
Mathematical Notes for E&M
Gradient, Divergence, and Curl

In these notes I explain the differential operators gradient, divergence, and curl (also

known as rotor), the relations between them, the integral identities involving these operators,

and their role in electrostatics.

Definitions:

• Gradient of a scalar field S(x, y, z) is a vector field

grad S ≡ ∇S with components

(
∂S

∂x
,
∂S

∂y
,
∂S

∂z

)
. (1)

Note formal vector structure of a product of a vector ∇ with a scalar S:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
=⇒ ∇S =

(
∂

∂x
S,

∂

∂y
S,

∂

∂z
S

)
. (2)

• Divergence of a vector field A(x, y, z) is a scalar field

div A ≡ ∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
. (3)

Note formal structure of a scalar product of a vector ∇ and a vector A:

∇ ·A =
∂

∂x
Ax +

∂

∂y
Ay +

∂

∂z
Az . (4)

• Curl or rotor of a vector field A is a vector field

curl A ≡ rot A ≡ ∇×A

(
∂Az

∂y
−
∂Ay

∂z
,
∂Ax

∂z
− ∂Az

∂x
,
∂Ay

∂x
− ∂Ax

∂y

)
. (5)

Note formal structure of a vector product of ∇ and A:

(∇×A)x =
∂

∂y
Az −

∂

∂z
Ay ,

(∇×A)y =
∂

∂z
Ax −

∂

∂x
Az ,

(∇×A)z =
∂

∂x
Ay −

∂

∂y
Ax .

(6)
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Identities:

◦ A gradient has zero curl:

∇×
(
∇S
)
≡ 0. (7)

Mnemonics: ∇×
(
∇S
)

=
(
∇×∇

)
S = 0 because ∇×∇ = 0 as a cross product of a

vector ∇ with itself..

Formal proof:

[
∇×

(
∇S
)]

x
=

∂

∂y

(
∇S
)
z
− ∂

∂z

(
∇S
)
y

=
∂

∂y

∂S

∂z
− ∂

∂z

∂S

∂y
= 0 (8)

because the ∂/∂y and ∂/∂z partial derivatives can be taken in any order without

changing the result. Likewise, the y and z components of ∇×
(
∇S
)

vanish for similar

reasons.

? In particular, in electrostatics ∇E = 0.

◦ A curl has zero divergence:

∇ ·
(
∇×A

)
= 0. (9)

Mnemonics: ∇ ·
(
∇×A

)
=
(
∇×∇

)
·A = 0 because ∇×∇ = 0.

Formal proof:

∇ ·
(
∇×A

)
=

∂

∂x

(
∇×A

)
x

+
∂

∂y

(
∇×A

)
y

+
∂

∂z

(
∇×A

)
z

=
∂

∂x

(
∂Az

∂y
−
∂Ay

∂z

)
+

∂

∂y

(
∂Ax

∂z
− ∂Az

∂x

)
+

∂

∂z

(
∂Ay

∂x
− ∂Ax

∂y

)

=

(
∂

∂x

∂Az

∂y
− ∂

∂y

∂Az

∂x

)
+

(
∂

∂y

∂Ax

∂z
− ∂

∂z

∂Ax

∂y

)
+

(
∂

∂z

∂Ay

∂x
− ∂

∂x

∂Ay

∂z

)
= 0 + 0 + 0 = 0.

(10)
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Leibniz Rules:

∇
(
SP
)

= S
(
∇P

)
+ P

(
∇S
)
, (11)

∇ ·
(
SA
)

=
(
∇S
)
·A + S

(
∇ ·A

)
, (12)

∇×
(
SA
)

=
(
∇S
)
×A + S

(
∇×A

)
, (13)

∇ ·
(
A×B

)
=
(
∇×A

)
·B −

(
∇×B

)
·A. (14)

Integrals and Theorems

For ordinary functions of one variable, there is Newton’s Theorem about integrals of

derivatives: for any function f(x) and its derivative f ′(x) = df
dx ,

b∫
a

f ′(x) dx = f(b) − f(a). (15)

The gradient theorem generalizes Newton’s theorem to integrals of gradients over curved

lines in 3D space: for any path P from point A to point B and any scalar field S(x, y, z),

∫
P :A→B

(∇S) · dr =

B∫
A

dS(r) = S(B) − S(A). (16)

For example, in Electrostatics E = −∇V , and therefore for any path P from point A to

point B, ∫
P :A→B

E · dr = −V (B) + V (A). (17)

There are also theorems concerning volume integrals of divergences and surface integrals

of curls. Let me state these theorems without proofs; hopefully, you should learn the proofs

in a Math class.
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Gauss Theorem and Gauss Law

Another very important theorem for the electrostatics and the electromagnetism is the

Gauss’s divergence theorem which relates the flux of a vector field through a surface and the

volume integral of the field’s divergence.

