Radial Basis Functions for Computational Geosciences*

Grady B. Wright Department of Mathematics Boise State University

Natasha Flyer Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research

*This work is supported by NSF CMG grants ATM 0801309 and DMS 0934581

Topics to cover:

- Brief introduction to interpolation with Radial Basis Functions (RBFs).
- Shallow water wave equations on a rotating sphere.
- Thermal convection in a 3D spherical shell: mantle convection.
- Reconstruction and decomposition of geophysically relevant vector fields.

 $\frac{\text{Key idea}: \text{ linear combination of translates}}{\text{and rotations of a single radial function:}} f$

f

f

f

Interpolant:

$$s(\mathbf{x}) = \sum_{j=1}^{N} \beta_{j} \phi(\epsilon ||\mathbf{x} - \mathbf{x}_{j}||), \quad s(\mathbf{x}_{k}) = f_{k}, \quad k = 1, \dots, N$$

Linear system for expansion coefficients:

Guaranteed positive-definite for appropriate $\phi(r)$

• Extends easily to higher dimensions, e.g. in 3-D: $\|\mathbf{x} - \mathbf{x}_{j}\| = \sqrt{(x - x_{j})^{2} + (y - y_{j})^{2} + (z - z_{j})^{2}}$

x

Introduction to RBFs via interpolation

RBF Interpolant/approximant:
$$s(\mathbf{x}) = \sum_{j=1}^{N} \beta_j \phi(\epsilon ||\mathbf{x} - \mathbf{x}_j||)$$

• Classes and examples of radial functions:

Bottom line regarding RBFs:

- 1. High algorithmic simplicity
- 2. Independent of dimension
- 3. Independent of coordinate system

Shallow water wave equations on a rotating sphere

Collaborators:

Natasha Flyer, Institute for Mathematics Applied to Geosciences, NCAR Erik Lehto, Dept. of Information Technology, Uppsala University, Sweden Sébastien Blaise, Institute for Mathematics Applied to Geosciences, NCAR Amik St-Cyr, Royal Dutch Shell, Houston, Texas Interpolation in a box

Interpolation on the sphere

Interpolant does not change: $s(\mathbf{x}) = \sum_{j=1}^{N} \beta_{j} \phi(\epsilon ||\mathbf{x} - \mathbf{x}_{j}||), \quad s(\mathbf{x}_{k}) = f_{k}, \ k = 1, \dots, N$

Examples of different optimal point sets on the sphere Mathematics in the Geosciences

J. Baumgardner and P. Frederickson, Icosehedral discretization of the two- sphere, *SIAM J. Sci. Comput.* 22 (1985), 1107–1115.

R. Swinbank and R.J. Purser. Fibonacci girds: A novel approach to global modeling. *Quart. J. Roy. Meteor. Soc.*, 132, 1769-1793, 2006.

E.B. Saff and A.B.J. Kuijlaars. Distributing many points on a sphere. *Mathematical Intelligencer*, 19(1), 5-11, 1997.

Minimum Energy

D. P. Hardin and E. B. Saff. Discretizing manifolds via minimum energy points. *Notices Amer. Math. Soc.*, 51:1186–1194, 2004.
R.S. Womersley and I.H. Sloan,

http://web.maths.unsw.edu.au/~rsw/Sphere/

Shallow water equations (SWE) on a rotating sphere Mathematics in the Geosciences

Oct. 3-6, 2011

• Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous, and inviscid fluid layer.

• Idealized test-bed for the horizontal dynamics of all 3-D global climate models.

