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Overview of this tutorial

Topics to cover:

● Brief introduction to interpolation with Radial Basis Functions (RBFs).

● Shallow water wave equations on a rotating sphere.

● Thermal convection in a 3D spherical shell: mantle convection.

● Reconstruction and decomposition of geophysically relevant vector fields.
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Introduction to RBFs via interpolation

Key idea: linear combination of translates 
and rotations of a single radial function:

s x =∑
j=1

N

 j ∥x−x j∥ , sxk = f k , k=1, , N

Interpolant:

∥x−x j∥= x−x j
2 y− y j

2
where
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Introduction to RBFs via interpolation

Key idea: linear combination of translates 
and rotations of a single radial function:

Interpolant:

s x =∑
j=1

N

 j ∥x−x j∥ , sxk = f k , k=1, , N

Linear system for expansion coefficients:

[ ∥x1−x1∥ ∥x1−x2∥ ⋯ ∥x1−xN∥
∥x2−x1∥ ∥x2−x2∥ ⋯ ∥x2−xN∥

⋮ ⋮ ⋱ ⋮
∥xN−x1∥ ∥xN−x2∥ ⋯ ∥xN−xN∥

][ 1

2

⋮
N

]=[ f 1

f 2

⋮
f N

] ,

Guaranteed 
positive-definite 
for appropriate 
φ (r)

● Extends easily to higher dimensions, e.g. in 3-D: ∥x−x j∥= x−x j
2 y−y j 

2 z−z j
2
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Introduction to RBFs via interpolation
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Piecewise smooth φ(r): Infinitely smooth φ(r)::

cubic

r3

TP spline

r2 log r

multiquadric

 1r2

Gaussian

e−r2

Inverse quadratic

1
1r2

● Classes and examples of radial functions:

1−r +
3 3 r1

Wendland
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RBF Interpolant/approximant: s x =∑
j=1

N

 j ∥x−x j∥

Bottom line regarding RBFs:

1.  High algorithmic simplicity
2.  Independent of dimension
3.  Independent of coordinate system
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Shallow water wave equations

Shallow water wave equations 
on a rotating sphere

Collaborators:

Natasha Flyer, Institute for Mathematics Applied to Geosciences, NCAR
Erik Lehto, Dept. of Information Technology, Uppsala University, Sweden
Sébastien Blaise, Institute for Mathematics Applied to Geosciences, NCAR
Amik St-Cyr, Royal Dutch Shell, Houston, Texas
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RBFs for spherical geometries

Interpolation on the sphere

Interpolant does not change:

s x =∑
j=1

N

 j ∥x−x j∥ , sxk = f k , k=1, , N

Interpolation in a box
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Examples of different optimal point sets on the sphere

Icosahedral

Fibonacci

Equal Area

Minimum Energy

E.B. Saff and A.B.J. Kuijlaars. Distributing many points on a 
sphere. Mathematical Intelligencer, 19(1), 5-11, 1997.

● D. P. Hardin and E. B. Saff. Discretizing manifolds via minimum 
energy points. Notices Amer. Math. Soc., 51:1186–1194, 2004.
● R.S. Womersley and I.H. Sloan, 
http://web.maths.unsw.edu.au/~rsw/Sphere/

R. Swinbank and R.J. Purser.  Fibonacci girds: A novel approach to 
global modeling.  Quart. J. Roy. Meteor. Soc., 132, 1769-1793, 2006.

J. Baumgardner and P. Frederickson, Icosehedral discretization of 
the two- sphere, SIAM J. Sci. Comput. 22 (1985), 1107–1115.
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Shallow water equations (SWE) on a rotating sphere
● Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous,
   and inviscid fluid layer.

● Idealized test-bed for the horizontal dynamics of all 3-D global climate models.

Equations Momentum Transport

Spherical
coordinates

Cartesian
coordinates

Singularity at poles!

