List of Publications
Vassiliki (Vicky) Kalogera

[h-indices from NASA ADS system: 71 (34,100+ citations) without and 97 (50,500+ citations) with the “Other LIGO Scientific Collaboration publications”, respectively]

Before 1998:

3. A Strongly Magnetic Neutron Star in a Face-On Binary System

4. The Maximum Mass of a Neutron Star

5. Orbital Characteristics of Binary Systems after Asymmetric Supernova Explosions

6. A New Mechanism for the Formation of LMXBs: Direct Supernova

7. Double Neutron Star Systems and Natal Neutron Star Kicks

In 1998:

11. Supernova Kicks, Magnetic Braking, and Neutron-Star Binaries

1 Publications in Peer-Reviewed Journals marked with •
In 1999:

14. • Donor Stars in Black-Hole X-Ray Binaries

15. Coalescence Rates of Double Neutron Stars

16. • Formation of the Observed Double Neutron Star Systems

In 2000:

17. • Bounds on Neutron-Star Moments of Inertia and the Evidence for General Relativistic Frame Dragging

18. Close Binaries with Two Compact Objects

19. Compact Binary Mergers and Accretion-Induced Collapse: Event Rates

20. • Constraints on Supernova Kicks from the Double Neutron Star System PSR B1913+16

21. • An Upper Limit on the Coalescence Rate of Double Neutron-Star Binaries in the Galaxy

22. • Spin-Orbit Misalignment in Close Binaries with Two Compact Objects,

23. Chandra Observations of M33: A First Look

In 2001:

24. Coalescence Rates of Compact Objects

25. Asymmetric Supernova Explosion Investigated by Geodetic Precession

26. Formation of Black-Hole X-Ray Binaries with Low-Mass Donors

27. Formation of Black-Hole X-Ray Transients
28. • A New Formation Channel for Double Neutron Stars Without Recycling: Implications for Gravitational Wave Detection

29. • Theoretical Black Hole Mass Distributions

30. • The Coalescence Rate of Double Neutron Star Systems

31. Event Rates for Binary Inspiral

32. Binary Population Synthesis: Methods, Normalization, and Surprises

In 2002:

33. Coalescence of Double Compact Objects: Event Rates

34. • Merger Sites of Double Neutron Stars and Their Host Galaxies

35. • A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties

In 2003:

36. A New Method for Estimates of Binary Pulsar Coalescence Rates

37. Influence of Precession on the Search of Inspiral Binaries with Ground-Based Gravitational-Wave Detectors

38. The Distribution of Mass Ratios in Compact Object Binaries
 Bulik, T., Belczynski, K., & Kalogera, V. 2003, in Astronomical Telescopes and Instrumentation: Astronomy Outside the EM Spectrum, p. 146–155

39. • Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Problems with Current Waveforms

40. The Probability Distribution of the Double Neutron Star Coalescence Rate and Predictions for More Detections

41. • The Probability Distribution of Binary Pulsar Coalescence Rates. I. Double Neutron Star Systems in the Galactic Field
42. • Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: New Hierarchical Scheme using “Spiky” Templates

43. • Helium-Core White Dwarfs in Globular Clusters

44. • The Role of Helium Stars in the Formation of Double Neutron Stars

45. The Probability Distribution of Binary Pulsar Coalescence Rates

46. • An Increased Estimate of the Merger Rate of Double Neutron Stars from Observations of a Highly Relativistic System

47. First Results from a Chandra Survey of the ‘Bar’ Region of the SMC

In 2004:

48. • X-Ray Binary Populations: The Luminosity Function of NGC 1569

49. • Could Black Hole X-ray Binaries be Detected in Globular Clusters?

