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A B S T R A C T

Long records often show large earthquakes occurring in supercycles, sequences of temporal clusters of seismicity,
cumulative displacement, and cumulative strain release separated by less active intervals. Supercycles and as-
sociated earthquake clusters are only partly characterized via the traditionally used aperiodicity, which mea-
sures the extent that a sequence differs from perfectly periodic. Supercycles are not well described by commonly
used models of earthquake recurrence. In the Poisson model, the probability of a large earthquake is constant
with time, so the fault has no memory. In a seismic cycle/renewal model, the probability is quasi-periodic,
dropping to zero after a large earthquake, then increasing with time, so the probability of a large earthquake
depends only on the time since the past one, and the fault has only “short-term memory.” We describe super-
cycles with a Long-Term Fault Memory (LTFM) model, where the probability of a large earthquake reflects the
accumulated strain rather than elapsed time. The probability increases with accumulated strain (and time) until
an earthquake happens, after which it decreases, but not necessarily to zero. Hence, the probability of an
earthquake can depend on the earthquake history over multiple prior cycles. We use LTFM to simulate paleo-
seismic records from plate boundaries and intraplate areas. Simulations suggest that over timescales corre-
sponding to the duration of paleoseismic records, the distribution of earthquake recurrence times can appear
strongly periodic, weakly periodic, Poissonian, or bursty. Thus, a given paleoseismic window may not capture
long-term trends in seismicity. This effect is significant for earthquake hazard assessment because whether an
earthquake history is assumed to contain clusters can be more important than the probability density function
chosen to describe the recurrence times. In such cases, probability estimates of the next earthquake will depend
crucially on whether the cluster is treated as ongoing or over.

1. Introduction

Since the 1906 San Francisco earthquake, the dominant paradigm in
earthquake seismology has been the earthquake cycle, in which strain
accumulates between large earthquakes due to interseismic motion
between the two sides of a locked fault and is released by coseismic slip
on the fault when an earthquake occurs (Reid, 1910). Over time, this
process should give rise to approximately periodic earthquakes and a
steady buildup of cumulative displacement (Fig. 1a). The fact that
earthquake sequences are only approximately periodic prompted a re-
finement of the model with “time-predictable” recurrence, in which a
specific strain level must accumulate for an earthquake, but the strain
release in the earthquake is variable (Shimazaki and Nakata, 1980).

However, long earthquake records often show more complex be-
havior (Fig. 1b). Wallace (1987) found that faults and groups of faults
in the Western U.S.'s Great Basin often showed “grouping, …a series of
displacement events, each being followed by a period of quiescence. Slip rates
during a group of events along a segment of fault, thus, could be considerably
greater than the long-term average slip rate. During quiescent periods, the
slip rate would be lower than the average rate and might even be zero…
Additionally, if grouping is real, the concept that accumulated elastic strain
is released at some regular interval by a single displacement event in a
seismic cycle should be reexamined. Perhaps strain that has accumulated at
a more or less constant rate is released in a stuttering, spasmodic manner in
a group of displacement events.” Subsequent investigation (Friedrich
et al., 2003) supported this analysis, finding that “seismic strain release

https://doi.org/10.1016/j.tecto.2019.228289
Received 11 July 2019; Received in revised form 14 November 2019; Accepted 17 November 2019

⁎ Corresponding author at: Department of Earth and Planetary Sciences, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
E-mail address: Leah@earth.northwestern.edu (L. Salditch).

Tectonophysics 774 (2020) 228289

Available online 22 November 2019
0040-1951/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00401951
https://www.elsevier.com/locate/tecto
https://doi.org/10.1016/j.tecto.2019.228289
https://doi.org/10.1016/j.tecto.2019.228289
mailto:Leah@earth.northwestern.edu
https://doi.org/10.1016/j.tecto.2019.228289
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tecto.2019.228289&domain=pdf


may be clustered on the 10-kyr timescale… with comparatively low, uniform
strain accumulation rates on the 100-kyr timescale.” They suggested
calling conventional earthquake cycles “Reid-type” behavior and longer
period variations “Wallace-type” behavior.

Wallace (1987) further noted that if this behavior is “common, as
these preliminary analyses suggest, care must be exercised in evaluating
seismic hazard potentials. It is crucial to determine the timing and dis-
tribution of individual faulting events because long-term average slip rates
may give grossly incorrect assessments of the hazard potential.” For ex-
ample, the estimated probability of a future large earthquake can de-
pend crucially on whether a cluster is treated as ongoing or over.

Such variations in earthquake behavior on timescales longer than
individual cycles are often termed “supercycles,” following Sieh et al.'s
(2008) observation from corals near the Sumatra trench that “because
each of the three past episodes of emergence consists of two or more discrete
events, we refer to the broad periods of strain accumulation and relief as
supercycles rather than merely cycles” and Goldfinger et al.'s (2013)

analysis showing that large Cascadia subduction zone earthquakes re-
flect “strain supercycles that transcend individual seismic cycling.”

Conceptually, the history of strain accumulation and release is the
underlying process that gives rise to patterns in the resulting earth-
quakes and cumulative displacement. In the schematic example of
Fig. 1b, supercycles appear as patterns longer than individual earth-
quake cycles in the earthquake history, cumulative displacement, and
cumulative strain records. The fullest picture is given by the strain re-
cord. This infers the strain by combining data about strain release via
slip in earthquakes over time with the interseismic strain accumulation
inferred from the slip between earthquakes taken from present-day
geodetic, long-term geological, or other data. The cumulative dis-
placement record shows the dates of earthquakes and the coseismic slip
in each, whereas the earthquake history gives only the dates. The dis-
placement record can be viewed as the time derivative of the strain
record, and the earthquake history can be viewed as the time derivative
of the displacement record, with each differentiation involving a loss of

Fig. 1. Schematic comparison of the histories of earthquake ocurrence, cumulative displacement, and cumulative strain for a fault without supercycles (a) and a fault
with supercycles (b).
Adapted from Wallace (1987) and Friedrich et al. (2003).
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information. Conversely, constructing a displacement record requires
supplementing an earthquake history with coseismic slip data, and
constructing the strain record then involves also including data or as-
sumptions about the interseismic strain accumulation. Hence the
earthquake history has the least uncertainty, and the displacement and
strain records have progressively larger uncertainties.

Supercycles are difficult to define precisely. One approach is to use
major minima in the cumulative strain, which often mark the beginning
of intervals during which few large earthquakes and hence little cu-
mulative slip occurs. However, identifying major minima is often
challenging and non-unique, especially given the assumptions needed
to construct a strain history. Moreover, because data about interseismic
strain accumulation and the slip in individual earthquakes are often
unavailable, supercycles most often are inferred from an earthquake
history that shows temporal clusters of seismicity, separated by inter-
vals of lower seismicity or gaps without large earthquakes.

In this paper we use the term “supercycles” broadly, to describe
long-term variability shown by aspects of the earthquake record that
are difficult to reconcile with commonly used models of earthquake
recurrence. The observation of supercycles, especially at plate bound-
aries and in plate boundary zones, is intriguing because plate bound-
aries are being loaded by steady plate motion.

