What Caused the Decline in U. S. Business Cycle Volatility?

Robert J. Gordon
Northwestern University
Presented at Reserve Bank of Australia, July 11, 2005
Instant Obsolescence in Macroeconomics

- Prosperity in 1960s bred conferences on “Is the Business Cycle Obsolete?”
- My 1984 conference came after the two large recessions of 1974-75 and 1981-82
- But on the day of the conference, the business cycle changed again, continuing the tradition of “instant obsolescence”
- No disputing the decline in volatility since 1984, but why?
 - Numerous participants in last week’s Fed conference took it for granted that it was an achievement of monetary policy
Earlier Explanations of Postwar Stability Compared to pre-1929

- Increased share of government, higher tax base creates automatic stabilizers
- Less procyclicality of money supply
- FDIC, Other Financial Market Reforms
Stabilization within Postwar, before and after 1984

- Shocks
 - Demand shocks
 - Federal government now the culprit not the saviour
 - Financial and banking reforms
 - Inventory management
 - Financial Market Deregulation stabilized residential housing

- Supply shocks, a main focus of this paper

- Improved monetary policy

- Of Lesser Importance
 - Shifts in shares to services
Composition analysis across 11 components of spending on GDP
- Role of composition shifts vs. reduction in within-sector volatility
- Isolation of three sectors as most responsible for improved stability; support for demand shocks

Building a three-equation macro model
- Inflation, Taylor Rule, Change in Output Gap
- In the spirit of Stock-Watson two papers, but a more explicit interpretation of the shocks and a surprising result about monetary policy
Initial Evidence on Reduced Volatility (4-qtr Δ Real GDP)
Rolling 20-quarter Standard Deviation of 4-qtr Δs in Real GDP, 2.8 vs. 1.3 pre/post 1988:Q1
What About Changes in Natural Output Growth? A Better Criterion: the Output Gap
Stability Less Obvious but Still Significant, Decline 42% vs. 57%
Inflation vs. Output Volatility: Sometimes the Same, but Other Times Different
Turn to Tables for Decomposition Analysis

- Table 1: Standard Deviations and Shares of 11 Sectors
- Table 2: Effect of Shifts in Shares and Own-Sector Volatility
- Table 3: Contributions to GDP Change:
 - Emphasis on Residential Investment, Inventory Investment, and Federal Spending
Building the Three Equation Model

- Combines my “mainstream” or “triangle” approach to explaining inflation
 - Inertia
 - Demand through output or U gap
 - Specific supply shocks
- “Taylor Rule” equation for Fed Funds rate
 - Coefficients allowed to change, 1979 and 1990
- Output gap equation with feedback from interest rate changes
The Inflation Equation: the Distinguishing Features

- Long 24-quarter lags on past inflation
 - No pretense that these represent expectations
 - some unknown combination of expectations, wage contracts, price contracts
- Demand enters through the unemployment gap
 - Time-varying NAIRU estimated as part of equation estimation
 - “No-shock” concept of NAIRU
Supply-shock variables

- Changes in the relative price of imports
- The food-energy effect
- The medical care effect
- Acceleration and deceleration of the productivity growth trend
- Nixon-era controls, held down inflation in 1971-72, boosted inflation in 1974
Changes in Relative Import Prices
The Food-Energy Effect
The Medical Care Effect
The Productivity Growth Trend Acceleration
Actual Unemployment Rate and the Time-Varying NAIRU (TVN)
Coefficients of Inflation Equation are in Table 4

- Brief Comments on Size and Sign of Coefficients
- Importance of Testing Inflation Coefficients with Dynamic Simulations
- Results in Bottom of Table 4: Estimate coefficients through 1994:Q4, simulation 1995:Q1 to 2004:Q4 (40 quarters)
- Qualification: The Simulation Knows the Time-Varying NAIRU
A Longer Simulation: 160 Quarters Knowing the TVN and the full-period coefficients
The Dramatic Effect of Supply Shocks
The Interest Rate Equation

\[R = T^* + p^* + a(p-p^*) + b(Y_{gap}) \]

- Estimated over three time intervals
 - 1960-79
 - 1979-90
 - 1990-2004

- Coefficients presented in Table 5
- After 1979, Fed fought inflation
- After 1990, Fed fought both inflation & Ygap
Actual and Predicted Values of Fed Funds Rate
Interest Rate Error: Sustained after 1994
The Output Gap Equation

- First Difference of Output Gap regressed on
 - First Difference of Inflation Rate
 - First Difference of Lagged Nominal Fed Funds Rate, quarters 2-10 (why?)
- Real vs. Nominal Rates?
- An Central Concept in the Paper:
 - “The Output Error”
Predicted Output Values Miss, Especially after 1990
Full Model Simulations: Table 7
Here is Inflation

-2 -1 0 2 4 6 8 10 12 14

All Shocks
No Interest Error
No Supply Shocks
No Output Error
No Shocks
Full-Model Simulation of the Federal Funds Rate (Split Sample)
The Basic Conclusion of the Paper: The Output Gap Simulations
Bottom of Table 7: Summary of Output Gap Conclusions

- Standard Deviation of Output Gap
- Absolute Value of Output Gap
- Supply Shocks and the Output Error were Roughly equal culprits
- No Role of Interest-rate Error
Effects of Changes in Monetary Policy Feedback Responses
Conclusions

- Demand and Supply Shocks both Mattered
 - The Major Demand Shocks were Military Spending, Financial Institutions that Destabilized Residential Investment, and Primitive Inventory Management
 - The Major Supply Shocks were Import Prices (and Flexible Exchange Rates), Food-Oil Prices, Medical Care Prices, Productivity Trend, and Nixon Controls
Role of Monetary Policy

- Accommodative Policy in the 1970s Allowed Inflation to Take off
- Made 1981-82 Recession Worse
- Volcker Post-1979 Monetary Policy Created Instability
- Best Policy of All: Greenspan Policy applied to entire postwar period!
 - Combined inflation and output target beats a pure inflation target by every criterion