50. • The Cosmic Coalescence Rate for Double Neutron Star Binaries

51. • An Observational Diagnostic for Ultraluminous X-Ray Sources

52. • Constraints on the Formation of PSR J0737-3039: The Most Probable Isotropic Kick Magnitude

53. • Searching for Gravitational Waves from the Inspiral of Precessing Binary Systems: Astrophysical Expectations and Detection Efficiency of “Spiky” Templates

54. A Chandra survey of the ‘Bar’ region of the SMC

55. • Gravitational Waves from Extragalactic Inspiraling Binaries: Selection Effects and Expected Detection Rates
56. • Pulsar Kicks and Spin Tilts in the Close Double Neutron Stars PSR J0737-3039, PSR B1534+12 and PSR B1913+16

57. • The Probability Distribution of Binary Pulsar Coalescence Rates. II. Neutron Star – White Dwarf Binaries

In 2005:

58. • Mapping Inspiral Rates on Population Synthesis Parameters

59. • Are Supernova Kicks Responsible for X-ray Binary Ejection from Young Clusters?

60. • Binary Compact Object Inspiral: Detection Expectations

61. The Galactic Double-Neutron-Star Merger Rate: Most Current Estimates

62. The Formation of the Most Relativistic Pulsar PSR J0737-3039

63. The Galactic Formation Rate of Eccentric Neutron Star – White Dwarf Binaries

64. • Understanding Compact Object Formation and Natal Kicks I. Calculation Methods and the Case of GRO J1655–40

65. Binary Compact Object Inspiral: Rate Expectations

66. • Bounds on Expected Black Hole Spins in Inspiraling Binaries

67. • Constraining Population Synthesis Models via the Binary Neutron Star Population

69. The Double-Neutron-Star Inspiral Rate and Expectations for Gravitational-Wave Detection

In 2006:

70. ● The Brightest Point X-Ray Sources in Elliptical Galaxies and the Mass Spectrum of Accreting Black Holes

71. Point X-Ray Sources in Elliptical Galaxies

73. X-Ray Binaries in Nearby Galaxies

74. ● Formation and Progenitor of PSRJ0737-3039: New Constraints on the Supernova Explosion Forming Pulsar B

75. ● Stellar Remnants in Galactic Nuclei: Mass Segregation

76. ● A Study of Compact Object Mergers as Short Gamma-Ray Burst Progenitors

77. ● The Modulated Emission of the Ultraluminous X-Ray Source in NGC 3379

78. ● Eccentricities of Double Neutron Star Binaries

79. ● Probing the Low-Luminosity X-Ray Luminosity Function in Normal Elliptical Galaxies

80. Models of Mass Segregation at the Galactic Centre

In 2007:

81. Formation of Double Compact Objects
82. • Equipotential Surfaces and Lagrangian points in Non-synchronous, Eccentric Binary and Planetary Systems

83. • On the Rarity of Double Black Hole Binaries: Consequences for Gravitational-Wave Detection

84. • Eccentric Double White Dwarfs as LISA Sources in Globular Clusters

85. X-Ray Binary Populations in Young Stellar Regions

86. Black Hole Formation in X-Ray Binaries: The Case of XTE J1118+480

87. • Mapping Population Synthesis Event Rates on Model Parameters II: Convergence and Accuracy of Multidimensional Fits

88. • Interacting Binaries with Eccentric Orbits: Secular Orbital Evolution due to Conservative Mass Transfer

In 2008:

89. • Compact Object Modeling with the StarTrack Population Synthesis Code

90. • Probing White Dwarf Interiors with *LISA*: Periastron Precession in Eccentric Double White Dwarfs

91. • Constraining Population Synthesis Models via Empirical Binary compact Object Merger and Supernova Rates

92. • Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts

93. • Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events

94. Polar Kicks and the Spin Period – Eccentricity Relation in Double Neutron Stars

95. Neutron Stars: Formed, Spun and Kicked
96. Models for Low-Mass X-Ray Binaries in the Elliptical Galaxies NGC3379 and NGC4278
 Fragos, T., & **Kalogera, V.** 2008, in the proceedings of “X-rays from Nearby Galaxies”, 1010, 373-377

97. • The Lowest-Mass Stellar Black Holes: Catastrophic Death of Neutron Stars in Gamma-Ray Bursts

98. • Parameter Estimation of Spinning Binary Inspirals Using Markov-chain Monte Carlo

99. • Models for Low-Mass X-Ray Binaries in Elliptical Galaxies NGC3379 and NGC4278: Comparison with Observations

100. • Deep Chandra Monitoring Observations of NGC 3379: Catalog of Source Properties

