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Abstract 15 

Long records often show large earthquakes occurring in supercycles, sequences of temporal 16 

clusters of seismicity, cumulative displacement, and cumulative strain release separated by 17 

intervals of lower levels of these measures. Supercycles and associated earthquake clusters are 18 

challenging to characterize via the traditionally used aperiodicity, which measures the extent that 19 

a sequence differs from perfectly periodic.  Supercycles are not well described by commonly 20 

used models of earthquake recurrence. In the Poisson model, the probability of a large 21 

earthquake is constant with time, so the fault has no memory. In a seismic cycle/renewal model, 22 

the probability is quasi-periodic, dropping to zero after a large earthquake, then increasing with 23 

time, so the probability of a large earthquake depends only on the time since the past one, and the 24 

fault has only “short-term memory.” We describe supercycles with a Long-Term Fault Memory 25 

(LTFM) model, where the probability of a large earthquake reflects the accumulated strain rather 26 

than elapsed time. The probability increases with accumulated strain (and time) until an 27 

earthquake happens, after which it decreases, but not necessarily to zero. Hence, the probability 28 

of an earthquake can depend on the earthquake history over multiple prior cycles. We use LTFM 29 

to simulate paleoseismic records from plate boundaries and intraplate areas. Simulations suggest 30 

that over timescales corresponding to the duration of paleoseismic records, the distribution of 31 
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earthquake recurrence times can appear strongly periodic, weakly periodic, Poissonian, or bursty. 32 

Thus, a given paleoseismic window may not capture long-term trends in seismicity. This effect is 33 

significant for earthquake hazard assessment because whether an earthquake history is assumed 34 

to contain clusters can be more important than the probability density function chosen to describe 35 

the recurrence times.  In such cases, probability estimates of the next earthquake will depend 36 

crucially on whether the cluster is treated as ongoing or over. 37 

 38 
Keywords 39 

Earthquake; Supercycle; Cluster; Aperiodicity. 40 
 41 

1. Introduction 42 

Since the 1906 San Francisco earthquake, the dominant paradigm in earthquake 43 

seismology has been the earthquake cycle, in which strain accumulates between large 44 

earthquakes due to interseismic motion between the two sides of a locked fault and is released by 45 

coseismic slip on the fault when an earthquake occurs (Reid, 1910). Over time, this process 46 

should give rise to approximately periodic earthquakes and a steady accumulation of cumulative 47 

displacement (Figure 1a). The fact that earthquake sequences are only approximately periodic 48 

prompted a refinement of the model with "time-predictable" recurrence in which a specific strain 49 

level must accumulate for an earthquake, but the strain release in the earthquake is variable 50 

(Shimazaki and Nakata, 1980).  51 

However, long earthquake records often show more complex behavior (Figure 1b). 52 

Wallace (1987) found that faults and groups of faults in the Western U.S.'s Great Basin often 53 

showed "grouping, …a series of displacement events, each being followed by a period of 54 

quiescence. Slip rates during a group of events along a segment of fault, thus, could be 55 

considerably greater than the long-term average slip rate. During quiescent periods, the slip 56 

rate would be lower than the average rate and might even be zero...  Additionally, if grouping is 57 

real, the concept that accumulated elastic strain is released at some regular interval by a single 58 

displacement event in a seismic cycle should be reexamined. Perhaps strain that has 59 

accumulated at a more or less constant rate is released in a stuttering, spasmodic manner in a 60 

group of displacement events."  Subsequent investigation (Friedrich et al., 2003) supported this 61 

analysis, finding that "seismic strain release may be clustered on the 10-kyr timescale... with 62 

comparatively low, uniform strain accumulation rates on the 100-kyr timescale." They suggested 63 
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calling the conventional earthquake cycles "Reid-type" behavior and the longer period variations 64 

"Wallace-type" behavior.  65 

 Wallace (1987) further noted that if this behavior is "common, as these preliminary 66 

analyses suggest, care must be exercised in evaluating seismic hazard potentials. It is crucial to 67 

determine the timing and distribution of individual faulting events because long-term average 68 

slip rates may give grossly incorrect assessments of the hazard potential."  For example, the 69 

estimated probability of a future large earthquake can depend crucially on whether a cluster is 70 

treated as ongoing or over. 71 

Such variations in earthquake behavior on timescales longer than individual cycles are 72 

often termed "supercycles," following Sieh et al.'s (2008) observation from corals near the 73 

Sumatra trench that  "because each of the three past episodes of emergence consists of two or 74 

more discrete events, we refer to the broad periods of strain accumulation and relief as 75 

supercycles rather than merely cycles" and Goldfinger et al.'s (2013) analysis showing that large 76 

Cascadia subduction zone earthquakes reflect "strain supercycles that transcend individual 77 

seismic cycling."  78 

Conceptually, the history of strain accumulation and release is the underlying process that 79 

gives rise to patterns in the resulting earthquakes and cumulative displacement. In the schematic 80 

example of Figure 1b, supercycles appear as patterns longer than individual earthquake cycles in 81 

the earthquake history, cumulative displacement, and cumulative strain records. The fullest 82 

picture is given by the strain record. This infers the strain by combining data about strain release 83 

via slip in earthquakes over time with the interseismic strain accumulation inferred from the slip 84 

between earthquakes taken from present-day geodetic, long-term geological, or other data.  The 85 

cumulative displacement record shows the dates of earthquakes and the coseismic slip in each, 86 

whereas the earthquake history gives only the dates. The displacement record can be viewed as 87 

the time derivative of the strain record, and the earthquake history can be viewed as the time 88 

derivative of the displacement record, with each differentiation involving a loss of information. 89 

Conversely, constructing a displacement record requires supplementing an earthquake history 90 

with coseismic slip data, and constructing the strain record then involves also including data or 91 

assumptions about the interseismic strain accumulation. Hence the earthquake history has the 92 

least uncertainty, and the displacement and strain records have progressively larger uncertainties. 93 
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Supercycles are difficult to define precisely. One approach is to use major minima in the 94 

cumulative strain, which often mark the beginning of intervals during which few large 95 

earthquakes and hence little cumulative slip occurs. However, identifying major minima is often 96 

challenging and non-unique, especially given the assumptions needed to construct a strain 97 

history. Moreover, because data about interseismic strain accumulation and the slip in individual 98 

earthquakes are often unavailable, supercycles most often are inferred from an earthquake 99 

history that shows temporal clusters of seismicity, separated by intervals of lower seismicity or 100 

gaps without large earthquakes.  101 

In this paper we use the term "supercycles" broadly, to describe long-term variability 102 

shown by aspects of the earthquake record that are difficult to reconcile with commonly used 103 

models of earthquake recurrence. The observation of supercycles, especially at plate boundaries 104 

and in plate boundary zones, is intriguing because plate boundaries are being loaded by steady 105 

plate motion.  106 

 We first review some proposed examples of supercycles on various faults, and show that 107 

these arise in the full range of tectonic environments - at plate boundaries, within plate boundary 108 

zones, and in plate interiors. We discuss the fact that supercycles and the sometimes-resulting 109 

earthquake clusters are not described by commonly used models of earthquake recurrence. We 110 

then introduce a model of Long-Term Fault Memory (LTFM), in which the probability of a large 111 

earthquake reflects the accumulated strain, and use it to explore many aspects of supercycles. 112 

Finally, we discuss the challenges supercycles pose for earthquake hazard assessment. 113 

 114 

2. Examples of Supercycles 115 

Supercycles and/or clustering have been observed in many tectonic environments (Figure 116 