Gauss’s Theorem (also known as Ostrogradsky’s theorem or divergence theorem):

Let V be a volume of space and let S be its boundary, i.e., the complete surface of V sur-

rounding V on all sides. Then, for any differentiable vector field A(x, y, z), the flux of A

through S equals to the volume integral of the divergence ∇ ·A over V,

∫∫∫
V

(
∇ ·A

)
d3Volume =

∫∫
S

A · d2Area. (18)

Note: in these integrals, the infinitesimal volume d3Volume = dx dy dz acts as a scalar, but

the infinitesimal area d2Area acts as a vector; its direction is normal to the surface S, from

the inside of V to the outside.

This theorem allows us to rewrite the Gauss Law in differential form:

∇ · E(x, y, z) = 4πk × ρ(x, y, z) (19)

where ρ is the volume density of the electric charge and k is the Coulomb constants. In

Gaussian units

∇ · E = 4π × ρ (20)

while in MKSA units

∇ · E =
1

ε0
× ρ. (21)

Note: the Gauss Law — in the integral form or in the differential form — applies not just

in electrostatics but also in electrodynamics. Indeed, the Maxwell’s equations of electrody-

namics include the Gauss Law (19).
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To derive eq. (19), let’s start with the integral form of the Gauss Law which relates the

net flux of the electric field E through any closed surface S to the net electric charge in the

volume V enclosed within S,

ΦE [S] ≡
∫∫
S

E · d2Area = 4πk ×Qnet[inside V ]. (22)

By Gauss’s divergence theorem, the flux of E equals to the volume integral of the divergence

∇ · E, hence

∫∫∫
V

(
∇ · E

)
d3Volume =

∫∫
S

A · d2Area = 4πk ×Qnet[inside V ]. (23)

For a continuous charge distribution with volume density ρ(x, y, z),

Qnet[inside V ] =

∫∫∫
V

ρ d3Volume, (24)

hence ∫∫∫
V

(
∇ · E

)
d3Volume =

∫∫∫
V

4πk × ρ d3Volume. (25)

Note: both sides of this equation are integrals over the same volume V , and the equality must

hold for any such volume. Consequently, the integrands on both sides must be identically

equal at all (x, y, z), thus

∇ · E(x, y, z) = 4πk × ρ(x, y, z). (26)

Quod erat demonstrandum.
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Electrostatic Energy

In class I have derived the electrostatic potential energy of a system of several charged

conductors. If each conductor has net charge Qi and potential Vi (which is constant over

the whole conductor), then the net electrostatic energy is

U =
1

2

∑
i

Vi ×Qi . (27)

To generalize this formula to charged insulators where the electric charge is distributed

throughout the insulator’s volume and the potential is not locally constant, we simply replace

the sum over conductors to the volume integral

U =
1

2

∫∫∫
V (r)× ρ(r) d3r (28)

where ρ(r) is the electric charge density and

d3r = d3Volume = dx dy dz. (29)

Formally, the integral in eq. (28) is over the whole 3D space, but we may reduce the integra-

tion domain to the volume actually occupied by the electric charges since everywhere else

ρ = 0.

In light of the Gauss Law (19), we may rewrite eq. (28) for the electrostatic energy in

terms of the electric field E and the potential V :

ρ =
∇ · E
4πk

=⇒ U =
1

8πk

∫∫∫
V
(
∇ · E

)
d3r. (30)

Now let’s take this integral by parts. By one of the Leibniz rules,

∇ ·
(
VE
)

= V
(
∇ · E

)
+
(
∇V

)
· E = V (∇ · E

)
− E2, (31)

hence by Gauss’s theorem∫∫∫
V

V
(
∇ · E

)
d3r =

∫∫∫
V

E2 d3r +

∫∫∫
V

∇ ·
(
VE
)
d3r

=

∫∫∫
V

E2 d3r +

∫∫
S

VE · d2Area.