101. • Discovery of Hot Gas in Outflow in NGC3379

102. • Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries

In 2009:

103. • Deep Chandra Monitoring Observations of NGC 4278: Catalog of Source Properties

104. The Astrophysics of Ultra-Compact Binaries

105. Accreting Binary Populations and ISM Evolution in Galaxies

106. • Understanding Compact Object Formation and Natal Kicks: II. The case of XTE J1118+480

107. • Degeneracies in Sky Localization Determination from a Spinning Coalescing Binary through Gravitational Wave Observations: a Markov-Chain Monte-Carlo Analysis for two Detectors
108. • Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project”

109. • Status of NINJA: the Numerical INJection Analysis project”
Cadorati, L. et al. 2009, Classical & Quantum Gravity, 26, 114008

110. • Probing Electron-Capture Supernovae: X-Ray Binaries in Starbursts

111. • Interacting Binaries with Eccentric Orbits II. Secular Orbital Evolution Due To Non-Conservative Mass Transfer

112. • Transient Low-Mass X-Ray Binary Populations in Elliptical Galaxies NGC 3379 and NGC 4278

113. • Parameter Estimation for Signals from Compact Binary Inspirals Injected into LIGO Data
van der Sluys, M., Mandel, I., Raymond, V., Kalogera, V., Röver, C., & Christensen, N. 2009, Classical & Quantum Gravity, 26, 204010

114. • Comparing GC and Field LMXBs in Elliptical Galaxies with Deep Chandra and Hubble Data

In 2010:

115. • Effect of PSR J0737-3039 on the DNS Merger Rate and Implications for GW Detection

116. • Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries

117. • Binary Compact Object Coalescence Rates: The Role of Elliptical Galaxies

118. • The Effects of LIGO Detector Noise on a 15-dimensional Markov-chain Monte-Carlo Analysis of Gravitational-wave Signals

119. • Star Formation History and X-ray Binary Populations: The Case of the Small Magellanic Cloud

120. The Eclipsing Black Hole X-ray Binary M33 X-7: Understanding the Current Properties
TOPOICAL REVIEW: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

Constraints on Natal Kicks in Galactic Double Neutron Star Systems

Interacting Binaries with Eccentric Orbits. III. Orbital Evolution due to Direct Impact and Self-Accretion

Formation of the black-hole binary M33 X-7 through mass exchange in a tight massive system

Angular Momentum Changes Due to Direct Impact Accretion in a Binary System

The Intriguing Evolutionary History of the Massive Black Hole X-ray Binary M33 X-7

The X-ray Spectra of the Luminous LMXBs in NGC 3379: Field and Globular Cluster Sources

Field and Globular Cluster Low-mass X-ray Binaries in NGC 4278

The Effect of Starburst Metallicity on Bright X-ray Binary Formation Pathways

Modeling X-ray Binary Populations in Elliptical Galaxies

In 2011:

Twin Binaries: Studies of Stability, Mass Transfer, and Coalescence

The Mass Distribution of Stellar-Mass Black Holes

Spin Tilts in the Double Pulsar Reveal Supernova Spin Angular-momentum Production
134. • Analytical expressions for the envelope binding energy of giants as a function of basic stellar parameters

In 2012:

135. • Tidally-Induced Apsidal Precession in Double White Dwarfs: a new mass measurement tool with LISA

136. • Understanding Compact Object Formation and Natal Kicks. III. The case of Cygnus X-1

137. • Chandra Observations of the Collisonal Ring Galaxy NGC 922

138. • On the Rarity of X-Ray Binaries with Naked Helium Donors

139. • Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity

140. Unraveling Binary Evolution from Gravitational-Wave Signals and Source Statistics

141. GPU-Accelerated Monte Carlo Algorithm for Simulating Dense Stellar Systems

142. • Mass Measurements of Black Holes in X-Ray Transients: Is There a Mass Gap?

