1. A runnable entity

- A model inspired by He and Xiong
- Captures a simple entity with a balance sheet as follows:
 - a risky portfolio of uncertain value
 - short term liabilities, rolled over
- An entrepreneur needs to borrow 1 at date 0 to finance project with potential payoff \(y_0 \)
- Payoff of the project evolves according to the geometric random walk
 \[y_t = y_{t-1} \varepsilon_t \]
- With \(E[\varepsilon_t] = 1 \) and \(\varepsilon_t \in [\underline{\varepsilon}, \overline{\varepsilon}] \)
- Each period the project is completed with probability \(\phi \), in which case it pays \(y_t \), or it continues
- A project only pays off when completed. The expected present value of the project is
 \[v_t = \beta E_t \left((1 - \phi) v_{t+1} + \phi y_{t+1} \right) \]
which yields
 \[v_t = \frac{\phi}{1/\beta - 1 - \phi} y_t. \]
We assume
 \[v_0 > 1, \]
so the project is profitable.
- Entrepreneur has no initial wealth
- E. finances the project selling debt contracts of random maturity (see below) to a large population of lenders
- Debt contracts have the following features
 - Each period \(t \geq 1 \), if the project is completed a lender gets
 \[\min\left\{ 1, \frac{y_t}{d_{t-1}} \right\} \]
where \(d_{t-1} \) is the number of debt contracts outstanding from last period
NOTES ON PANICS

– If the project is not completed, a fraction \(\delta \) of the \(d_{t-1} \) contracts outstanding is drawn randomly and they are paid 1 each, at which point those debt contracts are fulfilled
– If a contract is not drawn at date \(t \), it remains outstanding
– The borrower finances the payment \(\delta d_{t-1} \) by issuing new debt contracts, so the budget constraint is

\[
 p_t \left[d_t - (1 - \delta) d_{t-1} \right] \geq \delta d_{t-1}
\]

• Timing in case of rollover is as follows:
 – the borrower announces it will issue \(d_t \) debt contracts
 – the lenders observe \(d_t \) and the price \(p_t \) is determined (maybe on an auction)
 – if \(p_t \left[d_t - (1 - \delta) d_{t-1} \right] \geq \delta d_{t-1} \) the borrower continues
 – if \(p_t \left[d_t - (1 - \delta) d_{t-1} \right] < \delta d_{t-1} \) no new debt is issued, the borrower goes into default, the project is liquidated, and the existing debt holders receive

\[
 \min \left\{ 1, \frac{\lambda y_t}{d_{t-1}} \right\}
\]

• The parameter \(\lambda < 1 \) captures the costs of early liquidation
• Assumption: borrower always wants to continue and always wants to have minimum debt, therefore he will always issue the minimum \(d_t \) such that (1) is satisfied, if such a \(d_t \) exists
• We could microfound last assumption by assuming borrower is a risk neutral agent who receives the equity value after realization of \(y \) with no default
• Rational expectations require the price to satisfy

\[
p_t = \beta E_t \left[(1 - \phi) \rho_{t+1} \left\{ \delta + (1 - \delta) p_{t+1} \right\} + (1 - \phi) (1 - \rho_{t+1}) \min \left\{ 1, \frac{\lambda y_{t+1}}{d_t} \right\} + \phi \min \left\{ 1, \frac{y_{t+1}}{d_t} \right\} \right]
\]

where \(\rho_{t+1} \) is an indicator equal to 1 in case of successful rollover and 0 otherwise
• Define the debt-to-capital ratio at the end of the period

\[
x_t = \frac{d_t}{y_t},
\]

• Markov equilibrium:
 – market price of debt is given by the decreasing continuous function \(\mathcal{P} \)

\[
p_t = \mathcal{P} \left(\frac{d_t}{y_t} \right)
\]
 – default occurs iff \(y_t < \xi d_{t-1} \) for some scalar \(\xi \)
• rewrite the budget constraint (1) as

$$pt \left(\frac{d_t}{y_t} - (1 - \delta) \frac{d_{t-1}}{y_t} \right) \geq \delta \frac{d_{t-1}}{y_t}$$

or

$$P \left(\frac{d_t}{y_t} \right) \left(\frac{d_t}{y_t} - (1 - \delta) \frac{d_{t-1}}{y_{t-1}} \right) \geq \delta \frac{d_{t-1}}{y_{t-1}}$$

$$P \left(x_t \right) \left(x_t - (1 - \delta) \frac{x_{t-1}}{\epsilon_t} \right) \geq \delta \frac{x_{t-1}}{\epsilon_t}$$

• Each period the borrower takes the function P as given and chooses x_t that satisfies last equation as an equality