2). The best data come from earthquake histories at plate boundaries, because the relatively rapid 117 

plate motion (typically > 5 mm/yr) gives shorter and hence easier-to-observe cycles. In some 118 

cases, the slip and strain history also show evidence for supercycles.  119 

Weldon et al. (2004) used the dates and offset in paleoearthquakes since 500 CE across 120 

the San Andreas fault near Wrightwood, California, together with the interseismic slip rate 121 

observed from present-day geodesy and long-term geological rates, to reconstruct the history of 122 

strain accumulation and release (Figure 2a). They argue that "it is hard to escape the conclusion 123 

that strain accumulated over many earthquake cycles was responsible for the flurry of large slip 124 
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events." Nearby, at Pallett Creek, Sieh et al. (1989) find that paleoearthquakes occurred in 125 

clusters within which they were "separated by periods of several decades, but the clusters are 126 

separated by dormant periods of two to three centuries." To the south, where the San Jacinto 127 

fault takes up some of the motion between the Pacific and North America plates, Rockwell et al. 128 

(2015) find that "for much of the past 4,000 years the fault ruptured in a quasi-periodic fashion. 129 

In the past 1,000 years, in contrast, a flurry or cluster of four earthquakes occurred in a 150-130 

year period, and the overall recurrence interval is much shorter." 131 

Sieh et al. (2008) analyzed relative sea level changes recorded by corals from Sumatra, 132 

which show interseismic subsidence and coseismic uplift (Figure 2b). They infer that "this 700-133 

kilometer-long section of the Sunda megathrust has generated broadly similar sequences of great 134 

earthquakes about every two centuries for at least the past 700 years...  Because each of the 135 

three past episodes of emergence consists of two or more discrete events, we refer to the broad 136 

periods of strain accumulation and relief as supercycles rather than merely cycles."  To the 137 

north along the subduction zone, Rubin et al. (2017) studied a 4500 year sequence of at least 11 138 

tsunami deposits and find that "the average time period between tsunamis is about 450 years  139 

with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis 140 

within the span of a century... these variable recurrence intervals suggest that long dormant 141 

periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean 142 

tsunami."  143 

The dates and volumes of turbidite deposits, assumed to have been generated by great 144 

earthquakes on the Cascadia megathrust (Adams, 1990), show evidence for supercycles. Using 145 

these to infer the history of strain energy accumulation and release (Figure 2c), Goldfinger et al. 146 

(2013) find that "the resulting sawtooth pattern reveals what we interpret as a complex pattern 147 

of long-term energy cycling on the Cascadia megathrust... Overall, what is suggested by this 148 

pattern is that some events release less energy, whereas others release more energy than 149 

available from plate convergence (slip deficit) and may have borrowed stored energy from 150 

previous cycles." Although an additional event has been identified (Goldfinger et al., 2017), the 151 

inferred strain energy history would not be substantially altered. Kelsey et al.'s (2005) analysis of 152 

coastal deposits that record local tsunamis and seismic shaking finds that "over the 4600 yr 153 

period when Bradley Lake was an optimum tsunami recorder, tsunamis from Cascadia plate-154 

boundary earthquakes came in clusters."  155 
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A somewhat different style of supercycles has been proposed for the Japan Trench off 156 

Tohoku (Figure 2d). Satake (2015) proposed that "The 2011 Tohoku earthquake source includes 157 

the Miyagi-oki region, where M ∼ 7.5 earthquakes repeated with average interval of 37 years. 158 

The typical slip of such large earthquakes is approximately 2 m, meaning that the cumulative 159 

coseismic slip is about 6 m per century. Because the subduction rate of the Pacific plate is 160 

approximately 8 m per century, 2 m slips may remain unreleased. Such a difference was 161 

previously interpreted as aseismic slip, but can be accumulated at the plate interface and cause a 162 

large coseismic slip of approximately 15 m with a recurrence interval of approximately 700 163 

years... Such [a] supercycle model can explain the unusually large slip of the 2011 Tohoku 164 

earthquake. The term ‘supercycle’ was first used for a seismic cycle consisting of a series of 165 

large events, but often used for long-term cycle imposed on shorter cycles (‘superimposed 166 

cycle’). "  167 

The Sumatra and Tohoku records have interesting similarities and differences. In both, 168 

supercycles reflect infrequent events that have slip much greater than typical events.  However, 169 

the Sumatra earthquake history has long gaps separating clusters, whereas for Tohoku smaller 170 

earthquakes occur frequently between the largest events, so the supercycles in the strain record 171 

do not appear in the earthquake history as gaps and clusters. It is worth noting that a Sumatra-172 

type record could result if the detection limit in a paleoseismic record is too high to record the 173 

smaller events, or a Tohoku-type record could result if the recent rate of smaller events could not 174 

be extrapolated into the past. 175 

In other areas, supercycles have been inferred from the earthquake history, even though 176 

the strain history requires data on the slip in individual events. Agnon's (2014) analysis of a long 177 

record of seismites, sediment records of earthquake shaking (Marco et al., 1996), along the Dead 178 

Sea Transform in Israel (Figure 2e) finds "a pattern of long quiescence periods between quasi-179 

periodic clusters. During each cluster of seismicity the recurrence interval is quite uniform, 180 

varying among clusters between 200 and 1,400 years. Quiescence periods may linger 3–10,000 181 

years." Further north on this transform, Wechsler et al. (2014) find that "the interevent time of 182 

surface-rupturing earthquakes varies by a factor of two to four during the past 2 ka at our site, 183 

and the fault’s behavior is not time predictable." 184 

Supercycles and/or clustering have also been identified in plate boundary zones, where 185 

diffuse deformation is spread over multiple faults with long-term slip rates typically slower than 186 
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on the primary plate boundary faults, and in continental interiors, which typically deform at < 1 187 

mm/yr. As noted earlier, paleoseismic data from faults and groups of faults in the Western U.S.'s 188 

Great Basin (Wallace, 1987), part of the broad boundary zone that accommodates motion 189 

between the Pacific and North American plates, often show "clustered strain release and 190 

uniform, low strain accumulation" (Friedrich et al., 2003), shown schematically in Figure 2f. 191 

Topographic data within the Australian plate, where erosion is very slow, provide some 192 

of the best evidence available of how continental intraplate faults slip over time, shown 193 

schematically in Figure 2g. Clark et al. (2012) found that “a common characteristic of 194 

morphogenic earthquake occurrence in Australia appears to be temporal clustering. Periods of 195 

earthquake activity comprising a finite number of large events are separated by much longer 196 

periods of seismic quiescence, at the scale of a single fault and of proximal faults. In several 197 

instances there is evidence for deformation at scales of several hundred kilometers switching on 198 

and off over the last several million years.” As result, “assigning an ‘active/inactive’ label to a 199 

fault in a slowly deforming area based upon the occurrence (or non-occurrence) of an event in 200 

the last few thousands to tens of thousands of years is not a useful indicator of future seismic 201 

potential” (Clark et al., 2011) and “it is debatable whether a ‘recurrence interval’ on individual 202 

faults applies” (Clark, 2003).  203 

These examples illustrate that long-term variability in earthquake behavior is a common 204 

effect, although the specifics vary between different areas. Hence in this paper, we take the view 205 

that observations of clustering likely reflect supercycles. 206 

 207 

3. Earthquake recurrence models 208 

 The most easily studied aspect of supercycles is that they often - but need not always - 209 

cause variability in earthquake recurrence interval times, notably temporal clusters (Figure 2), 210 

which have important consequences for hazard estimation. As a result, many studies focus on 211 

possible clusters in a fault's earthquake history and their implications for the recurrence of future 212 

large earthquakes. 213 

 Neither of the commonly used classes of models for the recurrence of large earthquakes 214 