143. • Missing Black Holes Unveil The Supernova Explosion Mechanism

144. • Estimating Parameters of Coalescing Compact Binaries with Proposed Advanced Detector Networks

145. • Deep Chandra Monitoring Observations of NGC 4649: II. Wide-Field Hubble Space Telescope Imaging of the Globular Clusters

146. Constraining White Dwarf Masses Via Apsidal Precession in Eccentric Double White Dwarf Binaries
147. • A Variable Ultraluminous X-ray Source in a Globular Cluster in NGC 4649
760, 135

In 2013:

148. • The X-ray Star Formation Story as Told by Lyman Break Galaxies in the 4 Ms CDF-S
Basu-Zych, A.R., Lehmer, B.D., Hornschemeier, A.E., Bouwens, R.J., Fragos, T., Oesch, P.A.,
Belczynski, K., Brandt, W.N., Kalogera, V., Luo, B., Miller, N., Mullaney, J.R., Tzanavaris, P.,
Xue, Y., Zezas, A. 2013 The Astrophysical Journal, 762, 45

149. • X-ray Binary Evolution Across Cosmic Time
764, 13

150. • A Parallel Monte Carlo Code for Simulating Collisional N-body Systems
2013, The Astrophysical Journal Supplements, 204, 16

151. • Modeling the Redshift Evolution of the Normal Galaxy X-ray Luminosity Function
Tremmel, M., Fragos, T., Lehmer, B.D., Tzanavaris, P., Belczynski, K., Kalogera, V., Basu-Zych,
Journal, 766, 19

152. • Ultra-luminous X-ray Sources in the Most Metal Poor Galaxies
Prestwich, A. H., Tsantaki, M., Zezas, A., Jackson, F., Roberts, T. P., Foltz, R., Linden, T.,

153. • Introducing CAFein, a New Computational Tool for Stellar Pulsations and Dynamic Tides

154. • Modeling X-ray binary evolution in normal galaxies: Insights from SINGS
Tzanavaris, P., Fragos, T., Tremmel, M., Jenkins, L., Zezas, A., Lehmer, B. D., Hornsche-}

155. • Parameter Estimation for Compact Binary Coalescence Signals with the First Generation Gravitational-
Wave Detector Network

156. The Gravitational Universe
Consortium, The eLISA 2013, submitted to the European Space Agency on May 24th, 2013 for the
L2/L3 selection of ESA’s Cosmic Vision program (arXiv:1305.5720)

Conference, held 8-12 September, 2013 in Athens, Greece

In 2014:

158. • Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network
Rodriguez, C. L., Farr, B., Raymond, V., Farr, W. M., Littenberg, T., Fazi, D., Kalogera, V.

159. • Angular Momentum Exchange in White Dwarf Binaries Accreting Through Direct Impact
160. • Reconstructing the Sky Location of Gravitational-Wave Detected Compact Binary Systems: Methodology for Testing and Comparison

161. • The NINJA-2 project: Detecting and Characterizing Gravitational Waveforms Modeled using Numerical Black Hole Simulations

162. • The X-ray Luminosity Functions of Field Low Mass X-ray Binaries in Early-Type Galaxies: Evidence for A Stellar Age Dependence

163. • Efficient Estimation of Highly Structured Posteriors of Gravitational-Wave Signals with Markov-Chain Monte Carlo

164. Constraining X-ray binary formation and evolution parameters

165. • Understanding Compact Object Formation and Natal Kicks. IV. The case of IC 10 X-1

166. • Importance of Tides for Periastron Precession in Eccentric Neutron Star - White Dwarf Binaries

In 2015:

167. • Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library

168. • Evolutionary Channels for the Formation of Double Neutron Stars

169. • On the Formation of Ultraluminous X-ray Sources with Neutron Star Accretors: the Case of M82 X-2

170. • Long-term evolution of double white dwarf binaries accreting through direct impact

171. • Stability and Coalescence of Massive Twin Binaries
172. • Neutron Stars versus Black Holes: Probing the Mass Gap with LIGO/Virgo

In 2016:

173. • Black Hole Mergers and Blue Stragglers from Hierarchical Triples Formed in Globular Clusters

174. • Systematic Errors in Low-Latency Gravitational-Wave Parameter Estimation Impact Electromagnetic Follow-up Observations