Equations	Momentum	Transport	
Spherical coordinates	$\frac{\partial \mathbf{u}_s}{\partial t} + \mathbf{u}_s \cdot \nabla_s \mathbf{u}_s + f \hat{\mathbf{k}} \times \mathbf{u}_s + g \nabla_s h = 0$	$\frac{\partial h^*}{\partial t} + \nabla_s \cdot (h^* \mathbf{u}_s) = 0$	
	Singularity at poles!		
Cartesian coordinates	$\frac{\partial \mathbf{u}_c}{\partial t} + P \begin{bmatrix} (\mathbf{u}_c \cdot P\nabla_c)u_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{i}} + g(P\hat{\mathbf{i}} \cdot \nabla_c)h \\ (\mathbf{u}_c \cdot P\nabla_c)v_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{j}} + g(P\hat{\mathbf{j}} \cdot \nabla_c)h \\ (\mathbf{u}_c \cdot P\nabla_c)w_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{k}} + g(P\hat{\mathbf{k}} \cdot \nabla_c)h \end{bmatrix} = 0 \frac{\partial h^*}{\partial t} + (P\nabla_c) \cdot (h^*\mathbf{u}_c) = 0$		
	Smooth o	ver entire sphere!	

Mathematics in the Geosciences Oct. 3-6. 2011

Governing equations:

$$\frac{\partial \mathbf{u}_c}{\partial t} = -P \begin{bmatrix} (\mathbf{u}_c \cdot P\nabla_c)u_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{i}} + g(P\hat{\mathbf{i}} \cdot \nabla_c)h \\ (\mathbf{u}_c \cdot P\nabla_c)v_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{j}} + g(P\hat{\mathbf{j}} \cdot \nabla_c)h \\ (\mathbf{u}_c \cdot P\nabla_c)w_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{k}} + g(P\hat{\mathbf{k}} \cdot \nabla_c)h \end{bmatrix}$$

$$\frac{\partial h^*}{\partial t} = -(P\nabla_c) \cdot (h^* \mathbf{u}_c)$$

Procedure: Collocation and Method-of-Lines:

- 1. Choose some "nice" discretization of the sphere:
- 2. Approximate continuous differential operators at the nodes with discrete operators (differentiation matrices) using RBF interpolants

$$s(\mathbf{x}) = \sum_{j=1}^{N} \beta_j \phi(\epsilon ||\mathbf{x} - \mathbf{x}_j||)$$

- 3. Replace unknowns with pointwise values and continuous operators with differentiation matrices.
 - Governing equations are satisfied pointwise at the nodes (collocation).
- 4. Advance the system in time using some "standard" ODE method.

Numerical Example I

Forcing terms added to the shallow water equations to generate a flow that mimics a short wave trough embedded in a westerly jet. (Test case 4 of Williamson *et. al.* 1992)

Initial velocity field \mathbf{a}

Initial geopotential height field

Errors after trough travels once around the sphere

Mathematics in the Geosciences Oct. 3-6, 2011

• Results of the RBF Shallow Water Model: (N. Flyer and G.B. Wright. *Proc. R. Soc. A*, 2009)

Error as a function of time and N

Error height field, t = 5 days

N = 3136, white $< 10^{-5}$ Error (exact - numerical)

Method	N	Time step	Relative <i>l</i> ₂ error
RBF	4,096	8 minutes	2.5 × 10 ⁻⁶
	5,041	6 minutes	1.0 × 10 ⁻⁸
Sph. Harmonic	8,192	3 minutes	2.0 × 10 ⁻³
Double Fourier	32,768	90 seconds	4.0×10^{-4}
Spect. Element	24,576	45 seconds	4.0 × 10 ⁻⁵

Time-step for RBF method: Temporal Errors = Spatial Errors Time-step for other methods: Limited by numerical stability

• RBF method runtime in MATLAB using 2.66 GHz Xeon Processor

N	Runtime per time step	Total Runtime
	(sec)	
4,096	0.41	6 minutes
5,041	0.60	12 minutes

For much higher numerical accuracy, RBFs uses less nodes & larger time steps

New discretization strategy: RBF-FD Method

• Key Idea: Construct an approximation to the differential operators at a node locally using an RBF interpolant defined only on *m* surrounding nodes.

Illustration:

- Similarities to how finite differences (FD) are constructed.
- Key difference is that this works for *scattered nodes*.
- Call this method the **RBF-FD** method.
- Results in a fast, scalable method.

Numerical Example II: RBF-FD method

(Flyer, Lehto, Blaise, Wright, and St-Cyr. Submitted, 2011)

Flow over a conical mountain (Test case 5 of Williamson et. al. 1992)

Height field at *t*=0 days

Height field at *t*=15 days

Simulation

Mathematics in the Geosciences Oct. 3-6, 2011

× Standard Literature/Comparison: NCAR's Sph. Har. T426, Resolution ≈ 30 km at equator \circ New Model at NCAR Discontinuous Galerkin – Spectral Element, Resolution ≈ 30 km \Box RBF-FD model, Resolution ≈ 60 km

Machine: MacBook Pro, Intel i7 2.2 GHz, 8 GB Memory

Numerical Example III: RBF-FD method

- Evolution of a highly non-linear wave: (Test case from Galewsky et. al. Tellus, 2004)
- RBF-FD method with N=163,842 nodes and m=31 point stencil.

Thermal convection in a 3D spherical shell with applications to the Earth's mantle.

Collaborators

Natasha Flyer, Institute for Mathematics Applied to Geosciences, NCAR David A. Yuen, Department of Geology and Geophysics, University of Minnesota Louise H. Kellogg, Dept. of Geology, UC Davis Pierre-Andre Arrial, Dept. of Geology, UC Davis Gordon Erlebacher, School of Computational Science and IT, Florida State University

Simulating convection in the Earth's mantle

(Wright, Flyer, and Yuen. Geochem. Geophys. Geosyst., 2010)

- Model assumptions:
 - 1. Fluid is incompressible
 - 2. Viscosity of the fluid is constant
 - 3. Boussinesq approximation

4. Infinite Prandtl number, $\Pr = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} \rightarrow \infty$

• Non-dimensional Equations:

$$\nabla \cdot \mathbf{u} = 0 \quad (\text{continuity}),$$
$$\nabla^2 \mathbf{u} + \operatorname{Ra} T \,\hat{\mathbf{r}} - \nabla p = 0 \quad (\text{momentum}),$$
$$\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T - \nabla^2 T = 0 \quad (\text{energy}).$$

• Boundary conditions:

Velocity: impermeable and shear-stress free Temperature (isothermal): T = 1 at core mantle bndry., T = 0 at crust mantle bndry.

• Rayleigh, Ra, number governs the dynamics. • Model for Rayleigh-Bénard convection

Discretization of the equations

Mathematics in the Geosciences Oct. 3-6, 2011

- Use a hybrid RBF-Pseudospectral method
- Collocation procedure using a 2+1 approach with
 - > N RBF nodes on each spherical surface (θ and λ directions) and
 - > *M* Chebyshev nodes in the radial direction.

N RBF nodes (ME) on a spherical surface

3-D node layout showing MChebyshev nodes in radial direction

Ra=7000 benchmark: validation of method

N = 1600 nodes on each spherical shell M = 23 shells Blue=downwelling, Yellow= upwelling, Red=core

• Comparisons against main previous results from the literature:

Method	No of nodes	Nu _{outer}	Nuinnner	<v<sub>RMS ></v<sub>	< T >
Finite volume	663,552	3.5983	3.5984	31.0226	0.21594
Finite elements (CitCom)	393,216	3.6254	3.6016	31.09	0.2176
Finite differences (Japan)	12,582,912	3.6083		31.0741	0.21639
Spherical harmonics -FD	552,960	3.6086		31.0765	0.21582
Spherical harmonics -FD	Extrapolated	3.6096		31.0821	0.21577
RBF-Chebyshev	36,800	3.6096	3.6096	31.0820	0.21578