(Stein and Wysession, 2009) includes the possible effect of supercycles. The models are posed in 215 

terms of the conditional probability of an earthquake in a time period, based on a conceptual 216 

model of earthquake recurrence. The parameters for an area are inferred from its history of large 217 
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earthquakes and the rate of smaller earthquakes. The models do not predict actual event timing, 218 

due to their stochastic nature. 219 

One model treats earthquake occurrence as a Poisson process, in which the probability of 220 

a large earthquake is constant with time (Figure 3a).  This probability depends on the mean 221 

recurrence interval µ, such that the probability of at least one event in a time interval t that is 222 

short compared to µ is t/µ. In this model the occurrence of a large earthquake does not reduce the 223 

probability of another. Hence the fault has no “memory,” the dates of previous earthquakes have 224 

no effect on when the next will occur, and any clusters resulting from short intervals between 225 

events arise purely by chance.  As the earthquake record's length increases, the standard 226 

deviation of the recurrence intervals approaches the mean. Equality of the mean and standard 227 

deviation of inter-event times is a property of a Poisson process, but - as shown later in the paper 228 

- other stochastic processes can also have this property. Because the Poisson model is the 229 

simplest recurrence model, it is traditionally used in earthquake hazard modeling and provides a 230 

null hypothesis against which other models can be tested (Rundle and Jackson, 1977; Smalley et 231 

al., 1987; Kagan and Jackson, 1991; Michael, 1997; Biasi et al., 2002).  232 

An alternative class of probability models is based on the concept of an earthquake cycle 233 

(Figure 1), in which strain accumulates between large earthquakes and is completely released 234 

when one occurs (Reid, 1910; Savage and Burford, 1973; Sykes and Nishenko, 1984; Matthews 235 

et al., 2002; Field et al., 2015). In these models, the probability of a large earthquake increases 236 

with time until one occurs, at which point the probability drops to zero and the cycle begins 237 

again (Figure 3b).  This assumption corresponds to the fault releasing all the strain accumulated 238 

on it in each cycle, so strain would not accumulate on timescales longer than individual cycles. 239 

The length of time between earthquakes is described by one of a number of probability 240 

distributions (Gaussian, lognormal, Weibull, Brownian passage, etc.) for the recurrence times. 241 

The fault “remembers” only the last event, when the probability was renewed - reset to zero - so 242 

recurrence times in successive cycles are independent. Because the probability of a large 243 

earthquake depends only on the time since the past one, the fault has only “short-term memory." 244 

Renewal models are increasingly used in earthquake hazard analysis (WGCEP, 2003). The 245 

probability distributions describing the recurrence intervals are peaked around the average 246 

expected interval, so much longer or shorter intervals are rare, and earthquakes should occur 247 
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quasi-periodically rather than in clusters. Thus as an earthquake record length increases, the 248 

standard deviation of the observed recurrence times should become small relative to their mean. 249 

 Hence clusters in an earthquake record could have various causes, each of which is likely 250 

to apply in some cases.  First, they could be apparent clusters, artifacts of the limits of the 251 

paleoseismic record such as missing events or errors in earthquake dating (Weldon et al., 2005; 252 

Akciz et al., 2010). Second, if recurrence is described by Poisson or earthquake cycle models, 253 

clusters could result by chance when short recurrence intervals arise. Third, clusters could result 254 

from interactions between nearby faults or fault segments (Ward, 1992; Goes, 1996; Rundle et 255 

al., 2006; Dolan et al., 2016).  256 

 However, the fact that strain accumulation and/or clusters are observed on many fault 257 

systems has led to proposals that they are, at least in part, a real effect due to intrinsic properties 258 

of the faulting process (Ben-Zion et al., 1999). Hence in this paper, we take the view that 259 

observations of clustering likely reflect supercycles. We thus explore the possibility that faults 260 

have "long-term memory," such that the occurrence of large earthquakes depends on earthquake 261 

history over multiple previous earthquake cycles (Figure 3c).  262 

 Faults having long-term memory would have important consequences. Weldon et al. 263 

(2004) point out that "resetting of the clock during each earthquake not only is conceptually 264 

important but also forms the practical basis for all earthquake forecasting because earthquake 265 

recurrence is statistically modeled as a renewal process (Cornell and Winterstein, 1988). In a 266 

renewal process, intervals between earthquakes must be unrelated so their variability can be 267 

expressed by (and conditional probabilities calculated from) independent random variables. 268 

Thus, if the next earthquake depends upon the strain history prior to that earthquake cycle, both 269 

our understanding of Earth and our forecasts of earthquake hazard must be modified... there can 270 

be little doubt that the simple renewal model of an elastic rebound driven seismic cycle will need 271 

to be expanded to accommodate variations that span multiple seismic cycles."  272 

 273 

4. Characterizing Earthquake Sequences 274 

4.1 Aperiodicity 275 

 In discussing long-term fault memory, it is useful to consider how earthquake sequences 276 

are characterized. A common characterization uses the aperiodicity, which measures the extent 277 

that a sequence differs from perfectly periodic. Aperiodicity, also termed the coefficient of 278 
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variation (CV), is defined by a = s ⁄µ where µ is the mean of the recurrence intervals (interevent 279 

times) and s is their standard deviation (Kagan and Jackson, 1991; Goes, 1996; Vere-Jones 280 

1970).  An aperiodicity of zero corresponds to a perfectly periodic sequence, because s = 0. An 281 

aperiodicity of one could correspond to a sequence produced by an ideal Poisson process with s  282 

= µ but could also arise from other stochastic processes.  a > 1 corresponds to a "bursty" 283 

sequence that is so strongly clustered that s  > µ. Because the entire range between perfectly 284 

periodic and perfectly Poissonian is termed "quasiperiodic," we divide it into the portion with a 285 

< 0.5 as "strongly periodic" or "weakly aperiodic" - closer to purely periodic than purely 286 

Poissonian - and that with 1> a > 0.5 as "weakly periodic" or "strongly aperiodic"  - closer to 287 

purely Poissonian than purely periodic (Figure 4). Although sequences with a > 1 are often 288 

termed "clustered," we use the term "bursty" because sequences with a < 1 can be quite 289 

clustered, as discussed shortly. 290 

 A related characterization uses the burstiness parameter  291 

B = (a  - 1)/ (a  + 1) =  (s  - µ)/(s  + µ) 292 

(Goh and Barabasi, 2008).  An ideal periodic sequence has B = -1, a perfectly Poisson sequence 293 

has B = 0, and bursty sequences have 0 < B < 1.  Goh and Barabasi (2008) also characterize 294 

sequences by a memory parameter 295 

M = ! (#$%
&'% ti - µ1)( ti+1- µ2)/ s1s2 296 

where N is the number of recurrence intervals ti  , µ1 and  s1 are the mean and standard deviations 297 

of ti  (i = 1, 2,...,N-1), and µ2  and  s2 are the mean and standard deviations of ti+1  (i = 1, 2,..., N-298 

1). M ranges from -1 to 1, with M > 0 when short interevent times are generally followed by 299 

short ones, and long interevent times are generally followed by long ones.  M < 0 when short 300 

interevent times are generally followed by long ones, and vice versa. These arise because M is a 301 

normalized form of the autocorrelation of lag one, i.e. the crosscorrelation between the series of 302 

interevent times and that series shifted by one. 303 

 Figure 4 shows the aperiodicities for the earthquake sequences in Figure 2. The 304 

Wrightwood and Cascadia (Figures 2a and 2c) sequences have a = 0.47 and 0.51, so the time 305 

series alone do not indicate the supercycle behavior shown by the strain records.  In contrast, the 306 

Sumatra and Dead Sea transform (Figures 2b and 2e) sequences have a = 1.05 and 1.6, 307 

indicating the supercycle behavior.  The Great Basin and Australia sequences (Figures 2f and 2g) 308 
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were described schematically without specific dates, so the aperiodicity illustrated is also 309 

schematic. Also shown is the global result from Goes (1996), who compiled 52 earthquake 310 

sequences from the San Andreas fault and the Middle America, Alaska, Chile, and Japan 311 

trenches. She found aperiodicities varying from 0.0 to 1.7, with "a large average aperiodicity" of 312 