175. • Observation of Gravitational Waves from a Binary Black Hole Merger

176. • Dynamical Formation of the GW150914 Binary Black Hole

177. • Astrophysical Implications of the Binary Black-hole Merger GW150914

178. • Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

179. • GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes

180. • Orbital Evolution of Mass-Transferring Eccentric Binary Systems. I. Phase-Dependent Evolution

181. • Orbital Evolution of Mass-Transferring Eccentric Binary Systems. II. Secular Evolution

182. • Properties of the Binary Black Hole Merger GW150914

183. • GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

184. • Distinguishing Between Formation Channels for Binary Black Holes with LISA

185. • Binary Black Hole Mergers in the First Advanced LIGO Observing Run

186. • Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO

187. • N-body Dynamics of Intermediate Mass-Ratio Inspirals in Globular Clusters
188. • Upper Limits on the Rates of Binary Neutron Star and Neutron-Star–Black-Hole Mergers from Advanced LIGO’s First Observing Run

189. • The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914

In 2017:

191. • Astrophysical Prior Information and Gravitational-Wave Parameter Estimation

192. • Dynamical Formation of Low-Mass Merging Black Hole Binaries Like GW151226

193. • Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science

194. • LIGO and the Opening of a New Observational Window on the Universe
 Kalogera, V. & Lazzarini, A. 2017, Invited PNAS Perspective, published

195. Too good to be true?
 Kalogera, V. 2017, Nature Astronomy, 1, 0112

196. • GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

197. • Roche-lobe Overflow in Eccentric Planet-Star Systems

198. Science-Driven Optimization of the LSST Observing Strategy

199. • Constraining Models of Binary-Black-Hole Formation with Gravitational-Wave Observations

200. • Deep Multi-view Models for Glitch Classification

201. • Accreting Double White Dwarf Binaries: Implications for LISA

202. • GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence
203. • GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

204. • Multi-messenger Observations of a Binary Neutron Star Merger

205. • A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817
 Haggard, D., Nynka, M., Ruan, J., J., Kalogera, V., Cenko, S. B., Evans, P., Kennea, J. A. 2017,
 The Astrophysical Journal Letters, 848, L25

206. • Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817

207. • On the Progenitor of Binary Neutron Star Merger GW170817

208. • GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence

In 2018:

209. • Constraints on the Progenitor System of SN 2016gkg from a Comprehensive Statistical Analysis

210. • Brightening X-ray Emission from GW170817/GRB170817A: Further Evidence for an Outflow

211. • Characterizing accreting double white dwarf binaries with LISA and Gaia

212. • Improvements in Gravitational-Wave Sky Localization with Expanded Networks of Interferometers

213. • Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA

214. • Target of Opportunity Observations of Gravitational Wave Events with LSST

In 2019:

215. • Properties of the binary neutron star merger GW170817

216. • On the Origin of Black-Hole Spin in High-Mass X-ray Binaries

217. Merger Rates for High-mass X-Ray Binary Systems
 Haight, S.E., Pankow, C., & Kalogera, V. 2019, Research Notes of the American Astronomical Society, Volume 3, Issue 1, article id. 2
218. Populations of Black holes in Binaries

219. Multi-Messenger Astronomy with Extremely Large Telescopes

220. The Yet-unobserved Multi-Messenger Gravitational-Wave Universe

222. Multimessenger Universe with Gravitational Waves from Binary Systems

223. Gravity and Light: Combining Gravitational Wave and Electromagnetic Observations in the 2020s

224. Gravitational Waves in the Mid-band with Atom Interferometry

225. Transient Astrophysics Probe

226. • Classifying the Unknown: Discovering Novel Gravitational-Wave Detector Glitches using Similarity Learning

227. • GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

228. • Pulsational Pair-instability Supernovae in Very Close Binaries

229. • Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo
230. • The Complete Evolution of a Neutron-star Binary through a Common Envelope Phase Using 1D Hydrodynamic Simulations

231. • Progenitors of Type Iib Supernovae: I. Evolutionary Pathways and Rates

232. • Can Neutron-star Mergers Explain the r-process Enrichment in Globular Clusters?