We first review some proposed examples of supercycles on various
faults, and show that these arise in the full range of tectonic environ-
ments - at plate boundaries, within plate boundary zones, and in plate
interiors (Section 2). We discuss the fact that supercycles and the
sometimes-resulting earthquake clusters are not described by com-
monly used models of earthquake recurrence (Section 3). We address
issues in the characterization of clusters in earthquake records (Section
4). We then introduce a model of Long-Term Fault Memory (LTFM), in
which the probability of a large earthquake reflects the accumulated
strain, and use it to explore many aspects of supercycles (Section 5).
Finally, we discuss the challenges supercycles pose for earthquake ha-
zard assessment (Section 6).

2. Examples of supercycles

Supercycles and/or clustering have been observed in many tectonic
environments (Fig. 2). The best data come from earthquake histories at
plate boundaries, because the relatively rapid plate motion (typi-
cally> 5 mm/yr) gives shorter and hence easier-to-observe cycles. In
some cases, the slip and strain history also show evidence for super-
cycles.

Weldon et al. (2004) used the dates and offset in paleoearthquakes
since 500 CE across the San Andreas fault near Wrightwood, California,
together with the interseismic slip rate observed from present-day
geodesy and long-term geological rates, to reconstruct the history of
strain accumulation and release (Fig. 2a). They argue that “it is hard to
escape the conclusion that strain accumulated over many earthquake cycles
was responsible for the flurry of large slip events.” Nearby, at Pallett Creek,
Sieh et al. (1989) find that paleoearthquakes occurred in clusters within
which they were “separated by periods of several decades, but the clusters
are separated by dormant periods of two to three centuries.” To the south,
where the San Jacinto fault takes up some of the motion between the
Pacific and North America plates, Rockwell et al. (2015) find that “for
much of the past 4,000 years the fault ruptured in a quasi-periodic fashion.
In the past 1,000 years, in contrast, a flurry or cluster of four earthquakes
occurred in a 150-year period, and the overall recurrence interval is much
shorter.”

Sieh et al. (2008) analyzed relative sea level changes recorded by
corals from Sumatra, which show interseismic subsidence and co-
seismic uplift (Fig. 2b). They infer that “this 700-kilometer-long section of
the Sunda megathrust has generated broadly similar sequences of great
earthquakes about every two centuries for at least the past 700 years…
Because each of the three past episodes of emergence consists of two or more
discrete events, we refer to the broad periods of strain accumulation and

relief as supercycles rather than merely cycles.” To the north along the
subduction zone, Rubin et al. (2017) studied a 4500 year sequence of at
least 11 tsunami deposits and find that “the average time period between
tsunamis is about 450 years with intervals ranging from a long, dormant
period of over 2000 years, to multiple tsunamis within the span of a cen-
tury… these variable recurrence intervals suggest that long dormant periods
may follow Sunda megathrust ruptures as large as that of the 2004 Indian
Ocean tsunami.”

The dates and volumes of turbidite deposits, assumed to have been
generated by great earthquakes on the Cascadia megathrust (Adams,
1990), show evidence for supercycles. Using these to infer the history of
strain energy accumulation and release (Fig. 2c), Goldfinger et al.
(2013) find that “the resulting sawtooth pattern reveals what we interpret as
a complex pattern of long-term energy cycling on the Cascadia megathrust…
Overall, what is suggested by this pattern is that some events release less
energy, whereas others release more energy than available from plate con-
vergence (slip deficit) and may have borrowed stored energy from previous
cycles.” Although an additional event has been identified (Goldfinger
et al., 2017), the inferred strain energy history would not be sub-
stantially altered. Kelsey et al.'s (2005) analysis of coastal deposits that
record local tsunamis and seismic shaking finds that “over the 4600 yr
period when Bradley Lake was an optimum tsunami recorder, tsunamis from
Cascadia plate-boundary earthquakes came in clusters.”

A somewhat different style of supercycles has been proposed for the
Japan Trench off Tohoku (Fig. 2d). Satake (2015) proposed that “The
2011 Tohoku earthquake source includes the Miyagi-oki region, where M
~7.5 earthquakes repeated with average interval of 37 years. The typical
slip of such large earthquakes is approximately 2 m, meaning that the cu-
mulative coseismic slip is about 6 m per century. Because the subduction rate
of the Pacific plate is approximately 8 m per century, 2 m slips may remain
unreleased. Such a difference was previously interpreted as aseismic slip, but
can be accumulated at the plate interface and cause a large coseismic slip of
approximately 15 m with a recurrence interval of approximately 700
years… Such [a] supercycle model can explain the unusually large slip of the
2011 Tohoku earthquake. The term ‘supercycle’ was first used for a seismic
cycle consisting of a series of large events, but often used for long-term cycle
imposed on shorter cycles (‘superimposed cycle’).”

The Sumatra and Tohoku records have interesting similarities and
differences. In both, supercycles reflect infrequent events that have slip
much greater than typical events. However, the Sumatra earthquake
history has long gaps separating clusters, whereas for Tohoku smaller
earthquakes occur frequently between the largest events, so the su-
percycles in the strain record do not appear in the earthquake history as
gaps and clusters. It is worth noting that a Sumatra-type record could
result if the detection limit in a paleoseismic record is too high to record
the smaller events, or a Tohoku-type record could result if the recent
rate of smaller events could not be extrapolated into the past.

In other areas, supercycles have been inferred from the earthquake
history, even though the strain history requires data on the slip in in-
dividual events. Agnon's (2014) analysis of a long record of seismites,
sediment records of earthquake shaking (Marco et al., 1996), along the
Dead Sea Transform in Israel (Fig. 2e) finds “a pattern of long quiescence
periods between quasi-periodic clusters. During each cluster of seismicity the
recurrence interval is quite uniform, varying among clusters between 200
and 1,400 years. Quiescence periods may linger 3–10,000 years.” Further
north on this transform, Wechsler et al. (2014) find that “the interevent
time of surface-rupturing earthquakes varies by a factor of two to four
during the past 2 ka at our site, and the fault's behavior is not time pre-
dictable.”

Supercycles and/or clustering have also been identified in plate
boundary zones, where diffuse deformation is spread over multiple
faults with long-term slip rates typically slower than on the primary
plate boundary faults, and in continental interiors, which typically
deform at< 1 mm/yr. As noted earlier, paleoseismic data from faults
and groups of faults in the Western U.S.'s Great Basin (Wallace, 1987),
part of the broad boundary zone that accommodates motion between
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the Pacific and North American plates, often show “clustered strain re-
lease and uniform, low strain accumulation” (Friedrich et al., 2003),
shown schematically in Fig. 2f.

Topographic data within the Australian plate, where erosion is very
slow, provide some of the best evidence available of how continental
intraplate faults slip over time, shown schematically in Fig. 2g. Clark
et al. (2012) found that “a common characteristic of morphogenic earth-
quake occurrence in Australia appears to be temporal clustering. Periods of
earthquake activity comprising a finite number of large events are separated
by much longer periods of seismic quiescence, at the scale of a single fault
and of proximal faults. In several instances there is evidence for deformation
at scales of several hundred kilometers switching on and off over the last
several million years.” As result, “assigning an ‘active/inactive’ label to a
fault in a slowly deforming area based upon the occurrence (or non-occur-
rence) of an event in the last few thousands to tens of thousands of years is
not a useful indicator of future seismic potential” (Clark et al., 2011) and
“it is debatable whether a ‘recurrence interval’ on individual faults applies”
(Clark and McCue, 2003).