0.72 ± 0.36 that she interpreted as showing that earthquake recurrence is more irregular "than 313 

often assumed in hazard analysis." 314 

 These examples illustrate some of the issues in using aperiodicity to characterize 315 

sequences:  316 

 i) Sequences with the same aperiodicity can be quite different. Because the aperiodicity 317 

depends only on the mean and standard deviation of the interevent times, it does not depend on 318 

the order of events. Thus quite different sequences can have the same aperiodicity (Cowie et al., 319 

2012).  Figure 5a shows a sequence of paleoearthquakes composed of clusters of events several 320 

decades apart, separated by gaps of two to three centuries. The sequence has a = 0.79, showing 321 

strong aperiodicity. Grouping the short-interval events together (Figure 5b) does not change a, 322 

but we would probably view the sequence as showing a change from longer recurrence times in 323 

the past to more recent short recurrence times. The memory parameter illustrates the difference, 324 

in that the more clustered sequence has a negative value, M = -0.28, whereas the grouped 325 

sequence has M = 0.70. This difference between the two sequences can also be seen in the 326 

interevent time plots shown to the right of each sequence. In these, major gaps appear as 327 

interevent times longer than the mean, which is shown by a horizontal line. In the first sequence, 328 

short and long intervals generally alternate, giving clusters and negative values of M. In the 329 

second sequence, short and long intervals are grouped, giving a positive memory. 330 

 ii) Sequences with "quasiperiodic" aperiodicity can be quite clustered. Earthquake 331 

sequences that we would consider clustered can fall below the nominal burstiness criterion of a 332 

> 1. Figure 6b shows that lengthening the three major gaps in Figure 6a by 100 years increases 333 

the aperiodicity from 0.79 to 0.92, making the clustering stronger and the weak periodicity even 334 

weaker. Lengthening the gaps by 300 years (Figure 6c) increases the aperiodicity to 1.08. In all 335 

three panels we assume that observations begin at the earliest observed event (at the right side of 336 

the time axis showing years before present), so no gap is observed prior to the earliest event. 337 

This example illustrates that a sequence must be very strongly clustered to be bursty.  338 
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 iii) Sequences with aperiodicity close to 1 need not result from a Poisson process. 339 

Earthquake records with aperiodicity close to 1 could resemble those that would be generated by 340 

a Poisson process. However, other stochastic processes, including the Long-Term Fault Memory 341 

process discussed later in this paper, can also generate earthquake records with interevent times 342 

whose mean and standard deviation are similar. Hence given the evidence in some areas of an 343 

underlying process involving strain supercycles, we think it useful to consider such sequences as 344 

clustered in many senses. In particular, considering clustering in such cases means that estimates 345 

of the probability that the next earthquake will occur within a given time window will depend 346 

crucially on whether the cluster is treated as ongoing or over.   347 

 iv) Aperiodicity can vary within an earthquake record. In particular, it is likely to be 348 

underestimated by short records. Because a short record is likely to contain events with 349 

recurrence times shorter than the mean of a longer record, shorter sequences underestimate 350 

aperiodicity (Ellsworth et al., 1999; Mucciarelli, 2007). This effect is seen in both synthetic 351 

catalogs (Ward, 1992) and earthquake records (Goes, 1996). Parsons (2008a) used Monte Carlo 352 

simulations to estimate the parameters of a parent distribution of recurrence times most likely to 353 

yield an observed time series. For example, an observed 1800-year-long earthquake record on 354 

the South Hayward fault with mean recurrence of 180 years and aperiodicity 0.48 is most likely 355 

to have arisen from a parent distribution with mean recurrence of 210 years and aperiodicity 0.6 356 

(Parsons, 2008b). 357 

 358 

4.2 Cluster Analysis 359 

 Another way to characterize earthquake sequences is through clustering. The statistical 360 

literature provides several criteria for defining a cluster and how many exist in a sequence. 361 

Categorizing clusters could facilitate definition of a supercycle, for example one cluster plus one 362 

gap. Hence we briefly review different clustering methods which either assign events to a cluster 363 

or choose the number of clusters. Clustering algorithms are broadly classified as either 364 

partitioning or hierarchical. To illustrate, we use Sieh et al.’s (1989) record from Pallett Creek, 365 

California (Figure 7a).   366 

Partitioning methods such as the popular k-means algorithm are used to divide a sequence 367 

of observations, forming a given number of clusters, k, each observation assigned to one cluster. 368 
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Other methods, discussed later, are used to determine the number of clusters for a given 369 

sequence. In our application, the observations in a sequence are the dates, in years, of n 370 

earthquakes in an earthquake record and the clusters are defined as time intervals encompassing 371 

the range of dates. In the Pallett Creek record, n = 10. A k-means algorithm starts by guessing k 372 

cluster centers, which are averages of dates. The process then alternates two steps: 1) The closest 373 

cluster center is identified for each observation, measured by time in years between earthquakes 374 

and cluster centers, and the observation is assigned to that cluster.  2) Each cluster center is 375 

recalculated as the average date of its members (Hastie et al., 2009). This process repeats until it 376 

minimizes the sum or total within-cluster sum of squares (TWSS) of distances from cluster 377 

centers, i.e., it minimizes the sum of within-cluster variances of clusters i=1,…, k multiplied by 378 

the number of observations in that cluster, ni (Hartigan, 2006). Commonly, this analysis is 379 

performed for a range of k and different aspects of the resulting cluster assignments are assessed 380 

to determine the number of clusters. The choice of k will strike a balance between too many 381 

clusters and not enough. The methods for choosing k do not always agree, as discussed next. 382 

Some methods, such as the Elbow method, examine the graph of TWSS versus k (Figure 383 

7b) and choose the value of k corresponding to a kink in the plot resembling a bent elbow 384 

(Tibshirani et al., 2001). Increasing k beyond this value conveys a lesser reduction in TWSS. By 385 

this method, Pallett Creek has 4 clusters. The Silhouette method compares the tightness (length 386 

of clusters) and separation (distance between clusters) to determine whether the cluster lengths 387 

are small compared to the distances between-clusters (Rousseeuw, 1987). Each observation 388 

receives a silhouette value, ranging from −1 to +1, indicating the extent to which the observation 389 

is well matched to its assigned cluster and poorly matched to the others. The number of clusters k 390 

is chosen to maximize the average values for all observations; again k = 4 for Pallett Creek 391 

(Figure 7c). The Gap method plots two curves that are functions of k, the logarithm of TWSS 392 

and its expected value under a uniform distribution of earthquake dates within the record 393 

(Tibshirani et al., 2001). The Gap statistic is the distance (gap) between the curves. The chosen 394 

value for k has the maximum Gap statistic, which again is k = 4 (Figure 7d). 395 

Hierarchical methods do not rely on advance specification of the number of clusters, k, 396 

but rather create clusters for all k = 1, …, n possibilities. This process is illustrated by 397 

dendrogram plots (tree diagrams), showing the order in which different clusters are merged 398 



Salditch	et	al.	 LTFM								7/11/19	 	14 

through connecting branches (Figure 7e). The vertical axis shows the cumulative difference in 399 

dates (in years) between cluster centers being merged. Hierarchical methods are of two kinds: 1) 400 

Divisive, in which all observations start in a single cluster, k = 1, and are iteratively separated 401 

until k = n. 2) Agglomerative nesting (termed AGNES), in which all observations start in their 402 

own cluster (k = n), with the closest clusters (defined here by years between cluster centers) 403 

iteratively joined until k = 1 (Kaufman and Rousseeuw, 1990). AGNES may be better at 404 

identifying small clusters, while divisive methods may be better at identifying large clusters, 405 

although this choice makes no difference for our example. A popular AGNES algorithm, Ward’s 406 