In 2020:

233. What GW170729’s Exceptional Mass and Spin Tells Us about Its Family Tree
 Kimball, C., Berry, C., & Kalogera, V. 2020, Research Notes of the American Astronomical Society, Volume 4, Issue 1, article id. 2

234. • GW190425: Observation of a Compact Binary Coalescence with Total Mass 3.4 solar masses

235. • GW190814: Gravitational Waves from the Coalescence of a 23 solar mass Black Hole with a 2.6 solar mass Compact Object

236. • GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses

237. • Black hole genealogy: Identifying hierarchical mergers with gravitational waves

238. • Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution

239. • Localization of Compact Binary Sources with Second Generation Gravitational-wave Interferometer Networks

240. • Forward Modeling of Double Neutron Stars: Insights from Highly-Offset Short Gamma-Ray Bursts
Other Publications with the LIGO Scientific Collaboration (LSC):

241. • Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

242. • Setting Upper Limits on the Strength of Periodic Gravitational Waves Using the First Science Data from the GEO600 and LIGO Detectors

243. • First Upper Limits from LIGO on Gravitational Wave Bursts

244. • Analysis of LIGO Data for Gravitational Waves from Binary Neutron Stars

245. • Upper limits on the Strength of Periodic Gravitational Waves from PSR J1939+2134

246. • Analysis of First LIGO Science Data for Stochastic Gravitational Waves

247. • Limits on Gravitational Wave Emission from Selected Pulsars using LIGO Data

248. • A Search for Gravitational Waves Associated with the Gamma Ray Burst GRB030329 Using the LIGO Detectors

249. • Upper Limits on Gravitational Wave Bursts in LIGO’s Second Science Run

250. • Search for Gravitational Waves from Galactic and Extra–Galactic Binary Neutron Stars

251. • Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

252. • Upper Limits from the LIGO and TAMA Detectors on the Rate of Gravitational-Wave Bursts

253. • First All-Sky Upper Limits from LIGO on the Strength of Periodic Gravitational Waves Using the Hough Transform

254. • Upper Limits on a Stochastic Background of Gravitational Waves

255. • Search for Gravitational Waves from Binary Black Hole Inspiral in LIGO data

256. • Search for Gravitational-Wave Bursts in LIGO’s Third Science Run

257. • Joint LIGO and TAMA300 Search for Gravitational Waves from Inspiring Neutron Star Binaries
258. • First Cross-Correlation Analysis of Interferometric and Resonant-Bar Gravitational-Wave Data for Stochastic Backgrounds

259. • Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory

260. • Upper Limits on Gravitational Wave Emission from 78 Radio Pulsars

261. • Searches for Periodic Gravitational Waves from Unknown Isolated Sources and Scorpius X-1: Results from the Second LIGO Science Run

262. • Search for Gravitational Wave Radiation Associated with the Pulsating Tail of the SGR 1806-20 Hyperflare of 27 December 2004 Using LIGO

263. • Search for Gravitational-Wave Bursts in LIGO Data from the Fourth Science Run

264. • Upper Limit Map of a Background of Gravitational Waves

265. • All-sky search for periodic gravitational waves in LIGO S4 data

266. • Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third and Fourth LIGO Runs

267. • Search for Gravitational Waves from Binary Inspirals in S3 and S4 LIGO Data

268. • Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

269. • A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

270. • Implications for the Origin of GRB 070201 from LIGO Observations

271. • Search of S3 LIGO Data for Gravitational Wave Signals from Spinning Black Hole and Neutron Star Binary Inspirals

272. • Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar

273. • First Joint Search for Gravitational-Wave Bursts in LIGO and GEO600 Data

274. • Search for Gravitational Wave Bursts from Soft Gamma Repeaters

275. • The Einstein@Home Search for Periodic Gravitational Waves in LIGO S4 Data
276. • All-Sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data

277. • LIGO: The Laser Interferometer Gravitational-Wave Observatory

278. • Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of LIGO's S5 Data

279. • All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data

280. • Observation of a kilogram-scale oscillator near its quantum ground state

281. • Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm

282. • An upper limit on the stochastic gravitational-wave background of cosmological origin

283. • The Einstein@Home Search for Periodic Gravitational Waves in Early LIGO S5 Data