• The following result is useful:

Claim 1. Given a non-negative, decreasing continuous function $P (.) \geq 0$, there is a ξ (which could be ∞) such that if $x \leq \xi \epsilon$ there is a solution $x' \geq (1 - \delta) x / \epsilon$ to the equation

$$P \left(x' \right) x' = (\delta + (1 - \delta) P \left(x' \right)) \frac{x}{\epsilon},$$

and if $x > \xi \epsilon$ there is no solution

• Graphical argument focusing on first looking at the “debt Laffer curve”

$$P \left(x' \right) \left(x' - (1 - \delta) \frac{x}{\epsilon} \right)$$

and then translating it in terms of the solutions to

$$\frac{P \left(x' \right) x'}{\delta + (1 - \delta) P \left(x' \right)} = \frac{x}{\epsilon},$$

where function on LHS is independent of x/ϵ

• Whenever $x \leq \xi \epsilon$ denote the smallest solution as $x' = f \left(\frac{x}{\epsilon} \right)$

• Notice that f is defined only on domain $x/\epsilon \in [0, \xi]$

• Notice that the inverse of f can be derived in closed form

$$f^{-1} \left(x' \right) = \frac{P \left(x' \right) x'}{\delta + (1 - \delta) P \left(x' \right)}$$

in some range $x' \in [(1 - \delta) x/\epsilon, f^{-1} (\xi)]$

• So if $\epsilon \geq \xi x$ the borrower offers $x' = f \left(\frac{\xi}{\epsilon} \right)$ new debt contracts and successfully rolls over

• The rational expectations condition (2) is

$$(3) \quad P \left(x \right) = \beta E[\phi \min \left\{ 1, \frac{\epsilon}{x} \right\} + (1 - \phi) \left(\ell \left(\frac{x}{\epsilon} \leq \xi \right) \left(\delta + (1 - \delta) P \left(f \left(\frac{x}{\epsilon} \right) \right) \right) + \ell \left(\frac{x}{\epsilon} > \xi \right) \min \left\{ 1, \frac{\lambda \epsilon}{x} \right\}]$$
Definition 2. A Markov equilibrium is given by a scalar \(\xi > 0 \), a function \(f \) and a function \(\mathcal{P} \), such that \(\xi \) and \(f \) are constructed as in Claim 1 and \(\mathcal{P} \) satisfies (3).

- There can be an interval \([0, \bar{x}]\) where \(x \) is small enough and we are sure no liquidation or default will occur next period, then the price is given by
 \[
 \mathcal{P}(x) = \beta E[(1 - \phi) (\delta + (1 - \delta) \mathcal{P}(f(x/\varepsilon))) + \phi \min \{1, \varepsilon/x\}]
 \]
 However, eventually if \(\varepsilon < 1 \) is realized for many periods, we escape to the region where default possible. Therefore \(\mathcal{P}(x) < 1 \) for all \(x > 0 \)
- At date 0, we need to check that
 \[
 \mathcal{P}(x_0) x_0 \geq 1
 \]
 for some \(x_0 \), so the project can be financed

2. **Algorithm**

- We compute a finite horizon model where the project matures with probability 1 at date \(T \)
- At date \(T \) lenders get
 \[
 \min \left\{ 1, \frac{\varepsilon_T}{x_T} \right\}
 \]
- Calculate
 \[
 \mathcal{P}_{T-1}(x_T) = \beta E \left[\min \left\{ 1, \frac{\varepsilon_T}{x_T} \right\} \right]
 \]
- Find \(\xi_{T-1} \)
 \[
 \xi_{T-1} = \max_x \frac{\mathcal{P}_{T-1}(x) x}{\delta + (1 - \delta) \mathcal{P}_{T-1}(x)} = \frac{\beta E[\varepsilon]}{\delta}
 \]
 and \(f_{T-1} \) from inverting
 \[
 \frac{\mathcal{P}_{T-1}(x) x}{\delta + (1 - \delta) \mathcal{P}_{T-1}(x)}
 \]
 (which is monotone everywhere in this first round)
- Iterate on \(\mathcal{P} \)
 \[
 \mathcal{P}_{T-2}(x) = \beta E[\phi \min \left\{ 1, \frac{\varepsilon}{x} \right\} + (1 - \phi) \left(\frac{x}{\varepsilon} \geq \xi_{T-1} \right) \left(\delta + (1 - \delta) \mathcal{P} \left(f_{T-1} \left(\frac{x}{\varepsilon} \right) \right) \right) + \left(\frac{x}{\varepsilon} > \xi_{T-1} \right) \min \left\{ 1, \lambda \frac{\varepsilon}{x} \right\}]
 \]