(1963) method, minimizes the within-cluster sum of squares using an update formula which 407 

assigns a new cluster’s height on the vertical axis as the cumulative distance between the cluster 408 

centers being merged at that step and each step below it (Murtagh and Legendre, 2014). We 409 

show Ward’s method because it is intended for interval-scaled data such as the dates of 410 

earthquakes (Kaufman and Rousseeuw,1990). Figure 7e shows the tree resulting from applying 411 

Ward’s method to Pallett Creek. Clusters that merge at high levels on the vertical axis (indicating 412 

large distances between cluster centers being merged at that step) relative to the level of the 413 

clusters within them can be interpreted as a ‘natural’ number of clusters (Hastie et al., 2009). 414 

This determination is subjective, so in this example one could reasonably choose 2 or 4 clusters 415 

(Figure 7e). The four clusters {1,2,3},{4,5,6},{7,8},{9,10} are the same as obtained from k-416 

means with k = 4. 417 

 Goldfinger's (2012) hierarchical clustering analysis on the 10,000-year-long Cascadia 418 

earthquake record found either four or five clusters, using AGNES with complete linkage 419 

(furthest neighbor) method. Furthest neighbor defines the distance between two clusters as the 420 

distance between two observations, one in each cluster, that are farthest away from one another 421 

(Tibrishani et al., 2001b). The two clusters with the shortest distance between them are merged at 422 

each step.  Applying the complete linkage method to the Pallett Creek record yields the same tree 423 

as shown in Figure 7e using Ward’s method. Goldfinger performed several tests of the statistical 424 

significance of the clusters with most resulting in a rejection of an underlying Poisson 425 

distribution. He cautions, however, “there is no requirement that physical systems pass statistical 426 

tests” (Goldfinger et al., 2012). 427 
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Hierarchical methods are complementary to partitioning methods such as k-means. For 428 

example, one can use the cluster centers from Ward’s method as the initial cluster centers in k -429 

means. As discussed above, results from k-means for chosen k can be compared to the results of 430 

AGNES. Our results are moderately robust to slight changes in dates, as illustrated by comparing 431 

the slightly differing dates of Pallett Creek from Sieh et al. (1989), Biasi et al. (2002), and 432 

Scharer et al. (2011). The tree diagrams are the same, because they largely reflect only the 433 

events' order. Differences in the k-means evaluations are shown in Table 1. The Gap statistic for 434 

Scharer et al.'s dates yields 1 cluster, and the next best number is 4, with the difference between 435 

their statistics being quite small compared to the differences between other numbers of clusters. 436 

A similar situation occurs in the silhouette for the Sieh et al. dates (Figure 7c) where one could 437 

argue for 2, 3, or 4 clusters because of the similar values. The Elbow method is the most stable 438 

between these different records and the Gap statistic is the least. 439 

Table 1: Differences in the number of clusters indicated by three methods for records of 440 

earthquakes at Pallett Creek with slightly differing dates.  441 

Record Gap Statistic Elbow Silhouette 

Sieh et al., 1989 4 4 4 

Biasi et al., 2002 2 4 2 

Scharer et al., 2011 1 4 4 

 442 

 443 

5. Long-Term Fault Memory Model 444 

 To explore how earthquake supercycles and clusters arise, we use a simple Long-Term 445 

Fault Memory (LTFM) model, which is a modified version of the standard earthquake cycle 446 

model. In it, the probability of an earthquake reflects the accumulated strain. This increases 447 

steadily with time until an earthquake happens, after which it decreases, but not necessarily to 448 

zero (Figure 8). Hence, the probability of an earthquake depends on the earthquake history over 449 

multiple prior cycles. Clusters happen because after a gap, a period of quiescence, the probability 450 

can remain higher than the long-term average for several cycles. The model simulates large 451 

earthquakes releasing only part of the strain accumulated on the fault, in contrast to the standard 452 

model in which all of the accumulated strain is released. 453 
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LTFM is a simple model with only a few parameters. The annual probability P(t) grows 454 

with time at rate dP/dt = 𝐴 = 2/𝜏-, simulating steady strain accumulation. t is an initial mean 455 

recurrence interval, such that if no earthquake occurs during the initial time interval t = t, the 456 

average annual probability is 1/t. If the probability is above a threshold value d, which we 457 

typically set as zero, an earthquake can occur. When an earthquake occurs, the probability drops 458 

by ∆𝑃 = −𝑅, simulating a partial strain release. Hence on average R/A years of accumulated 459 

strain is released in an earthquake. 460 

The accumulation parameter A controls the long-term seismicity rate, and the release 461 

parameter R controls the clustering. Small R yields long-term memory and more clusters, 462 

whereas in the limit large R gives the standard earthquake cycle model with only short-term 463 

memory because it forces the probability to zero after each earthquake. The probability is not 464 

allowed to go below 0 or to exceed 1.  465 

We generate earthquake histories by using the Mersenne Twister pseudo-random number 466 

generator (Matsumoto and Nishimura, 1998), sampling from a uniform distribution between 0 467 

and 1. If the value exceeds the probability for that year, no earthquake occurs and the probability 468 

increases by A for the next year. If the value is less than that year's probability, an earthquake 469 

occurs and the probability drops by R for the following year. Linearly increasing probabilities 470 

have been used by other authors, e.g., Pinedo and Shpilberg (1981). 471 

 The saw-tooth behavior of LTFM simulates the proposed long-term variations in stored 472 

elastic strain or strain energy (Figure 2).  Supercycles and clusters arise because longer intervals 473 

between earthquakes generally begin at times of low probability, consistent with the pattern 474 

noted in terms of cumulative strain by Weldon et al. (2004). A lower probability corresponds to 475 

the fault having less memory of previous earthquakes. Thus, as the probability (i.e. cumulative 476 

strain) approaches zero, the corresponding supercycle can be viewed as approaching a renewal 477 

process.   478 

Because LTFM is a stochastic model, the resulting earthquake sequences depend on both 479 

the model parameters and chance. As a result (Figure 9) sequences can appear strongly periodic, 480 

weakly periodic, Poissonian, or bursty. The four sequences in this example have the same 481 

probability (i.e. strain) accumulation rate (A = 2/1252 ) but different release parameters (R = 482 

200A, 175A, 80A, 50A). As shown, the aperiodicity increases as R decreases. The strongly 483 

periodic sequence arises in a way similar to a standard earthquake cycle model because R is so 484 
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large that the probability drops to zero after each earthquake, so the fault has no memory. The 485 

effects of fault memory increase for successively smaller values of R, making the sequences less 486 

periodic. However, A and R control only the overall sequence properties via the probability of 487 

earthquake occurrence, because when earthquakes occur is random. As a result, the aperiodicity 488 

varies between different portions of the sequence.   489 

In some cases, we use two thresholds, d2 > d1 and corresponding probability drops, R2 > 490 

R1 , to describe the earthquakes with larger and smaller strain changes implied by some records 491 

(Figure 2). Hence if P(t) > di , the probability drops by  Ri . Using two probability thresholds and 492 

probability drops to describe both rare larger and more frequent smaller strain changes allows 493 

LTFM to simulate the range of observed supercycle behavior (Figure 10). The higher threshold 494 

and probability drop simulate infrequent events that have slip and strain release much greater 495 

than typical events, and so end a supercycle.  Using two similar thresholds simulates a Sumatra-496 

style earthquake history with long gaps separating clusters, because earthquakes can occur only 497 

late in a supercycle. This case would correspond to a very strong fault. Conversely, a low 498 

threshold for smaller earthquakes and a much higher one for larger earthquakes simulates a 499 