284. • Search for Gravitational Waves from Low Mass Compact Binary Coalescence in 186 Days of LIGO's Fifth Science Run

285. • First LIGO Search for Gravitational Wave Bursts from Cosmic (Super)Strings

286. • Search for Gravitational-wave Bursts in the First Year of the Fifth LIGO Science Run

287. • Search for High Frequency Gravitational-wave Bursts in the First Calendar Year of LIGO's Fifth Science Run

288. • Searches for Gravitational Waves from Known Pulsars with S5 LIGO Data

289. • Search for Gravitational-wave Bursts Associated with Gamma-ray Bursts Using Data from LIGO Science Run 5 and Virgo Science Run 1

290. • Search for gravitational-wave inspiral signals associated with short Gamma-Ray Bursts during LIGO's fifth and Virgo's first science run

291. • All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run

292. • First Search for Gravitational Waves from the Youngest Known Neutron Star

293. • Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

21
<table>
<thead>
<tr>
<th>No.</th>
<th>Citation</th>
</tr>
</thead>
</table>
312. • A First Search for Coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES Data from 2007
Adrin-Martinez, S. et al. 2013, *Journal of Cosmology and Astroparticle Physics*, 6, 8

313. • Enhanced Sensitivity of the LIGO Gravitational-Wave Detector by Using Squeezed States of Light

314. • Directed search for Continuous Gravitational Waves from the Galactic Center

315. • Search for Long-Lived Gravitational-Wave Transients Coincident with Long Gamma-Ray Bursts

316. • First Searches for Optical Counterparts to Gravitational-Wave Candidate Events

317. • Gravitational Waves from Known Pulsars: Results from the Initial Detector Era

318. • Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

319. • Application of a Hough Search for Continuous Gravitational Waves on Data from the 5th LIGO Science Run

320. • Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in LIGO-Virgo Data from 2005-2010

321. • Search for Gravitational Radiation from Intermediate Mass Black Hole Binaries in Data from the Second LIGO-Virgo Joint Science Run

322. • Methods and Results of a Search for Gravitational Waves Associated with Gamma-Ray Bursts using the GEO600, LIGO, and Virgo Detectors

323. • Implementation of an F-statistic All-Sky Search for Continuous Gravitational Waves in Virgo VSR1 Data

324. • First All-Sky Search for Continuous Gravitational Waves from Unknown Sources in Binary Systems

325. • Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

326. • Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by the InterPlanetary Network

327. • Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data

23
328. • Searching for Stochastic Gravitational Waves using Data from the Two Co-Located LIGO Hanford Detectors

329. • Narrow-Band Search of Continuous Gravitational-Wave Signals from Crab and Vela Pulsars in Virgo VSR4 data

330. • Advanced LIGO
Aasi, J., et al. 2015, *Classical and Quantum Gravity*, Volume 32, id.074001

331. • A Directed Search for Gravitational Waves from Scorpius X-1 with Initial LIGO

332. • Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants

333. • All-Sky Search for Long-Duration Gravitational Wave Transients with Initial LIGO

334. • Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

335. • First low frequency all-sky search for continuous gravitational wave signals

336. • GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

337. • GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

338. • Observing Gravitational-Wave Transient GW150914 with Minimal Assumptions

339. • High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube
Adrin-Martinez, S., et al. 2016, Volume 93, id.122010

340. • Tests of general relativity with GW150914

341. • Localization and broadband follow-up of the gravitational-wave transient GW150914

342. • Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914

343. • Search for transient gravitational waves in coincidence with short duration radio transients during 2007-2013

344. • Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational-Wave Signal GW150914

345. • Comprehensive All-sky Search for Periodic Gravitational Waves in the Sixth Science Run LIGO Data
346. • Improved Analysis of GW150914 using a Fully Spin-Precessing Waveform Model

347. • First Targeted Search for Gravitational-Wave Bursts from Core-Collapse Supernovae in Data of
First-Generation Laser Interferometer Detectors

348. • Results of the Deepest All-Sky Survey for Continuous Gravitational Waves on LIGO S6 Data
Running on the Einstein@Home Volunteer Distributed Computing Project

349. • Directly Comparing GW150914 with Numerical Solutions of Einstein’s Equations for Binary Black
Hole Coalescence