These examples illustrate that long-term variability in earthquake
behavior is a common effect, although the specifics vary between dif-
ferent areas. Hence in this paper, we take the view that observations of
clustering likely reflect supercycles.

3. Earthquake recurrence models

The most easily studied aspect of supercycles is that they often - but
need not always - cause variability in earthquake recurrence interval
times, notably temporal clusters (Fig. 2), which have important con-
sequences for hazard estimation. As a result, many studies focus on
possible clusters in a fault's earthquake history and their implications
for the recurrence of future large earthquakes.

Neither of the commonly used classes of models for the recurrence
of large earthquakes (Stein and Wysession, 2009) includes the possible
effect of supercycles. The models are posed in terms of the conditional
probability of an earthquake in a time period, based on a conceptual
model of earthquake recurrence. The parameters for an area are

Fig. 2. Examples of reported supercycles. a) Strain accumulation and release inferred from paleoseismic data across the San Andreas fault (Weldon et al., 2004). b)
Supercycles on the Sumatra megathrust inferred from corals (Sieh et al., 2008). c) Long-term energy cycling inferred from turbidites on the Cascadia megathrust
(Goldfinger et al., 2013). d) Schematic earthquake history for the Japan Trench off Tohoku (Satake, 2015). e) Earthquake history on the Dead Sea transform (Agnon,
2014). f) Schematic earthquake history for faults and groups of faults in the Western U.S.'s Great Basin (Wallace, 1987). g) Schematic earthquake history for faults in
Australia (Clark et al., 2012).
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inferred from its history of large earthquakes and the rate of recent
smaller earthquakes. The models do not predict actual event timing,
due to their stochastic nature.

One model treats earthquake occurrence as a Poisson process, in
which the probability of a large earthquake is constant with time
(Fig. 3a). This probability depends on the mean recurrence interval μ,
such that the probability of at least one event in a time interval t that is
short compared to μ is t/μ. In this model the occurrence of a large
earthquake does not reduce the probability of another. Hence the fault
has no “memory,” the dates of previous earthquakes have no effect on
when the next will occur, and any clusters resulting from short intervals
between events arise purely by chance. As the earthquake record's
length increases, the standard deviation of the recurrence intervals
approaches the mean. Equality of the mean and standard deviation of
inter-event times is a property of a Poisson process, but - as shown later

in the paper - other stochastic processes can also have this property.
Because the Poisson model is the simplest recurrence model, it is tra-
ditionally used in earthquake hazard modeling and provides a null
hypothesis against which other models can be tested (Rundle and
Jackson, 1977; Smalley et al., 1987; Kagan and Jackson, 1991; Michael,
1997; Biasi et al., 2002).

An alternative class of probability models is based on the concept of
an earthquake cycle (Fig. 1), in which strain accumulates between large
earthquakes and is completely released when one occurs (Reid, 1910;
Savage and Burford, 1973; Sykes and Nishenko, 1984; Matthews et al.,
2002; Field et al., 2015). In these models, the probability of a large
earthquake increases with time until one occurs, at which point the
probability drops to zero and the cycle begins again (Fig. 3b). This
assumption corresponds to the fault releasing all the strain accumulated
on it in each cycle, so strain does not accumulate on timescales longer
than individual cycles.

The length of time between earthquakes is described by one of a
number of probability distributions (Gaussian, lognormal, Weibull,
Brownian passage, etc.) for the recurrence times (Nishenko and Buland,
1987; Matthews et al., 2002). The fault “remembers” only the last
event, when the probability was renewed - reset to zero - so recurrence
times in successive cycles are independent. Because the probability of a
large earthquake depends only on the time since the past one, the fault
has only “short-term memory.” Renewal models are increasingly used
in earthquake hazard analysis (WGCEP, 2003). The probability dis-
tributions describing the recurrence intervals are peaked around the
average expected interval, so much longer or shorter intervals are rare,
and earthquakes should occur quasi-periodically rather than in clusters.
Thus as an earthquake record length increases, the standard deviation
of the observed recurrence times should become small relative to their
mean.

Clusters in an earthquake record could have various causes, each of
which is likely to apply in some cases. First, they could be apparent
clusters, artifacts of the limits of the paleoseismic record such as
missing events or errors in earthquake dating (Weldon et al., 2005;
Akciz et al., 2010). Second, if recurrence is described by Poisson or
earthquake cycle models, clusters could result by chance when short
recurrence intervals arise. Third, clusters could result from interactions
between nearby faults or fault segments (Ward, 1992; Goes, 1996;
Rundle et al., 2006; Dolan et al., 2016).

However, the fact that strain accumulation and/or clusters are ob-
served on many fault systems has led to proposals that they are, at least
in part, a real effect due to intrinsic properties of the faulting process
(Ben-Zion et al., 1999). Hence in this paper, we take the view that
observations of clustering likely reflect supercycles. We thus explore the
possibility that faults have “long-term memory,” such that the occur-
rence of large earthquakes depends on the earthquake history over
multiple previous earthquake cycles (Fig. 3c).

Faults having long-term memory would have important con-
sequences. Weldon et al. (2004) point out that “resetting of the clock
during each earthquake not only is conceptually important but also forms the
practical basis for all earthquake forecasting because earthquake recurrence
is statistically modeled as a renewal process (Cornell and Winterstein,
1988). In a renewal process, intervals between earthquakes must be un-
related so their variability can be expressed by (and conditional probabilities
calculated from) independent random variables. Thus, if the next earthquake
depends upon the strain history prior to that earthquake cycle, both our
understanding of Earth and our forecasts of earthquake hazard must be
modified… there can be little doubt that the simple renewal model of an
elastic rebound driven seismic cycle will need to be expanded to accom-
modate variations that span multiple seismic cycles.”

Fig. 3. Comparison of earthquake recurrence models. a) Poisson process, in
which the probability of a large earthquake is constant with time, so the fault
has no memory and any clusters resulting from short intervals between events
arise purely by chance. b) Earthquake cycle, in which the probability of a large
earthquake increases with time until one occurs, at which point the probability
drops to zero. The fault has only “short-term memory” because the probability
of a large earthquake depends only on the time since the past one. c) Modified
earthquake cycle in which after an earthquake the probability decreases, but
not necessarily to zero. The fault has “long-term memory” because the prob-
ability depends on the earthquake history over previous cycles.
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4. Characterizing earthquake sequences

4.1. Aperiodicity

In discussing Long-Term Fault Memory, it is useful to consider how
earthquake sequences are characterized. A common characterization
uses the aperiodicity, which measures the extent that a sequence differs
from perfectly periodic. Aperiodicity, also termed the coefficient of
variation (CV), is defined by α = σ/μ where μ is the mean of the re-
currence intervals (interevent times) and σ is their standard deviation
(Vere-Jones, 1970; Kagan and Jackson, 1991; Goes, 1996). An aper-
iodicity of zero corresponds to a perfectly periodic sequence, because
σ = 0. An aperiodicity of one could correspond to a sequence produced
by an ideal Poisson process with σ = μ but could also arise from other
stochastic processes. α > 1 corresponds to a “bursty” sequence that is
so strongly clustered that σ > μ. Because the entire range between
perfectly periodic and perfectly Poissonian is termed “quasiperiodic,”
we divide it into the portion with α < 0.5 termed “strongly periodic”
or “weakly aperiodic” - closer to purely periodic than purely Poissonian
- and that with 1 > α > 0.5 termed “weakly periodic” or “strongly
aperiodic” - closer to purely Poissonian than purely periodic (Fig. 4).
Although sequences with α > 1 are often termed “clustered,” we use
the term “bursty” because sequences with α < 1 can be quite clustered,
as discussed shortly.

