 
immediately indicates a need for hypotheses about how these systems interact.  Since the main 
focus in memory systems research to date has been focused on isolating memory types, most 
laboratory paradigms have not confronted questions about the interplay among systems.  In 
contrast, in decision making research the potential for slower, deliberate processing to override 
a fast, intuitive response is a core hypothesis.  In addition, basic questions about how we learn 
to trust and use our intuition are not addressed within the memory systems model.  Trusting 
one’s gut instinct appears to imply a meta-cognitive process for evaluating the quality of our 
implicitly help knowledge, which is a counter-intuitive construct since the implicit knowledge is 
theoretically outside of awareness.  Within skilled performance, the example of expert musicians 
both learning and memorizing a piece to be performed indicates a different kind of interaction. 
Here, the implicit, practice-based knowledge is not seen as inaccurate but occasionally and 
unpredictably unavailable, requiring redundant memory representations to support performance. 
Skilled performance can also reveal negative interactions between memory systems in a model 
of ‘choking’ where explicit processing interferes with expert implicit processing (Beilock & Carr, 
2001).  Within the domain of language, the role of extracted statistics from prior experience 
seems as if it must function in a much more closely synergistic manner with conscious aspects 
of linguistic processes in order to communicate, a fundamentally conscious process. 

Laboratory studies of phenomena related to implicit learning over the past 50 years have 
established tools and paradigms for characterizing and studying this phenomena.  Applied, 
non-laboratory research instead lept ahead, assuming a basic implicit/explicit multi-system 
model and found it provided explanatory power in a range of domains.  A common framework 
unifies these approaches build on two memory mechanisms in the brain.  Widespread 



 

neuroplasticity leads to adaptive rewiring of neural circuitry to improve performance and 
increase neural efficiency.  This mechanism leads to knowledge embedded in performance 
structures that is implicit and unavailable to conscious report.  The MTL memory system 
supports acquisition and consolidation of episodic memory, prior experiences of facts and 
events, that are retrieved consciously and used flexibly and creatively.  Both research 
approaches then point to the need for theoretical development at the interaction between 
systems to understand how information represented in such different ways can support complex 
human cognition. 
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