Smooth over entire sphere!
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RBF discretization for SWE on a rotating sphere

Collocation nodes

1. Choose some “nice” discretization of the sphere:

2. Approximate continuous differential operators at the nodes 
   with discrete operators (differentiation matrices) using RBF interpolants

Procedure: Collocation and Method-of-Lines:

3. Replace unknowns with pointwise values and continuous operators with differentiation matrices. 

4. Advance the system in time using some “standard” ODE method.

s x =∑
j=1

N

 j ∥x−x j∥

➢  Governing equations are satisfied pointwise at the nodes (collocation).

Governing equations:
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Numerical Example I

Forcing terms added to the shallow water equations to generate a flow that mimics a short 
wave trough embedded in a westerly jet. (Test case 4 of Williamson et. al. 1992)

Initial velocity field Initial geopotential height field
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Errors after trough travels once around the sphere

Error as a function of time and N Error height field, t = 5 days

(N. Flyer and G.B. Wright. Proc. R. Soc. A, 2009)

● Results of the RBF Shallow Water Model:
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Comparison with commonly used methods

Time-step for RBF method:   Temporal Errors = Spatial Errors
Time-step for other methods:  Limited by numerical stability

● RBF method runtime in MATLAB using 2.66 GHz Xeon Processor

For much higher numerical accuracy, RBFs uses less nodes & larger time steps
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New discretization strategy: RBF-FD Method
● Key Idea: Construct an approximation to the differential operators at a node 
                   locally using an RBF interpolant defined only on m surrounding nodes.

 Illustration:

● Similarities to how finite differences (FD) are constructed.

● Key difference is that this works for scattered nodes.

● Call this method the RBF-FD method.

● Results in a fast, scalable method.

4 stencils to approximate derivatives Differentiation matrix for N=25000 nodes
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Numerical Example II: RBF-FD method

 Flow over a conical mountain (Test case 5 of Williamson et. al. 1992)

Height field at t=0 days Height field at t=15 days

(Flyer, Lehto, Blaise, Wright, and St-Cyr. Submitted, 2011) 

Simulation

http://www.youtube.com/watch?v=ebrTJeKFGBg
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Convergence comparison: 3 reference solutions

 Standard Literature/Comparison: NCAR's Sph. Har. T426, Resolution ≈ 30 km at equator 
 New Model at NCAR Discontinuous Galerkin – Spectral Element, Resolution  ≈ 30 km
 RBF-FD model, Resolution  ≈ 60 km

Convergence plot RBF-FD with stencil size of m=31
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Error vs. runtime comparison

Machine: MacBook Pro, Intel i7 2.2 GHz, 8 GB Memory
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Numerical Example III: RBF-FD method
● Evolution of a highly non-linear wave: (Test case from Galewsky et. al. Tellus, 2004)
● RBF-FD method with N=163,842 nodes and m=31 point stencil.

Visualization of the 
relative vorticity

Day 3 Day 4

Day 5 Day 6



Mathematics in the Geosciences
Oct. 3-6, 2011

Geophysical modeling on the sphere: Part II

Thermal convection in a 3D spherical shell 
with applications to the Earth's mantle.

Collaborators

Natasha Flyer, Institute for Mathematics Applied to Geosciences, NCAR
David A. Yuen, Department of Geology and Geophysics, University of Minnesota 
Louise H. Kellogg, Dept. of Geology, UC Davis
Pierre-Andre Arrial, Dept. of Geology, UC Davis
Gordon Erlebacher, School of Computational Science and IT, Florida State University 
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Simulating convection in the Earth's mantle

● Model assumptions:

● Boundary conditions:

● Rayleigh, Ra, number governs the dynamics. ● Model for Rayleigh-Bénard convection

(Wright, Flyer, and Yuen. Geochem. Geophys. Geosyst., 2010)

● Non-dimensional Equations:
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Discretization of the equations
● Use a hybrid RBF-Pseudospectral method

➢ N  RBF nodes on each spherical surface (θ and λ directions) and
➢ M Chebyshev nodes in the radial direction.