Tohoku-style record where smaller earthquakes occur frequently between the largest events, so 500 

the supercycles in the strain record do not appear in the earthquake history as gaps and clusters. 501 

The threshold and drop parameters can be chosen to simulate the very long gaps associated with 502 

intraplate and plate boundary zone earthquakes. In such situations, because strain accumulates 503 

slowly relative to plate boundaries, the lower threshold is quite low. Hence this threshold can be 504 

used in most applications with higher strain rates (e.g., Figure 10b), since it would have 505 

essentially the same effect as a zero threshold (e.g., Figure 9). 506 

 507 

5.1 Example  508 

To explore choosing LTFM parameters to match key aspects of an earthquake history, we 509 

simulated the record from Pallett Creek, California.  Although recent studies have reestimated 510 

the dates (Biasi et al., 2002; Scharer et al., 2011), we used Sieh et al.'s (1989) dates because the 511 

resulting clusters provide a better test case. We ran the model 100 times for pairs of input 512 

parameters, R and τ, and averaged the mean and standard deviation of recurrence intervals for 513 

each pair. Contouring these averages identified regions of the model space, and hence ranges of 514 

the input parameters, that produce simulations with comparable mean and standard deviation to 515 
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those observed in the paleoseismic record.   We then searched these regions for parameters 516 

giving a memory parameter close to that observed. 517 

 A simulation with accumulation rate A = 2/2892 and release parameter R = 130A that 518 

gives clustering behavior similar to that observed is shown in Figure 11. The data have µ = 132 519 

yr,  s = 105 yr, a = 0.79 and M = -0.28, and the simulation has  µ = 136 yr,  s = 102 yr, a = 0.75 520 

and M = -0.33, indicating	weak	periodicity. The event timing differs between the simulation 521 

and the observed record due to the model’s stochastic nature. The longer intervals between 522 

earthquakes begin at times of low probability, consistent with the pattern noted in terms of 523 

cumulative strain by Weldon et al. (2004).  524 

We used the LTFM model to explore the long-term variability of fault behavior by 525 

creating simulations much longer than paleoseismic records, and then sampling them for 526 

intervals corresponding to paleoseismic records. Figure 12 shows results for a 50,000 year long 527 

simulation using parameters appropriate for Pallet Creek. The mean and standard deviation of 528 

recurrence times averaged over a moving 1345-year window, corresponding to a paleoseismic 529 

record, are relatively stable over long time periods. This stability would be consistent with the 530 

idea of steady loading and unloading by plate motion and large earthquakes. However the mean 531 

and standard deviation of recurrence times vary somewhat. The aperiodicity shows that the 532 

simulated paleoseismic record sometimes appears strongly periodic (standard deviation small 533 

relative to the mean) implying a seismic cycle model, while at other times it looks weakly 534 

periodic, Poissonian (standard deviation similar to the mean), or bursty. This variability is 535 

illustrated by the earthquake history between model years 19,000 and 22,000. Hence the 536 

recurrence variability due to long-term fault memory can give rise to paleoseismic records that at 537 

different times appear to have different underlying statistical distributions. Thus a given 538 

paleoseismic or instrumental window may give a biased view of the long-term seismicity.  539 

 540 

5.2 LTFM and intraplate earthquakes 541 

Long-term fault memory may also be an important contributor to the space-time 542 

variability of continental intraplate earthquakes.  Considerable recent attention (reviewed by Liu 543 

and Stein, 2016, Calais et al., 2016, and Stein et al., 2017a) has been directed to how and why 544 

earthquakes within continents behave differently in space and time from those on plate 545 

boundaries. Faults at plate boundaries are loaded at constant rates by relatively rapid and steady 546 
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relative plate motion. Consequently, earthquakes concentrate along the plate boundary faults and 547 

show quasi-periodic (relative to intraplate earthquakes) occurrences, although the actual 548 

temporal patterns are often complicated. The spatial gaps that appear are filled in over time.  549 

However, in mid-continents, the slower tectonic loading is shared by a complex system 550 

of interacting faults spread over a large region, such that a large earthquake on one fault could 551 

increase the loading rates on other faults in the system. Because the low tectonic loading rate is 552 

shared by many faults, individual faults may remain dormant for a long time before they 553 

accumulate enough strain for a short period of activity. The resulting earthquakes are therefore 554 

episodic, clustered, and spatially migrating (Li et al., 2009; Stein et al., 2009).  These effects can 555 

be seen in many areas, including North China (Liu et al., 2011), Europe (Camelbeeck et al., 556 

2007; 2014), and the central United States (Crone and Luza, 1990; Newman et al., 1999; 557 

Holbrook et al., 2006; Tuttle et al., 2006; Gold et al., 2018).  558 

Topographic data from Australia, where erosion is very slow, provide some of the best 559 

evidence available of how intraplate faults slip over time. Figure 2f illustrates this pattern of 560 

clusters of activity separated by much longer and irregular intervals of quiescence. Liu and Stein 561 

(2016) note that the pattern of displacement accumulated over time is similar to the Devil's 562 

Staircase function, a fractal property of chaotic dynamic systems (Devaney et al., 1989; Turcotte, 563 

1997).  The apparent long-distance roaming of large mid-continental earthquakes also suggests 564 

dynamic system behavior. In such a system, change of any part of the system (such as rupture of 565 

a fault) could impact nonlinearly the behavior of the whole system.  566 

Although this view of intraplate seismicity fits what is known in general terms, the 567 

specifics are still unclear. In particular, how effectively stress can be transferred to distant faults 568 

is unknown. We thus used the LTFM model to explore the possibility that long-term fault 569 

memory may also contribute to the space-time variability.  570 

A noticeable difference between the clustering in Australia and that on plate boundaries 571 

is that in Australia the gap durations are more than ten times as long as the clusters, whereas on 572 

plate boundaries the gaps are only 2-3 times as long as the clusters.  As shown in Figure 9, 573 

LTFM can describe this effect via assuming the level of strain accumulation required for an 574 

earthquake. A proposed alternative is that clusters of large intraplate earthquakes reflect the fault 575 

weakening after the first major event, so as to permit repeated failure (Li et al., 2009).  Models 576 

have been proposed for how weakening and subsequent healing might occur (Sibson, 1992; 577 
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Lyakhovsky et al., 2001).  In Lyakhovsky et al.’s model, as the rate ratio between loading and 578 

healing increases, behavior changes from regular to clustered. This is because healing tends to 579 

purge long-term memory. These models were developed with a view toward describing the 580 

evolution of fault properties over multiple earthquake cycles, i.e. a different type of long-term 581 

fault memory.  582 

 583 

5.3 LTFM model discussion  584 

 Our results illustrate that a modified version of the standard earthquake cycle model can 585 

be used to simulate and explore key features of supercycles that are observed at many plate 586 

boundaries and in plate interiors. This is gratifying, given the model's simplicity. LTFM can be 587 

thought of as an idealized model like those used in many disciplines, including physics, 588 

astronomy, meteorology, biology, and economics, that allow investigations to focus on some key 589 

characteristics of a complex phenomenon and explore whether they can be explained by simple 590 

assumptions.  Reutlinger et al. (2018) explain that "we call such models ‘toy models’—a term 591 

that is not meant to have belittling or derogatory connotations... First, models of this type are 592 

strongly idealized...  Second, such models are extremely simple in that they represent a small 593 

number of causal factors (or, more generally, of explanatory factors) responsible for the target 594 

phenomenon. Third, these models refer to a target phenomenon."   A good example would be the 595 

simple analytical model of subduction zones that extracts key aspects of sophisticated numerical 596 

models and thus can be used how the temperature structure and resulting plate driving force 597 

depend on the age of the subducting plate and convergence rate (Stein and Wysession, 2009) 598 

 In this spirit, we have used a simple model that simulates general properties of 599 

supercycles. We plan to explore its possible applicability to paleoseismic records in other areas 600 

and in different tectonic regimes. For example, clusters have been observed in paleoseismic data 601 

in plate boundary zones, where diffuse deformation is spread over multiple faults and long-term 602 

slip rates are slower than on primary plate boundary faults (which typically move at > 10 mm/yr) 603 

but higher than in continental interiors (which typically deform at < 1 mm/yr) (Wallace, 1987; 604 

Rockwell et al., 2000; Friedrich et al., 2003; Oskin et al., 2008; Dolan et al., 2016; Gold et al., 605 

2017).  Some clusters seem to arise on individual faults, whereas others involve groups of faults. 606 

The Wasatch fault and adjacent faults show a strain release and slip pattern similar to that in 607 

Australia (Figure 2e) (Wallace, 1987; Friedrich et al., 2003). In the Eastern California shear 608 
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zone, regional strain release appears to occur via "distinct periods or bursts of seismic activity 609 

punctuated by periods of relative quiescence. Individual faults, however, appear to behave in a 610 

quasiperiodic fashion, with the clustering produced by the in-phase earthquake generation of the 611 

system of faults" (Rockwell et al., 2000). Hence LTFM may be involved in plate boundary zone 612 

faults, but fault interactions and changes in loading across the zone may also contribute. 613 

 Additional features could be added to the model without overcomplicating it. Its current 614 

form allows for two classes of earthquakes causing different probability decreases, or strain 615 

releases. In some cases, only one may be needed, as motivated by observations that slip in large 616 

events on individual fault segments appears similar (Schwartz and Coppersmith, 1984) and 617 

Weldon et al.'s (2004) observation that on the area of the San Andreas they studied "there 618 

appears to be no relationship between strain level and the size of earthquakes." However, 619 

Goldfinger et al. (2013) note a "weak tendency" for clusters to terminate with an "outsized" 620 

event, as found for the Tohoku and Sumatra records (Figure 2). Moreover, some of the strain 621 

release may occur via slow slip events (Rogers and Dragert, 2003; Jiang et al., 2017) that may 622 

not appear in the paleoseismic record.  623 

 Fault interactions could be introduced into the model by having multiple faults that affect 624 

the probability of large earthquakes on each other. In some situations these may increase 625 

clustering, and in others they may reduce it.  This effect is likely to contribute to the variability in 626 

earthquake size often observed at subduction zones (Thatcher, 1990; Stein and Okal, 2007). One 627 

example is the trench segment that produced the Mw ~9.6 1960 Chilean earthquake. Its rupture 628 

mode must be variable because the seismic-slip rate inferred assuming that the 1960 earthquake 629 

is this segment’s characteristic earthquake exceeds the convergence rate. Hence Stein et al. 630 

(1986) proposed that either the characteristic earthquake is smaller than the 1960 event, the 631 

average recurrence interval is greater than observed in the past 400 years, or both. Recent 632 

paleoseismic studies support this analysis (Cisternas et al., 2005). Paleoseismic studies also find 633 

evidence for variable size of thrust events, presumably due to the differences between 634 

multisegment and single-segment rupture, in areas including the Nankai Trough (Ando, 1975) 635 

and the Kuril trench (Nanayama et al., 2003).  636 

 Viewing supercycles as a result of long-term fault memory fits into a general framework 637 

in the literature of complex dynamic systems.  Clustered events, described as “bursts,” are 638 

observed in many disparate systems, from the firing system of a single neuron to the outgoing 639 



Salditch	et	al.	 LTFM								7/11/19	 	22 

mobile phone sequence of an individual (Karsai et al., 2012). Such systems display “…a bursty, 640 

intermittent nature, characterized by short timeframes of intense activity followed by long times 641 

of no or reduced activity,” (Goh and Barabasi, 2008). As a result, the system’s state depends on 642 

its history, so it has long-term memory (Beran et al., 2013).  643 

 An additional point worth noting is that we generally limit our discussion to cases where 644 

the supercycle is shorter than the climatic forcing cycles such as global glaciation periods. 645 

 646 

5.4 Mathematics of the LTFM model 647 

The LTFM model is a stochastic process, specifically a Markov chain with a finite 648 

number of states at discrete times  0, 1, 2, . . . The states correspond to possible values of 649 

accumulated strain, reflected in the probability P(t), which are finite in number.1 The probability 650 

that an earthquake occurs at time  conditional on the full history of strain accumulation and 651 

release at all times prior to  depends only on the most recent level of strain, i.e., at time 2 652 

Given P(t), the probability does not otherwise depend on time. Thus, the history prior to  is 653 

fully captured by P(t-1). The process starts over each time accumulated strain is equal to the 654 

strain at time 0 (or, for practical purposes, is close to that amount). The length of time until 655 

the process starts over can be interpreted as the length of a supercycle. The theory of Markov 656 

chains (Çinlar, 1975) allows us to directly specify the full probability distribution for the length 657 

of a supercycle, and hence its mean and standard deviation. The theory also allows us to specify 658 

the conditional probability of an earthquake at a time  given the accumulated strain at 659 

current time s. The theory implies that the probability at a far future time  does not depend on 660 

the accumulated strain at time  and provides a formula for that probability. From this 661 

probability, the expected number of earthquakes in a distant time span of length  can be 662 

calculated, along with the approximate standard deviation. 663 

                                                        
1  Possible values of P(t) have the form  with  

and    taking non-negative integer values. 
2  If the probability at time  is P(s) =  then the conditional probability of an earthquake at 

time is equal to , with  equal to 1 if  and 
equal to 0 otherwise. 
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LTFM can also be posed in terms of the classic probability model of drawing balls from 664 

an urn. (Stein and Stein, 2013).  If e balls are labeled "E" for earthquake, and n balls are labeled 665 

"N" for no earthquake, the probability of an earthquake is that of drawing an E-ball, which is the 666 

ratio of the number of E-balls to the total number of balls. If after drawing a ball, we replace it, 667 

the probability of an event is constant or time-independent in successive draws, because one 668 

happening does not change the probability of another happening. Thus an event is never 669 

"overdue" because one has not happened recently, and the fact that one happened recently does 670 

not make another less likely. LTFM corresponds an alternative, sampling such that the fraction 671 

of E-balls and the probability of another event change with time. We add A E-balls after a draw 672 

when an earthquake does not occur, and remove R E-balls when an earthquake occurs. This 673 

makes the probability of an event increase with time until one happens, after which it decreases 674 

and then grows again. Events are not independent, because one happening changes the 675 

probability of another.  676 

 677 

6. Implications for hazard assessment 678 

Advances in understanding supercycles would be important for seismic hazard 679 

assessment. Such assessments depend heavily on assumptions about the magnitude and 680 

recurrence rate of future large earthquakes (Stein et al., 2012), both of which are often more 681 

variable than assumed.  A larger assumed aperiodicity will cause cumulative or conditional 682 

probabilities to decrease, all else fixed (Ward, 1992).  683 

Current earthquake probability estimates depend on assuming a probability density 684 

function for the recurrence intervals with input parameters inferred from the available earthquake 685 

history. Figure 13 illustrates the resulting uncertainties for Cascadia. Figure 13a shows the 686 

effects of additional paleoseismic data. Goldfinger et al.'s (2012) chronology yielded a mean 687 

recurrence interval of 530 yrs and a standard deviation of 271 yrs for the entire 10,000 year 688 

record, and a mean recurrence interval of 326 yrs and a standard deviation of 88 yrs for the most 689 

recent cluster. Including a newly-identified event in a revised chronology (Goldfinger et al., 690 