Nu = ratio of convective to conductive heat transfer across a boundary

High Ra Number: Comparing two novel simulations Mathematics in the Geosciences

Oct. 3-6. 2011

First mantle convection model run on a Graphics Processing Unit (GPU) Novelty: Simulation run times up to 15 times faster Strength: Drawback: Second-order, very dissipative, non-spherical geometry

Degrees of freedom: 32 million Time step \approx 34,000 years

$$Ra = 10^7$$

Blue=downwelling, Yellow= upwelling, Red=core

Largest RBF simulation Novelty:

Only fully spectrally accurate simulation Strength: Drawback: Computationally slow

Degrees of freedom: 531,441 Time step \approx 34,000 years

 $Ra = 10^{6}$

t=4.5 times the age of the earth

An investigation of low Ra number instabilities

Mathematics in the Geosciences Oct. 3-6, 2011

Perturb standard cubic test $T(r,\theta,\lambda) = \left[Y_4^0(\theta,\lambda) + (1-\delta)\frac{5}{7}Y_4^4(\theta,\lambda)\right] \sin\left(\pi\frac{r-R_i}{R_o-R_i}\right)$

Ra = 70K, Simulation time t=0.3 (\approx 18 times age of the Earth)

Steady flow

Unsteady flow

Joint work with Natasha Flyer, Louise Kellogg, Pierre-Andre Arrial, and Dave Yuen

• Improving computational efficiency: use RBF generated finite differences (RBF-FD)

Illustration:

• Extend model to handle more realistic physics (e.g. variable viscosity, mantle layering).

Joint work Natasha Flyer, Gordon Erlebacher, Evan Bollig (graduate student), Greg Barnett (graduate student)

Reconstruction and decomposition vector fields.

Collaborators

Edward J Fuselier, Dept. of Mathematics, High Point University Francis J. Narcowich, Dept. of Mathematics, Texas A&M Joseph D. Ward, Dept. of Mathematics, Texas A&M Uwe Harlander, Dept. Aerodynamics and Fluid Mechanics, BTU Cottbus • <u>Theorem</u>: Any vector field tangent to the sphere can be *uniquely* decomposed into surface divergence-free and surface curl-free components:

 $\mathbf{u}(\mathbf{x}) = \mathbf{u}_{\text{div}}(\mathbf{x}) + \mathbf{u}_{\text{curl}}(\mathbf{x})$ $= Q_{\mathbf{x}} \nabla \psi(\mathbf{x}) + P_{\mathbf{x}} \nabla \chi(\mathbf{x})$

 $\psi =$ stream function and $\chi =$ velocity potential

• Example:

Goal: Construct an RBF-type interpolant that mimics the Helmholtz-Hodge decomposition.

Example: decomposition of a atmospheric velocity field thematics in the Geosciences Oct. 3-6, 2011

• Test case 5 (flow over an isolated mountain) from Williamson et. al. JCP (1992).

Example: decomposition of a geophysical velocity field thematics in the Geosciences Oct. 3-6, 2011

• Test case 5 (flow over an isolated mountain) from Williamson et. al. JCP (1992).

Example: decomposition of a geophysical velocity field thematics in the Geosciences Oct. 3-6, 2011

- Test case 5 (flow over an isolated mountain) from Williamson et. al. JCP (1992).

Flow in a rotating differentially heated annulus

- Approximation and decomposition of "real vector fields".
- Rotating differentially heated annulus for studying the baroclinic instability.

From Harlander, BTU Cottbus 2008

Joint work with U. Harlander (BTU Cottbus)

Example reconstruction

• Vector field data from PIV measurements at 5 levels in the cylindrical tank:

Example reconstruction

Mathematics in the Geosciences Oct. 3-6, 2011

• Stream lines of the flow from the RBF reconstructed vector field:

• Colors correspond to traces of particles from different levels in the tank. This data can be used to validate the numerical simulations of this fluid flow.

= Significant opportunities

Leave your mesh behind!