A related characterization uses the burstiness parameter

= − + = − +B α α σ μ σ μ( 1)/( 1) ( )/( )

(Goh and Barabasi, 2008). An ideal periodic sequence has B = −1,
a perfectly Poisson sequence has B = 0, and bursty sequences have
0 < B < 1. Goh and Barabasi (2008) also characterize sequences by a
memory parameter.

∑= − −
=

−
+M μ τ μ σ σ(τ )( )/

i

N
i i1

1
1 1 2 1 2

where N is the number of recurrence intervals τi, μ1 and σ1 are the mean
and standard deviations of τi (i = 1, 2, …, N-1), and μ2 and σ2 are the
mean and standard deviations of τi+1 (i = 1, 2, …, N-1). M ranges from
−1 to 1, with M > 0 when short interevent times are generally fol-
lowed by short ones, and long interevent times are generally followed
by long ones. M < 0 when short interevent times are generally fol-
lowed by long ones, and vice versa. These arise because M is a nor-
malized form of the autocorrelation of lag one, i.e. the cross-correlation
between the series of interevent times and that series shifted by one.

Fig. 4 shows the aperiodicities for the earthquake sequences in
Fig. 2. The Wrightwood and Cascadia (Fig. 2a and c) sequences have
α = 0.47 and 0.51, so the time series alone do not indicate the su-
percycle behavior shown by the strain records. In contrast, the Sumatra
and Dead Sea transform (Fig. 2b and e) sequences have α = 1.05 and
1.6, indicating the supercycle behavior. The Great Basin and Australia
sequences (Fig. 2f and g) were described schematically without specific
dates, so the aperiodicity illustrated is also schematic. Also shown is the
global result from Goes (1996), who compiled 52 earthquake sequences
from the San Andreas fault and the Middle America, Alaska, Chile, and
Japan trenches. She found aperiodicities varying from 0.0 to 1.7, with
“a large average aperiodicity” of 0.72 ± 0.36 that she interpreted as
showing that earthquake recurrence is more irregular “than often as-
sumed in hazard analysis.”

These examples illustrate some of the issues in using aperiodicity to
characterize sequences:

i) Sequences with the same aperiodicity can be quite different. Because the
aperiodicity depends only on the mean and standard deviation of
the interevent times, it does not depend on the order of events. Thus
quite different sequences can have the same aperiodicity (Cowie
et al., 2012). Fig. 5a shows a sequence of paleoearthquakes com-
posed of clusters of events several decades apart, separated by gaps
of two to three centuries. The sequence has α = 0.79, showing

Fig. 4. Illustration of characterizing earthquake se-
quences by their aperiodicity, which measures the extent
that a sequence differs from perfectly periodic. α = 1 is
expected for an ideal Poisson process, but can arise from
other stochastic processes. Values are shown for ex-
amples in Fig. 2. Solid bars show sequences with dates
and dashed bars show schematic sequences with ap-
proximate aperiodicites. Also shown is the result from
Goes' (1996) global compilation.

Fig. 5. Comparison of two sequences with the same aperiodicity. a) Sequence with strong aperiodicity (α = 0.79) showing clustering. b) Same sequence with the
short-interval events grouped together, which does not show clustering.
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strong aperiodicity. Grouping the short-interval events together
(Fig. 5b) does not change α, but we would probably view the se-
quence as showing a change from longer recurrence times in the
past to more recent short recurrence times. The memory parameter
illustrates the difference, in that the more clustered sequence has a
negative value, M = −0.28, whereas the grouped sequence has
M = 0.70. This difference between the two sequences can also be
seen in the interevent time plots shown to the right of each se-
quence. In these, major gaps appear as interevent times longer than
the mean, which is shown by a horizontal line. In the first sequence,
short and long intervals generally alternate, giving clusters and
negative values of M. In the second sequence, short and long in-
tervals are grouped, giving a positive memory.

ii) Sequences with “quasiperiodic” aperiodicity can be quite clustered.
Earthquake sequences that we would consider clustered can fall
below the nominal burstiness criterion of α > 1. Fig. 6b shows that
lengthening the three major gaps in Fig. 6a by 100 years increases
the aperiodicity from 0.79 to 0.92, making the clustering stronger
and the weak periodicity even weaker. Lengthening the gaps by
300 years (Fig. 6c) increases the aperiodicity to 1.08. In all three
panels we assume that observations begin at the oldest observed
event (at the right side of the time axis showing years before pre-
sent), so no gap is observed prior to the oldest event. This example
illustrates that a sequence must be very strongly clustered to be
bursty.

iii) Sequences with aperiodicity close to 1 need not result from a Poisson
process. Earthquake records with aperiodicity close to 1 could re-
semble those that would be generated by a Poisson process.
However, other stochastic processes, including the Long-Term Fault
Memory process discussed later in this paper, can also generate
earthquake records with interevent times whose mean and standard
deviation are similar. Hence given the evidence in some areas of an
underlying process involving strain supercycles, we think it useful
to consider such sequences as clustered in many senses. In parti-
cular, considering clustering in such cases means that estimates of
the probability that the next earthquake will occur within a given
time window will depend crucially on whether the cluster is treated
as ongoing or over.

iv) Aperiodicity can vary within an earthquake record. In particular, it is
likely to be underestimated by short records. Because a short record
is likely to contain events with recurrence times shorter than the

mean of a longer record, shorter sequences underestimate aper-
iodicity (Ellsworth et al., 1999; Mucciarelli, 2007). This effect is
seen in both synthetic catalogs (Ward, 1992) and earthquake re-
cords (Goes, 1996). Parsons (2008a) used Monte Carlo simulations
to estimate the parameters of a parent distribution of recurrence
times most likely to yield an observed time series. For example, an
observed 1800-year-long earthquake record on the South Hayward
fault with mean recurrence of 180 years and aperiodicity 0.48 is
most likely to have arisen from a parent distribution with mean
recurrence of 210 years and aperiodicity 0.6 (Parsons, 2008b).

4.2. Cluster analysis

Another way to characterize earthquake sequences is through
clustering. The statistical literature provides several criteria for defining
a cluster and assessing how many exist in a sequence. Categorizing
clusters could facilitate definition of a supercycle, for example one
cluster plus one gap. Hence we briefly review different clustering
methods which either assign events to a cluster or choose the number of
clusters. Clustering algorithms are broadly classified as either parti-
tioning or hierarchical. To illustrate, we use Sieh et al.'s (1989) record
from Pallett Creek, California (Fig. 7a).

Partitioning methods such as the popular k-means algorithm are
used to divide a sequence of observations, forming a given number of
clusters, k, with each observation assigned to one cluster. Other
methods, discussed later, are used to determine the number of clusters
for a given sequence. In our application, the observations in a sequence
are the dates, in years, of n earthquakes in an earthquake record and the
clusters are defined as time intervals encompassing the range of dates.
In the Pallett Creek record, n = 10. A k-means algorithm starts by
guessing k cluster centers, which are averages of dates. The process then
alternates two steps: 1) The closest cluster center is identified for each
observation, measured by time in years between earthquakes and
cluster centers, and the observation is assigned to that cluster. 2) Each
cluster center is recalculated as the average date of its members (Hastie
et al., 2009). This process repeats until it minimizes the sum or total
within-cluster sum of squares (TWSS) of distances from cluster centers,
i.e., it minimizes the sum of within-cluster variances of clusters i = 1,
…, k multiplied by the number of observations in that cluster, ni
(Hartigan, 2006). Commonly, this analysis is performed for a range of k
and different aspects of the resulting cluster assignments are assessed to

Fig. 6. Illustration of the fact that “quasiperiodic”
(α < 1) sequences can be quite clustered. a) Initial se-
quence with α = 0.79. b) Same sequence with major
gaps lengthened by 100 years, raising aperiodicity to
α = 0.92. c) Same sequence with major gaps lengthened
by 300 years, raising aperiodicity further to α = 1.08.
Only c) has aperiodicity above the nominal burstiness
criterion of α > 1.
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determine the number of clusters. The choice of k will strike a balance
between too many clusters and not enough. Methods for choosing k do
not always agree, as discussed next.

Some methods, such as the Elbow method, examine the graph of
TWSS versus k (Fig. 7b) and choose the value of k corresponding to a
kink in the plot resembling a bent elbow (Tibshirani et al., 2001). In-
creasing k beyond this value produces a lesser reduction in TWSS. By
this method, Pallett Creek has 4 clusters. The Silhouette method com-
pares the tightness (length of clusters) and separation (distance be-
tween clusters) to determine whether the cluster lengths are small
compared to the distances between-clusters (Rousseeuw, 1987). Each
observation receives a silhouette value, ranging from −1 to +1, in-
dicating the extent to which the observation is well matched to its as-
signed cluster and poorly matched to the others. The number of clusters
k is chosen to maximize the average values for all observations; again
k = 4 for Pallett Creek (Fig. 7c). The Gap method plots two curves that
are functions of k, the logarithm of TWSS and its expected value under a
uniform distribution of earthquake dates within the record (Tibshirani
et al., 2001). The Gap statistic is the distance (gap) between the curves.
The chosen value for k has the maximum Gap statistic, which again is
k = 4 (Fig. 7d).

Hierarchical methods do not rely on advance specification of the
number of clusters, k, but rather create clusters for all k = 1, …, n
possibilities. This process is illustrated by dendrogram plots (tree dia-
grams), showing the order in which different clusters are merged
through connecting branches (Fig. 7e). The vertical axis shows the
cumulative difference in dates (in years) between cluster centers being
merged. Hierarchical methods are of two kinds: 1) Divisive, in which all
observations start in a single cluster, k = 1, and are iteratively sepa-
rated until k = n. 2) Agglomerative nesting (termed AGNES), in which
all observations start in their own cluster (k = n), with the closest
clusters (defined here by years between cluster centers) iteratively
joined until k = 1 (Kaufman and Rousseeuw, 1990). AGNES may be
better at identifying small clusters, while divisive methods may be
better at identifying large clusters, although this choice makes no dif-
ference for our example. A popular AGNES algorithm, Ward's (1963)
method, minimizes the within-cluster sum of squares using an update
formula which assigns a new cluster's height on the vertical axis as the
cumulative distance between the cluster centers being merged at that
step and each step below it (Murtagh and Legendre, 2014). We show
Ward's method because it is intended for interval-scaled data such as
the dates of earthquakes (Kaufman and Rousseeuw, 1990). Fig. 7e

shows the tree resulting from applying Ward's method to Pallett Creek.
Clusters that merge at high levels on the vertical axis (indicating large
distances between cluster centers being merged at that step) relative to
the level of the clusters within them can be interpreted as a ‘natural’
number of clusters (Hastie et al., 2009). This determination is sub-
jective, so in this example one could reasonably choose 2 or 4 clusters
(Fig. 7e). The four clusters {1,2,3},{4,5,6},{7,8},{9,10} are the same as
obtained from k-means with k = 4.

Goldfinger et al.'s (2012) hierarchical clustering analysis on the
10,000-year-long Cascadia earthquake record found either four or five
clusters, using AGNES with complete linkage (furthest neighbor)
method. Furthest neighbor defines the distance between two clusters as
the distance between two observations, one in each cluster, that are
farthest away from one another (Tibshirani et al., 2001). The two
clusters with the shortest distance between them are merged at each
step. Applying the complete linkage method to the Pallett Creek record
yields the same tree as shown in Fig. 7e using Ward's method. Gold-
finger performed several tests of the statistical significance of the
clusters with most resulting in a rejection of an underlying Poisson
distribution. He cautions, however, “there is no requirement that physical
systems pass statistical tests.”

Hierarchical methods are complementary to partitioning methods
such as k-means. For example, one can use the cluster centers from
Ward's method as the initial cluster centers in k -means. As discussed
above, results from k-means for chosen k can be compared to the results
of AGNES. Our results are moderately robust to slight changes in dates,
as illustrated by comparing the slightly differing dates of Pallett Creek
paleoearthquakes from Sieh et al. (1989), Biasi et al. (2002), and
Scharer et al. (2011). The tree diagrams are the same, because they
primarily reflect the events' order. Differences in the k-means evalua-
tions are shown in Table 1. The Gap statistic for Scharer et al.'s dates
yields 1 cluster, and the next best number is 4, with the difference
between their statistics being quite small compared to the differences

Fig. 7. Results of different methods to determine the
number of clusters in a) Pallett Creek record of Sieh et al.,
1989, with event order corresponding to the figure in
part e). b) Elbow method where number of clusters is the
largest k before increasing k creates only minor im-
provements of TWSS. c) Silhouette method where max-
imum value indicates number of clusters. d) Gap statistic
method where maximum value indicates number of
clusters. e) Hierarchical clustering method using ag-
glomerative nesting (AGNES) with Ward's method; ver-
tical axis shows the cumulative length of time between
cluster centers being merged at each step.

Table 1
Differences in the number of clusters indicated by three methods for records of
earthquakes at Pallett Creek with slightly differing dates.

Record Gap statistic Elbow Silhouette

Sieh et al. (1989) 4 4 4
Biasi et al. (2002) 2 4 2
Scharer et al. (2011) 1 4 4
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between other numbers of clusters. A similar situation occurs in the
silhouette for the Sieh et al. dates (Fig. 7c) where one could argue for 2,
3, or 4 clusters because of the similar values. The Elbow method is the
most stable between these different records and the Gap statistic is the
least.

5. Long-Term Fault Memory model

To explore how earthquake supercycles and clusters arise, we use a
simple Long-Term Fault Memory (LTFM) model, which is a modified
version of the standard earthquake cycle model. In it, the probability of
an earthquake reflects the accumulated strain. This increases steadily
with time until an earthquake happens, after which it decreases, but not
necessarily to zero (Fig. 8). Hence, the probability of an earthquake
depends on the earthquake history over multiple prior cycles. Clusters
happen because after a gap, a period of quiescence, the probability can
remain higher than the long-term average for several cycles. The model
simulates large earthquakes releasing only part of the strain accumu-
lated on the fault, in contrast to the standard model in which all of the
accumulated strain is released. Such partial strain release appears in the
supercycles shown in Fig. 2 and elsewhere (e.g., Dixon et al., 2014).

LTFM is a simple model with only a few parameters. The annual
probability P(t) grows with time at rate dP/dt = A = 2/τ2, simulating
steady strain accumulation. τ is an initial mean recurrence interval,
such that if no earthquake occurs during the initial time interval t = τ,
the average annual probability is 1/τ. If the probability is above a
threshold value δ, which we typically set as zero, an earthquake can
occur. When an earthquake occurs, the probability drops by ΔP = − R,
simulating a partial strain release. Hence on average R/A years of ac-
cumulated strain is released in an earthquake.

The accumulation parameter A controls the long-term seismicity
rate, and the release parameter R controls the clustering. Small R yields
long-term memory and more clusters, whereas in the limit large R gives
the standard earthquake cycle model with only short-term memory
because it forces the probability to zero after each earthquake. The
probability is not allowed to go below 0 or to exceed 1.

We generate earthquake histories by using the Mersenne Twister
pseudo-random number generator (Matsumoto and Nishimura, 1998),
sampling from a uniform distribution between 0 and 1. If the value
exceeds the probability for that year, no earthquake occurs and the

probability increases by A for the next year. If the value is less than that
year's probability, an earthquake occurs and the probability drops by R
for the following year. Linearly increasing probabilities have been used
by other authors, e.g., Pinedo and Shpilberg (1981).

The saw-tooth behavior of LTFM simulates the proposed long-term
variations in stored elastic strain or strain energy (Fig. 2). Supercycles
and clusters arise because longer intervals between earthquakes gen-
erally begin at times of low probability, consistent with the pattern
noted in terms of cumulative strain by Weldon et al. (2004). A lower
probability corresponds to the fault having less memory of previous
earthquakes. Thus, as the probability (i.e. cumulative strain) ap-
proaches zero, the corresponding supercycle can be viewed as ap-
proaching a renewal process.

Because LTFM is a stochastic model, the resulting earthquake se-
quences depend on both the model parameters and chance. As a result
(Fig. 9) sequences can appear strongly periodic, weakly periodic,
Poissonian, or bursty. The four sequences in this example have the same
probability (i.e. strain) accumulation rate (A = 2/1252) but different
release parameters (R/A = 200, 175, 80, 50). As shown, the aper-
iodicity increases as R/A decreases. The strongly periodic sequence
arises in a way similar to a standard earthquake cycle model because R
is so large that the probability drops to zero after each earthquake, so
the fault has no memory. The effects of fault memory increase for
successively smaller values of R, making the sequences less periodic.
However, A and R control only the overall sequence properties via the
probability of earthquake occurrence, because when earthquakes occur
is random. As a result, the aperiodicity varies between different por-
tions of the sequence.

In some cases, we use two thresholds, δ2 > δ1, and corresponding
probability drops, R2 > R1, to describe the earthquakes with larger
and smaller strain changes implied by some records (Fig. 2). Hence if P
(t) > δi, the probability drops by Ri. Using two probability thresholds
and probability drops to describe both rare larger and more frequent
smaller strain changes allows LTFM to simulate the range of observed
supercycle behavior (Fig. 10). The higher threshold and probability
drop simulate infrequent events that have slip and strain release much
greater than typical events, and so end a supercycle. Using two similar
thresholds simulates a Sumatra-style earthquake history with long gaps
separating clusters, because earthquakes can occur only late in a su-
percycle. This case would correspond to a very strong fault. Conversely,

2

Fig. 8. Long-Term Fault Memory model. (Top) Simulated earthquake history. (Bottom) Earthquake probability versus time.
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a low threshold for smaller earthquakes and a much higher one for
larger earthquakes simulate a Tohoku-style record where smaller
earthquakes occur frequently between the largest events, so the su-
percycles in the strain record do not appear in the earthquake history as
gaps and clusters. The threshold and drop parameters can be chosen to
simulate the very long gaps associated with intraplate and plate
boundary zone earthquakes. In such situations, because strain accu-
mulates slowly relative to plate boundaries, the lower threshold is quite
low. Hence this threshold can be used in most applications with higher
strain rates (e.g., Fig. 10b), since it would have essentially the same
effect as a zero threshold (e.g., Fig. 9).

5.1. Example

To explore choosing LTFM parameters to match key aspects of an
earthquake history, we simulated the record from Pallett Creek,
California. Although recent studies have reestimated the dates (Biasi
et al., 2002; Scharer et al., 2011), we used Sieh et al.'s (1989) dates
because the resulting clusters provide a better test case. We ran the
model 100 times for pairs of input parameters, R and τ, and averaged
the mean and standard deviation of recurrence intervals for each pair.
Contouring these averages identified regions of the model space, and
hence ranges of the input parameters, that produce simulations with
comparable mean and standard deviation to those observed in the pa-
leoseismic record. We then searched these regions for parameters giving
a memory parameter close to that observed.

A simulation with accumulation rate A = 2/2892 and release
parameter R = 130A that gives clustering behavior similar to that
observed is shown in Fig. 11. The data have μ = 132 yr, σ = 105 yr,
α = 0.79 and M = −0.28, and the simulation has μ = 136 yr,
σ= 102 yr, α= 0.75 andM=−0.33, indicating weak periodicity. The
event timing differs between the simulation and the observed record
due to the model's stochastic nature. The longer intervals between
earthquakes begin at times of low probability, consistent with the

pattern noted in terms of cumulative strain by Weldon et al. (2004).
We used the LTFM model to explore the long-term variability of

fault behavior by creating simulations much longer than paleoseismic
records, and then sampling them for intervals corresponding to paleo-
seismic records. Fig. 12 shows results for a 50,000 year long simulation
using parameters appropriate for Pallet Creek. The mean and standard
deviation of recurrence times averaged over a moving 1345-year
window, corresponding to a paleoseismic record, are relatively stable
over long time periods. This stability would be consistent with the idea
of steady loading and unloading by plate motion and large earthquakes.
However the mean and standard deviation of recurrence times vary
somewhat. The aperiodicity shows that the simulated paleoseismic re-
cord sometimes appears strongly periodic (standard deviation small
relative to the mean) implying a seismic cycle model, while at other
times it looks weakly periodic, Poissonian (standard deviation similar to
the mean), or bursty. This variability is illustrated by the earthquake
history between model years 19,000 and 22,000. Hence the recurrence
variability due to Long-Term Fault Memory can give rise to paleo-
seismic records that at different times appear to have different under-
lying statistical distributions. Thus a given paleoseismic or instrumental
window may give a biased view of the long-term seismicity.

5.2. LTFM and intraplate earthquakes

Long-Term Fault Memory may also be an important contributor to
the space-time variability of continental intraplate earthquakes.
Considerable recent attention (reviewed by Liu and Stein, 2016, Calais
et al., 2016, and Stein et al., 2017a) has been directed to how and why
earthquakes within continents behave differently in space and time
from those on plate boundaries. Faults at plate boundaries are loaded at
constant rates by relatively rapid and steady relative plate motion.
Consequently, earthquakes concentrate along the plate boundary faults
and show quasi-periodic (relative to intraplate earthquakes) occur-
rences, although the actual temporal patterns are often complicated.

Fig. 9. Sequences produced by the LTFM model can appear a) strongly periodic, b) weakly periodic, c) Poissonian, or d) bursty, depending on the model parameters.
The four sequences shown have the same probability accumulation rate but different release parameters, so the aperiodicity increases as R/A decreases.
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The spatial gaps that appear are filled in over time.
However, in mid-continents, the slower tectonic loading is shared

by a complex system of interacting faults spread over a large region,
such that a large earthquake on one fault could increase the loading
rates on other faults in the system. Because the low tectonic loading rate
is shared by many faults, individual faults may remain dormant for a
long time before they accumulate enough strain for a short period of
activity. The resulting earthquakes are therefore episodic, clustered,
and spatially migrating (Li et al., 2009; Stein et al., 2009). These effects
can be seen in many areas, including North China (Liu et al., 2011),
Europe (Camelbeeck et al., 2007, 2014), and the central United States
(Crone and Luza, 1990; Newman et al., 1999; Holbrook et al., 2006;
Tuttle et al., 2006; Gold et al., 2018).

Topographic data from Australia, where erosion is very slow, pro-
vide some of the best evidence available of how intraplate faults slip
over time. Fig. 2f illustrates this pattern of clusters of activity separated
by much longer and irregular intervals of quiescence. Liu and Stein

(2016) note that the pattern of displacement accumulated over time is
similar to the Devil's Staircase function, a fractal property of chaotic
dynamic systems (Devaney et al., 1989; Turcotte, 1997). The apparent
long-distance roaming of large mid-continental earthquakes also sug-
gests dynamic system behavior. In such a system, change of any part of
the system (such as rupture of a fault) could impact nonlinearly the
behavior of the whole system.

Although this view of intraplate seismicity fits what is known in
general terms, the specifics are still unclear. In particular, how effec-
tively stress can be transferred to distant faults is unknown. We thus
used the LTFM model to explore the possibility that Long-Term Fault
Memory may also contribute to the space-time variability.

A noticeable difference between the clustering in Australia and that
on plate boundaries is that in Australia the gap durations are more than
ten times as long as the clusters, whereas on plate boundaries the gaps
are only 2–3 times as long as the clusters. As shown in Fig. 9, LTFM can
describe this effect via assuming the level of strain accumulation

Fig. 10. Using two probability thresholds (dashed lines) and probability drops to describe rare larger events and more frequent smaller events allows LTFM to
simulate a wide range of observed supercycle behavior.
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required for an earthquake. A proposed alternative is that clusters of
large intraplate earthquakes reflect the fault weakening after the first
major event, so as to permit repeated failure (Li et al., 2009). Models
have been proposed for how weakening and subsequent healing might
occur (Sibson, 1992; Lyakhovsky et al., 2001). In Lyakhovsky et al.'s
model, as the rate ratio between loading and healing increases, beha-
vior changes from regular to clustered. This is because healing tends to
purge long-term memory. These models were developed with a view
toward describing the evolution of fault properties over multiple
earthquake cycles, i.e. a different type of Long-Term Fault Memory.

5.3. LTFM model discussion

Our results illustrate that a modified version of the standard
earthquake cycle model can be used to simulate and explore key fea-
tures of supercycles that are observed at many plate boundaries and in
plate interiors. This is gratifying, given the model's simplicity. LTFM
can be thought of as an idealized model like those used in many dis-
ciplines, including physics, astronomy, meteorology, biology, and eco-
nomics, that allow investigations to focus on some key characteristics of
a complex phenomenon and explore whether they can be explained by
simple assumptions. Reutlinger et al. (2018) explain that “we call such
models ‘toy models’—a term that is not meant to have belittling or deroga-
tory connotations… First, models of this type are strongly idealized…
Second, such models are extremely simple in that they represent a small
number of causal factors (or, more generally, of explanatory factors) re-
sponsible for the target phenomenon. Third, these models refer to a target
phenomenon.” A good example would be the simple analytical model of
subduction zones that extracts key aspects of sophisticated numerical
models and thus can be used to show that the temperature structure and
resulting plate driving force depend on the age of the subducting plate
and convergence rate (Stein and Wysession, 2009).

In this spirit, LTFM is a simple model that simulates general prop-
erties of supercycles. We plan to explore its possible applicability to
paleoseismic records in other areas and in different tectonic regimes.
For example, clusters have been observed in paleoseismic data in plate
boundary zones, where diffuse deformation is spread over multiple
faults and long-term slip rates are slower than on primary plate

boundary faults (which typically move at> 10 mm/yr) but higher than
in continental interiors (which typically deform at< 1 mm/yr)
(Wallace, 1987; Rockwell et al., 2000; Friedrich et al., 2003; Oskin
et al., 2008; Dolan et al., 2016; Gold et al., 2017). Some clusters seem to
arise on individual faults, whereas others involve groups of faults. The
Wasatch fault and adjacent faults show a strain release and slip pattern
similar to that in Australia (Fig. 2e) (Wallace, 1987; Friedrich et al.,
2003). In the Eastern California shear zone, regional strain release ap-
pears to occur via “distinct periods or bursts of seismic activity punctuated
by periods of relative quiescence. Individual faults, however, appear to be-
have in a quasiperiodic fashion, with the clustering produced by the in-phase
earthquake generation of the system of faults” (Rockwell et al., 2000).
Hence LTFM may be involved in plate boundary zone faults, but fault
interactions and changes in loading across the zone may also con-
tribute.

Additional features could be added to the model without over-
complicating it. Its current form allows for two classes of earthquakes
causing different probability decreases, or strain releases. In some
cases, only one may be needed, as motivated by observations that slip in
large events on individual fault segments appears similar (Schwartz and
Coppersmith, 1984) and Weldon et al.'s (2004) observation that on the
area of the San Andreas they studied “there appears to be no relationship
between strain level and the size of earthquakes.” However, Goldfinger
et al. (2013) note a “weak tendency” for clusters to terminate with an
“outsized” event, as found for the Tohoku and Sumatra records (Fig. 2).
Moreover, some of the strain release may occur via slow slip events
(Rogers and Dragert, 2003; Dixon et al., 2014; Jiang et al., 2017) that
may not appear in the paleoseismic record. Dixon et al. (2014) show
that for the 2012 MW 7.6 earthquake on the Costa Rica subduction plate
boundary, where pre-event slow slip accounted for most strain release,
at least 2 m of slip remained stored following a full earthquake cycle.

Fault interactions could be introduced into the model by having
multiple faults that affect the probability of large earthquakes on each
other. In some situations these may increase clustering, and in others
they may reduce it. This effect is likely to contribute to the variability in
earthquake size often observed at subduction zones (Thatcher, 1990;
Stein and Okal, 2007). One example is the trench segment that pro-
duced theMw~9.6 1960 Chilean earthquake. Its rupture mode must be

Fig. 11. LTFM simulation for Pallett Creek, California. Top: Paleoseismic record (Sieh et al., 1989). Center and bottom: Simulation giving clustering similar to that
observed. The event timing differs between the simulation and the observed record due to the model's stochastic nature.

L. Salditch, et al. Tectonophysics 774 (2020) 228289

12



variable because the seismic-slip rate inferred assuming that the 1960
earthquake is this segment's characteristic earthquake exceeds the
convergence rate. Hence Stein et al. (1986) proposed that either the
characteristic earthquake is smaller than the 1960 event, the average
recurrence interval is greater than observed in the past 400 years, or
both. Recent paleoseismic studies support this analysis (Cisternas et al.,
2005). Paleoseismic studies also find evidence for variable size of thrust
events, presumably due to the differences between multisegment and
single-segment rupture, in areas including the Nankai Trough (Ando,
1975) and the Kuril trench (Nanayama et al., 2003).