2017) has a small effect on the 10,000-year record's parameters, changing the mean recurrence 691 

interval to 502 yrs and a standard deviation of 239 yrs. However, adding this event makes all 692 

events in the past 5,000 years part of the same cluster, with a recurrence interval of 452 yrs and a 693 

standard deviation of 142 yrs. 694 
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Whether to assume that a recent cluster is continuing or has ended can lead to quite 695 

different estimates of earthquake probabilities (Stein et al., 2017b). Figure 13b shows the 696 

different distribution of recurrence intervals corresponding to the two different chronologies and 697 

various probability density functions with parameters corresponding to the two chronologies. By 698 

far the largest difference arises from assuming either that the recent cluster continues, or that the 699 

cluster is over so the appropriate parameters are those for the entire record. Assuming that we are 700 

still in the cluster predicts higher probability than using the entire record. This effect is more 701 

important than the specific probability density function assumed. The corresponding effect 702 

appears from considering the conditional probability of a large earthquake in the next 50 years, 703 

which results from integrating the probability density functions (Figure 13c).  704 

More generally, if faults have long-term memory, then individual earthquake cycles, and 705 

hence the recurrence times between successive large earthquakes, are not independent. Hence the 706 

renewal approach of modeling their probability as a function of time since the previous large 707 

earthquake can give misleading results. The problem is not that a renewal model is inappropriate, 708 

but rather that the renewal depends on release of nearly all accumulated strain, and that may 709 

occur at different times than large earthquakes. As shown in Figure 12, the recurrence variability 710 

due to long-term fault memory can cause short earthquake records to give a biased view of the 711 

long-term seismicity. As a result, further investigation of long-term earthquake recurrence 712 

variability is important both for understanding the nature and causes of supercycles and for 713 

improving hazard assessment. 714 
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 1032 
Figure 1: Schematic comparison of the histories of earthquake ocurrence, cumulative 1033 

displacement, and cumulative strain for a fault without supercycles (a) and a fault with 1034 

supercycles (b).  Adapted from Wallace (1987) and Friedrich et al. (2003).   1035 

  1036 
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 1037 
Figure 2: Examples of reported supercycles. a) Strain accumulation and release inferred from 1038 

paleoseismic data across the San Andreas fault (Weldon et al., 2004). b) Supercycles on the 1039 

Sumatra megathrust inferred from corals  (Sieh et al., 2008). c) Long-term energy cycling 1040 

inferred from turbidites on the Cascadia megathrust (Goldfinger et al., 2013). d) Schematic 1041 

earthquake history for the Japan Trench off Tohoku (Satake, 2015). e) Earthquake history on the 1042 

Dead Sea transform (Agnon, 2014). f) Schematic earthquake history for faults and groups of 1043 

faults in the Western U.S.'s Great Basin (Wallace, 1987).  g) Schematic earthquake history for 1044 

faults in Australia (Clark et al., 2012).  1045 
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 1046 
Figure 3:  Comparison of earthquake recurrence models. a)  Poisson process, in which the 1047 

probability of a large earthquake is constant with time, so the fault has no memory and any 1048 

clusters resulting from short intervals between events arise purely by chance. b) Earthquake 1049 

cycle, in which the probability of a large earthquake increases with time until one occurs, at 1050 

which point the probability drops to zero.  The fault has only “short-term memory” because the 1051 

probability of a large earthquake depends only on the time since the past one. c) Modified 1052 

earthquake cycle in which after an earthquake the probability decreases, but not necessarily to 1053 

zero. The fault has "long-term memory" because the probability depends on the earthquake 1054 

history over previous cycles.  1055 
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 1057 

 1058 
 1059 

Figure 4: Illustration of  characterizing earthquake sequences by their aperiodicity, which 1060 

measures the extent that a sequence differs from perfectly periodic. Values are shown for  1061 

examples in Figure 2. Solid bars show sequences with dates and dashed bars show schematic 1062 

sequences with approximate aperiodicites. Also shown is the result from Goes' (1996) global 1063 

compilation.   1064 
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 1066 

 1067 
 1068 
 1069 

Figure 5: Comparison of  two sequences with the same aperiodicity. a) Sequence with strong 1070 

aperiodicity (a = 0.79) showing clustering. (b) Same sequence with the short-interval events 1071 

grouped together, which does not show clustering.  1072 
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 1074 

 1075 
 1076 

Figure 6: Illustration of the fact that "quasiperiodic" (a < 1) sequences can be quite clustered. a) 1077 

Initial sequence. b) Same sequence with major gaps lengthened by 100 years. c)  Same sequence 1078 

with major gaps lengthened by 300 years. Only c) has aperiodicity above the nominal burstiness 1079 

criterion of a > 1. 1080 
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 1083 
 1084 

Figure 7: Results of different methods to determine the number of clusters in a) Pallett Creek 1085 

record of Sieh et al., 1989, with event order corresponding to the figure in part e). b) Elbow 1086 

method where number of clusters is the largest k before increasing k creates only minor 1087 

improvements of TWSS. c) Silhouette method where maximum value indicates number of 1088 

clusters. d) Gap statistic method where maximum value indicates number of clusters. e) 1089 

Hierarchical clustering method using agglomerative nesting (AGNES) with Ward’s method; 1090 

vertical axis shows the cumulative length of time between cluster centers being merged at each 1091 

step.  1092 
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 1096 

 1097 
Figure 8: Long-Term Fault Memory model.  (Top) Simulated earthquake history. (Bottom) 1098 

Earthquake probability versus time.   1099 
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1102 
Figure 9: Sequences produced by the LTFM model can appear a) strongly periodic, b) weakly 1103 

periodic, c) Poissonian, or d) bursty, depending on the model parameters. The four sequences 1104 

shown have the same probability accumulation rate but different release parameters, so the 1105 

aperiodicity increases as R decreases. 1106 
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 1109 
 1110 

Figure 10: Using two probability thresholds (dashed lines) and probability drops to describe rare 1111 

larger events and more frequent smaller events allows LTFM to simulate a wide range of 1112 

observed supercycle behavior.  1113 
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 1114 

 1115 
 1116 

 1117 

Figure 11: LTFM simulation for Pallett Creek, California. Top: Paleoseismic record (Sieh et al., 1118 

1989).  Center and bottom: Simulation giving clustering similar to that observed. The event 1119 

timing differs between the simulation and the observed record due to the model’s stochastic 1120 

nature.  1121 
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 1122 
 1123 

Figure 12: a) 50,000 year LTFM simulation using Pallett Creek parameters.  The mean and 1124 

standard deviation of recurrence times are averaged over a moving 1345-year window, 1125 

corresponding to a paleoseismic record.  b, c) 3,000 year section of simulation above between 1126 

dashed lines in a).  The aperiodicity shows that the simulated paleoseismic record sometimes 1127 

appears strongly periodic (a < 0.5) , while at other times it looks weakly periodic ( 0.5 < a < 1), 1128 

Poissonian (a »  1), or bursty (a >  1).   1129 
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    1131 

 1132 

 1133 
 1134 
Figure 13: Illustration of earthquake probability issues for Cascadia due to a) differing 1135 
paleoseismic records of Goldfinger et al., 2012 and Goldfinger et al., 2017, with its newly 1136 
discovered event. Alternating red and blue events highlight the different clusters individual 1137 
events are assigned to. b) Various probability density functions for inter-event times with 1138 
parameters derived from the two chronologies in a). Orange sticks show the actual inter-event 1139 
times in the corresponding records. Dashed lines use parameters of just the most recent cluster, 1140 
corresponding to the assumption that the system is still in the recent cluster. Solid lines use the 1141 
parameters of the entire record, corresponding to the assumption that the recent cluster has 1142 
ended. c) Various conditional probabilities of an earthquake occurring in the next 50 years, using 1143 
the same line designations in b). The largest difference in b) and c) arises from the recent cluster 1144 
assumption, not in the specific density function assumed.  1145 
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