(32)
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In this formula V can be any volume while S is its complete surface. In the context of

equations (28) and (30), we want the volume V to contain all the electric charges, but it’s

OK if it also contains some empty space. For the moment, let V be a very large sphere of

radius R, so S is a very large sphere. Consequently, the surface-integral term in eq. (32)

becomes ∫∫
S

VE · d2Area =

∫∫
V (r)× Erad(r)×R2 d2Ω (33)

where d2Ω is the infinitesimal solid angle.

Now let’s take the infinite radius limit, R→∞. As long as the net charge of the system

is finite, at very large distances from it the electric field decreases like E ∝ R−2 while the

potential decreases like V ∝ R−1. Consequently,

V (R)× Erad(R)×R2 ∝ 1

R
−−−→
R→∞

0, (34)

and the surface integral (33) approaches zero. At the same time, the volume integrals on

the left and right sides of eq. (32) become integrals over the whole space, thus∫∫∫
whole
space

V
(
∇ · E

)
d3r =

∫∫∫
whole
space

E2 d3r. (35)

Consequently, the net electrostatic energy of the system may be written as

U =
1

8πk

∫∫∫
whole
space

E2 d3r. (36)

In MKSA units this formula becomes

U =
ε0
2

∫∫∫
whole
space

E2 d3r (37)

while in Gaussian units is becomes

U =
1

8π

∫∫∫
whole
space

E2 d3r. (38)
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Other Useful Theorems

Stokes’s theorem (also known as the curl theorem): Let C be a closed loop in 3D space

and let S be a surface spanning C as shown on the picture below:

Note: S should not have any holes, or any boundaries other than C. Let A be a vector field

and B = ∇× A its curl. Then the flux of the curl though S equals to the loop integral of A

over C, ∫∫
S

(
∇×A) · d2Area =

∮
C

A · dr. (39)

The Stokes’s theorem will be very useful when we study the magnetic field.
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Poincaré Lemma is a rather general theorem in differential topology. For the present

purposes, let me state it for two particularly simple — and particularly important — cases.

• If a vector field A(x, y, z) has a curl ∇×A which vanishes everywhere in space, then

A is a gradient of some scalar field,

if ∇×A(x, y, z) ≡ 0 ∀ (x, y, z),

then ∃ scalar field S(x, y, z) such that

A(x, y, z) ≡ ∇S(x, y, z).

(40)

For examples, in electrostatics (but not in electrodynamics) the electric field E has

zero curl everywhere in space, so it’s a gradient of a scalar field −V (x, y, z),

∇× E(x, y, z) ≡ 0 ∀(x, y, z) =⇒ ∃ V (x, y, z) for which E ≡ −∇V. (41)

• If a vector field B(x, y, z) has a divergence ∇ ·B which vanishes everywhere in space,

then B is a curl of another vector field A(x, y, z),

if ∇ ·B(x, y, z) ≡ 0 ∀ (x, y, z),

then ∃ vector field A(x, y, z) such that

B(x, y, z) ≡ ∇×A(x, y, z).

(42)

In particular, there are no magnetic charges, so the magnetic field B(x, y, z) has zero

divergence everywhere in space. Consequently, it can be written as a curl of the vector

potential A(x, y, z),

∇ ·B(x, y, z) ≡ 0 ∀(x, y, z) =⇒ ∃ A(x, y, z) for which B ≡ ∇×A. (43)
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Laplace operator:

The Laplace operator or the Laplacian is a second-order differential operator

4 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (44)

From the rotational point of view, the Laplacian is a scalar, so when it acts on a scalar field

it makes a scalar, when it acts on a vector field it makes a vector, etc. For scalar fields, the

Laplacian acts as a divergence of the gradient,

4S = ∇ ·
(
∇S
)
. (45)

In particular, the Laplacian of the electrostatic potential V (x, y, z) is related by this formula

to the divergence of the electric field and hence by Gauss Law to the electric charge density:

∇V = −E =⇒ 4V = ∇ ·
(
∇V

)
= −∇ · E = −4πk × ρ. (46)

This relation is knows as the Poisson equation.
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