Viewing supercycles as a result of Long-Term Fault Memory fits into
a general framework in the literature of complex dynamic systems.
Clustered events, described as “bursts,” are observed in many disparate
systems, from the firing system of a single neuron to the outgoing
mobile phone sequence of an individual (Karsai et al., 2012). Such

systems display “…a bursty, intermittent nature, characterized by short
timeframes of intense activity followed by long times of no or reduced ac-
tivity,” (Goh and Barabasi, 2008). As a result, the system's state depends
on its history, so it has long-term memory (Beran et al., 2013).

An additional point worth noting is that we generally limit our
discussion to cases where the supercycle is shorter than the climatic
forcing cycles such as global glaciation periods.

5.4. Mathematics of the LTFM model

The LTFM model is a stochastic process, specifically a Markov chain
with a finite number of states at discrete times 0, 1, 2, … The states
correspond to possible values of accumulated strain, reflected in the
probability P(t), which are finite in number.1 The probability that an
earthquake occurs at time t, conditional on the full history of strain

Fig. 12. a) 50,000 year LTFM simulation using Pallett Creek parameters. The mean and standard deviation of recurrence times are averaged over a moving 1345-year
window, corresponding to a paleoseismic record. b, c) 3000 year section of simulation above between dashed lines in a). The aperiodicity shows that the simulated
paleoseismic record sometimes appears strongly periodic (α < 0.5), while at other times it looks weakly periodic (0.5 < α < 1), Poissonian (α ≈ 1), or bursty
(α > 1).
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Fig. 13. Illustration of earthquake probability issues for Cascadia due to a) differing paleoseismic records of Goldfinger et al., 2012 and Goldfinger et al., 2017, with
its newly discovered event. Alternating red and blue events highlight the different clusters individual events are assigned to. b) Various probability density functions
for inter-event times with parameters derived from the two chronologies in a). Orange sticks show the actual inter-event times in the corresponding records. Dashed
lines use parameters of just the most recent cluster, corresponding to the assumption that the system is still in the recent cluster. Solid lines use the parameters of the
entire record, corresponding to the assumption that the recent cluster has ended. c) Various conditional probabilities of an earthquake occurring in the next 50 years,
using the same line designations in b). The largest difference in b) and c) arises from the recent cluster assumption, not in the specific density function assumed. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1 Possible values of P(t) have the form min{(αA − βR1 − γ(λ − 1)R1)+,1}
with λ = R2/R1, (x)+ = max {x,0},and α, β, γ taking non-negative integer
values.

2 If the probability at time s is P(s) = Cs then the conditional probability of an
earthquake at time t is equal to min{(A + Ct−1) × χpos(A + Ct−1 − δ1),1},
with χpos(x) equal to 1 if x > 0 and equal to 0 otherwise.
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accumulation and release at all times prior to t, depends only on the
most recent level of strain, i.e., at time t − 1.2 Given P(t), the prob-
ability does not otherwise depend on time. Thus, the history prior to t is
fully captured by P(t-1). The process starts over each time accumulated
strain is equal to the strain at time t = 0 (or, for practical purposes, is
close to that amount). The length of time until the process starts over
can be interpreted as the length of a supercycle. The theory of Markov
chains (Çinlar, 1975) allows us to directly specify the full probability
distribution for the length of a supercycle, and hence its mean and
standard deviation. The theory also allows us to specify the conditional
probability of an earthquake at a time t > s given the accumulated
strain at current time s. The theory implies that the probability at a far
future time t does not depend on the accumulated strain at time s and
provides a formula for that probability. From this probability, the ex-
pected number of earthquakes in a distant time span of length T can be
calculated, along with the approximate standard deviation.

LTFM can also be posed in terms of the classic probability model of
drawing balls from an urn (Stein and Stein, 2013). If e balls are labeled
“E” for earthquake, and n balls are labeled “N” for no earthquake, the
probability of an earthquake is that of drawing an E-ball, which is the
ratio of the number of E-balls to the total number of balls. If after
drawing a ball, we replace it, the probability of an event is constant or
time-independent in successive draws, because one happening does not
change the probability of another happening. Thus an event is never
“overdue” because one has not happened recently, and the fact that one
happened recently does not make another less likely. LTFM corresponds
an alternative, sampling such that the fraction of E-balls and the
probability of another event change with time. We add A E-balls after a
draw when an earthquake does not occur, and remove R E-balls when
an earthquake occurs. This makes the probability of an event increase
with time until one happens, after which it decreases and then grows
again. Events are not independent, because one happening changes the
probability of another.

6. Implications for hazard assessment

Advances in understanding supercycles would be important for
seismic hazard assessment. Such assessments depend heavily on as-
sumptions about the magnitude and recurrence rate of future large
earthquakes (Stein et al., 2012), both of which are often more variable
than assumed. A larger assumed aperiodicity will cause cumulative or
conditional probabilities to decrease, all else fixed (Ward, 1992).

Current earthquake probability estimates depend on assuming a
probability density function for the recurrence intervals with input
parameters inferred from the available earthquake history. Fig. 13 il-
lustrates the resulting uncertainties for Cascadia. Fig. 13a shows the
effects of additional paleoseismic data. Goldfinger et al.'s (2012)
chronology yielded a mean recurrence interval of 530 yrs. and a stan-
dard deviation of 271 yrs. for the entire 10,000 year record, and a mean
recurrence interval of 326 yrs. and a standard deviation of 88 yrs. for
the most recent cluster. Including a newly-identified event in a revised
chronology (Goldfinger et al., 2017) has a small effect on the 10,000-
year record's parameters, changing the mean recurrence interval to
502 yrs. and a standard deviation of 239 yrs. However, adding this
event makes all events in the past 5000 years part of the same cluster,
with a recurrence interval of 452 yrs. and a standard deviation of
142 yrs.

Whether to assume that a recent cluster is continuing or has ended
can lead to quite different estimates of earthquake probabilities (Stein
et al., 2017b). Fig. 13b shows the different distribution of recurrence
intervals corresponding to the two different chronologies and various

probability density functions with parameters corresponding to the two
chronologies. By far the largest difference arises from assuming either
that the recent cluster continues, or that the cluster is over so the ap-
propriate parameters are those for the entire record. Assuming that we
are still in the cluster predicts higher probability than using the entire
record. This effect is more important than the specific probability
density function assumed. The corresponding effect appears from con-
sidering the conditional probability of a large earthquake in the next
50 years, which results from integrating the probability density func-
tions (Fig. 13c).

More generally, if faults have long-term memory, then individual
earthquake cycles, and hence the recurrence times between successive
large earthquakes, are not independent. Hence the renewal approach of
modeling their probability as a function of time since the previous large
earthquake can give misleading results. The problem is not that a re-
newal model is inappropriate, but rather that the renewal depends on
release of nearly all accumulated strain, and that may occur at different
times than large earthquakes. As shown in Fig. 12, the recurrence
variability due to Long-Term Fault Memory can cause short earthquake
records to give a biased view of the long-term seismicity. As a result,
further investigation of long-term earthquake recurrence variability is
important both for understanding the nature and causes of supercycles
and for improving hazard assessment.
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