● Collocation procedure using a 2+1 approach with

N RBF nodes (ME) on a 
spherical surface

3-D node layout showing M 
Chebyshev nodes in radial direction
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Ra=7000 benchmark: validation of method
Perturbation
initial condition:

● Comparisons against main previous results from the literature:

Steady solution:

N = 1600 nodes on each spherical shell
M = 23 shells 
Blue=downwelling, Yellow= upwelling, Red=core

Nu = ratio of convective to conductive heat transfer across a boundary
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High Ra Number: Comparing two novel simulations
Novelty:
Strength:
Drawback:

First mantle convection model run on a Graphics Processing Unit (GPU)
Simulation run times up to 15 times faster
Second-order, very dissipative, non-spherical geometry

Novelty:
Strength:
Drawback:

Largest RBF simulation
Only fully spectrally accurate simulation
Computationally slow

Degrees of freedom: 32 million 
Time step ≈ 34,000 years

Degrees of freedom: 531,441 
Time step ≈ 34,000 years

t=4.5 times the age of the earth

Blue=downwelling, 
Yellow= upwelling, 
Red=core

Simulation

http://www.youtube.com/watch?v=-kDb0HlDsIM
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An investigation of low Ra number instabilities

Perturb standard
cubic test

S
te

ad
y 

fl
ow

U
ns

te
ad

y 
fl

ow

δ=0 δ=0.06 δ=0.07

δ=0.075 δ=0.10

Ra = 70K, Simulation time t=0.3 (≈18 times age of the Earth)

Joint work with Natasha Flyer, Louise Kellogg, Pierre-Andre Arrial, and Dave Yuen
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Current focus

● Improving computational efficiency: use RBF generated finite differences (RBF-FD)

Joint work Natasha Flyer, Gordon Erlebacher, Evan Bollig (graduate student), Greg Barnett (graduate student) 

Illustration:

● Extend model to handle more realistic physics (e.g. variable viscosity, mantle layering).
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Geophysical modeling on the sphere: Part III

Reconstruction and decomposition
vector fields.

Collaborators

Edward J Fuselier, Dept. of Mathematics, High Point University
Francis J. Narcowich, Dept. of Mathematics, Texas A&M
Joseph D. Ward, Dept. of Mathematics, Texas A&M 
Uwe Harlander, Dept. Aerodynamics and Fluid Mechanics, BTU Cottbus 
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Helmholtz-Hodge Theorem

● Theorem: Any vector field tangent to the sphere can be uniquely decomposed 
into surface divergence-free and surface curl-free components:

● Example:

 
=

 
+

 Goal:  Construct an RBF-type interpolant that mimics the Helmholtz-Hodge decomposition.
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Example: decomposition of a atmospheric velocity field

● Test case 5 (flow over an isolated mountain) from Williamson et. al. JCP (1992).
 Height field t=15 days

 Velocity field u t=15 days
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Example: decomposition of a geophysical velocity field

 RBF reconstructed div-free velocity field t=15 days

● Test case 5 (flow over an isolated mountain) from Williamson et. al. JCP (1992).

 RBF reconstructed curl-free velocity field t=15 days
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Example: decomposition of a geophysical velocity field

 RBF reconstructed stream function t=15 days

● Test case 5 (flow over an isolated mountain) from Williamson et. al. JCP (1992).

 RBF reconstructed velocity potential t=15 days
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Flow in a rotating differentially heated annulus
● Approximation and decomposition of “real vector fields”.

● Rotating differentially heated annulus for studying the baroclinic instability.

From Harlander, 
BTU Cottbus 2008

Joint work with U. Harlander (BTU Cottbus)
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Example reconstruction

● Vector field data from PIV measurements at 5 levels in the cylindrical tank:
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Example reconstruction

● Stream lines of the flow from the RBF reconstructed vector field:

● Colors correspond to traces of particles from different levels in the tank.

 This data can be used to validate the numerical simulations of this fluid flow.
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Concluding remarks I:

+ = Significant opportunities
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Concluding remarks II:

G
o

w
ith

the
flow

Leave your mesh behind!
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