350. • The Basic Physics of the Binary Black Hole Merger GW150914

351. • Exploring the Sensitivity of Next Generation Gravitational Wave Detectors

352. • Calibration of the Advanced LIGO Detectors for the Discovery of the Binary Black-Hole Merger
GW150914

353. • Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First
Observing Run

354. • Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run

355. • First Search for Gravitational Waves from Known Pulsars with Advanced LIGO
851, 71

356. • Search for Continuous Gravitational Waves from Neutron Stars in Globular Cluster NGC 6544

357. • Effects of Waveform Model Systematics on the Interpretation of GW150914

358. • Search for Gravitational Waves Associated with Gamma-Ray Bursts During the First Advanced
LIGO Observing Run and Implications for the Origin of GRB 150906B

359. • Search for Gravitational Waves from Scorpius X-1 in the First Advanced LIGO Observing Run
with a Hidden Markov Model

360. • Search for Intermediate-Mass Black Hole Binaries in the First Observing Run of Advanced LIGO

361. • Search for High-Energy Neutrinos from Gravitational-Wave Event GW151226 and Candidate
LVT151012 with ANTARES and IceCube

362. • Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation
Search in Advanced LIGO Data
363. • All-Sky Search for Periodic Gravitational Waves in the O1 LIGO Data

364. • Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

365. • A Gravitational-Wave Standard Siren Measurement of the Hubble Constant

366. • Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

367. • Search for Post-Merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817

368. • First Low-Frequency Einstein@Home All-Sky Search for Continuous Gravitational Waves in Advanced LIGO Data

369. • First Narrow-Band Search for Continuous Gravitational Waves from Known Pulsars in Advanced Detector Data

370. • First Search for Nontensorial Gravitational Waves from Known Pulsars

371. • All-Sky Search for Long-Duration Gravitational Wave Transients in the First Advanced LIGO Observing Run

372. • Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO’s First Observing Run
 Abbott, B., et al. 20178, Classical and Quantum Gravity, Volume 35, id. 065010

373. • GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

374. • Constraints on Cosmic Strings using Data from the First Advanced LIGO Observing Run

375. • Full Band All-Sky Search for Periodic Gravitational Waves in the O1 LIGO Data

376. • Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

377. • GW170817: Measurements of Neutron Star Radii and Equation of State

378. • Search for Multi-messenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during its first Observing Run, ANTARES and IceCube

379. • A Fermi Gamma-ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-Wave Candidates in Advanced LIGO’s First Observing Run
380. • Search for Sub-Solar Mass Ultracompact Binaries in Advanced LIGO’s First Observing Run

381. • Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO’s Second Observing Run

382. • Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO

383. • Search for Gravitational Waves from A Long-Lived Remnant of the Binary Neutron Star Merger GW170817

384. • Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run

385. • First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary Black-hole Merger GW170814

386. • All-Sky Search for Long-Duration Gravitational-Wave Transients in the Second Advanced LIGO Observing Run

387. • Constraining the p-mode–g-mode Tidal Instability with GW170817

388. • Narrow-Band Search for Gravitational Waves from Known Pulsars using the Second LIGO Observing Run

389. • Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015-2017 LIGO Data

390. • All-Sky Search for Continuous Gravitational Waves from Isolated Neutron Stars using Advanced LIGO O2 Data

391. • All-Sky Search for Short Gravitational-Wave Bursts in the Second Advanced LIGO and Advanced Virgo Run

392. • Tests of General Relativity with GW170817

393. • Search for the Isotropic Stochastic Background using Data from Advanced LIGO’s Second Observing Run

394. • Directional Limits on Persistent Gravitational Waves using Data from Advanced LIGO’s First Two Observing Runs
395. • Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

396. • Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs

397. • Search for Sub-Solar Mass Ultracompact Binaries in Advanced LIGO’s Second Observing Run

398. • Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

399. • Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1

400. • An Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the First and Second Observing Runs of Advanced LIGO and Advanced Virgo

401. • A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo

402. • Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

403. • Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

404. • Model comparison from LIGOVirgo data on GW170817’s binary components and consequences for the merger remnant

405. • A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals

406. • A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs