NOTES ON FINANCIAL ACCELERATOR

GUIDO LORENZONI

1. A BASELINE FINANCIAL ACCELERATOR MODEL

- Stochastic model with non state contingent debt, collateral constraints and aggregate investment
- Full global solution in the spirit of Brunnermeier-Sannikov
- A rich problem with a two dimensional state space
- Entrepreneurs risk neutral, with discount factor β
- Lenders risk neutral, with discount factor q
- Entrepreneurs only agents that can hold capital
- Adjustment cost function
- When entrepreneurs selling capital goods, these are turned back into consumption goods (at some cost)
- Entrepreneur’s budget constraint

$$c_t + G(k_{t+1}, k_t) = A_t F(k_t, l_t) - w_t l_t - b_t + q b_{t+1}$$

- G is a CRS investment cost function, which includes adjustment costs

$$G(k', k) \equiv k' - (1 - \delta)k + \zeta (k' - (1 - \delta)k)^2 / k$$

- Collateral constraint

$$b_{t+1} \leq \theta p_{t+1} k_{t+1}$$

for all realizations of p_{t+1} that have positive probability at t

- More below on the price p_t at which capital can be sold
- A_t, w_t, p_t driven by Markov process s_t
- G and F are constant returns to scale
- Then the value function must satisfy

$$V(k_t, b_t, s_t) = v(b_t / k_t, s_t) k_t$$

for some function v

Date: Winter 2019.
• Bellman equation

\[v(\tilde{b}_t, s_t) k_t = \max_{c_t, l_t, \tilde{b}_{t+1}, k_{t+1}} c_t + \beta E_t \left[v(\tilde{b}_{t+1}, s_{t+1}) \right] k_{t+1} \]

subject to

\[c_t + G(k_{t+1}, k_t) = A_t F(k_t, l_t) - w_t l_t - \tilde{b}_t k_t + q\tilde{b}_{t+1} k_{t+1} \]

and

\[\tilde{b}_{t+1} \leq \theta p_{t+1} l_t \]

• Optimality for \(k_{t+1} \) yields

\[\beta E_t \left[v(\tilde{b}_{t+1}, s_{t+1}) \right] + q \lambda_t \tilde{b}_{t+1} = \lambda_t G_1(k_{t+1}, k_t) \]

• If it’s optimal to consume \(\lambda_t = 1 \), in this case

\[G_1(k_{t+1}, k_t) = \beta E_t \left[v(\tilde{b}_{t+1}, s_{t+1}) \right] + q\tilde{b}_{t+1} \]

• The LHS is marginal \(Q \) the RHS is average \(Q \) (Abel 1982 and Hayashi 1982)

• If the non-negativity of consumption is never binding this model yields standard \(Q \) theory predictions: asset price over capital stock is a sufficient statistic for the investment rate \(k_{t+1}/k_t \)

• In general we can have \(\lambda_t > 1 \) which implies marginal \(Q \) smaller than average \(Q \): firms have an incentive to issue more claims to finance investment, but entrepreneurs cannot buy these claims, since they are at \(c_t = 0 \)

• If \(\lambda_t > 1 \) it means that either the collateral constraint is binding today or it will be binding in the future

• Optimality condition with respect to \(\tilde{b}_{t+1} \) is

\[\lambda_t q k_{t+1} + \beta E_t \left[\frac{\partial v(\tilde{b}_{t+1}, s_{t+1})}{\partial \tilde{b}} \right] k_{t+1} - \mu_t = 0 \]

and using envelope condition

\[q \lambda_t = \beta E_t [\lambda_{t+1}] + \mu_t/k_{t+1} \]

• Envelope condition for \(k_t \) is

\[v(\tilde{b}_t, s_t) = \lambda_t \left[A_t F(k_t, l_t) - G_2(k_{t+1}, k_t) - \tilde{b}_t \right] \]

• Combining with optimality for \(k_{t+1} \)

\[(1) \quad \lambda_t = \frac{\beta E_t \left[v(\tilde{b}_{t+1}, s_{t+1}) \right]}{G_1(k_{t+1}, k_t) - q\tilde{b}_{t+1}} = \frac{\beta E_t \left[\lambda_{t+1} \left[A_{t+1} F_{k,t+1} - G_{2,t+1} - \tilde{b}_{t+1} \right] \right]}{G_{1,t} - q\tilde{b}_{t+1}} \]
• Suppose now entrepreneurs can trade used capital from other entrepreneurs, before employing the adjustment cost technology.

• Then to reach capital k_{t+1} they will choose to minimize total cost of achieving it

$$\min_{\hat{k}_t} G \left(k_{t+1}, \hat{k}_t \right) + p_t \left(\hat{k}_t - k_t \right)$$

• Representative entrepreneur, so no trade and $\hat{k}_t = k_t$ in equilibrium.

• First order condition

$$p_t = -G_2 \left(k_{t+1}, k_t \right)$$

gives us the price of capital that appears in the collateral constraint.

• Then the optimality condition can be rewritten as

$$E_t \left[\beta \frac{\lambda_{t+1}}{\lambda_t} A_{t+1} F_{k,t+1} + p_{t+1} - \tilde{b}_{t+1} \right] = 1$$

This is an asset pricing equation where

$$\beta \frac{\lambda_{t+1}}{\lambda_t}$$

is the stochastic discount factor of the entrepreneurs and

$$\frac{A_{t+1} F_{k,t+1} + p_{t+1} - \tilde{b}_{t+1}}{G_{1,t} - q\tilde{b}_{t+1}}$$

is the levered return on entrepreneurial capital.

• We can also rewrite optimality for borrowing ratio as an asset pricing equation

$$1 = E_t \left[\beta \frac{\lambda_{t+1}}{\lambda_t} \frac{1}{q} \right] + \mu_t \frac{1}{q\lambda_t k_{t+1}}$$

which implies

$$E_t \left[\beta \frac{\lambda_{t+1}}{\lambda_t} \frac{1}{q} \right] \leq 1$$

here the expected return on bonds, discounted with the discount factor $\beta \lambda_{t+1}/\lambda_t$ can be < 1 if the collateral constraint is binding.

• Rewrite (1) as

$$E_t \left[\beta \lambda_{t+1} \left(A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} - \tilde{b}_{t+1} \right) \right] = \lambda_t \left(G_{1,t} - q\tilde{b}_{t+1} \right)$$

and then as

$$E_t \left[\beta \lambda_{t+1} \left(A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} \right) \right] = \lambda_t G_{1,t} - (\lambda_t q - E_t \left[\beta \lambda_{t+1} \right]) \tilde{b}_{t+1}$$

$$= \lambda_t G_{1,t} - \mu_t \tilde{b}_{t+1}$$
so
\[E_t \left[\frac{\beta \lambda_{t+1} A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1}}{\lambda_t G_{1,t}} \right] \leq 1 \]

- Agents are willing to accept a lower return on capital, since holding capital helps to relax the collateral constraint
- Using the same condition and \(q \lambda_t \geq E_t [\beta \lambda_{t+1}] \) we also get that if \(\lambda_{t+1} \) and \(A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} - \tilde{b}_{t+1} \)

are negatively correlated we have
\[q \lambda_t E_t \left[A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} - \tilde{b}_{t+1} \right] \geq E_t \left[\beta \lambda_{t+1} \left[A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} - \tilde{b}_{t+1} \right] \right] = \lambda_t \left(G_{1,t} - q \tilde{b}_{t+1} \right) \]

which imply
\[E_t \left[A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} \right] \geq \frac{1}{q} \]

so the expected rate of return on capital is greater than the risk free interest rate
- New possibility: the collateral constraint can be slack even though the rate of return on entrepreneurial capital is greater than \(1/q \)
- Rewrite condition as
\[E_t \left[\beta \lambda_{t+1} \left[A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} - \tilde{b}_{t+1} \right] \right] = \lambda_t \left(G_{1,t} - q \tilde{b}_{t+1} \right) \]

- If constraint is slack \(\mu_t = 0 \) and this becomes
\[E_t [\beta \lambda_{t+1} [A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1}]] = \lambda_t G_{1,t} \]
or
\[E_t \left[\frac{\beta \lambda_{t+1} A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1}}{\lambda_t G_{1,t}} \right] = 1 \]

- If there are no shocks we have
\[\beta \frac{\lambda_{t+1}}{\lambda_t} = q \]

and
\[A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1} = \frac{1}{q} \]

so collateral constraint can be slack only if investment is efficient at date \(t \)
- With risk, rate of return on entrepreneurial capital is correlated with \(\lambda_{t+1} \)
- Temporary productivity shocks generate negative correlation: high return on entrepreneurial wealth, high net worth, economy closer to efficient investment, lower return on entrepreneurial capital
- Then
\[1 = E_t \left[\beta \frac{\lambda_{t+1} A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1}}{\lambda_t G_{1,t}} \right] < E_t \left[\beta \frac{\lambda_{t+1}}{\lambda_t} \right] E_t \left[\frac{A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1}}{G_{1,t}} \right] \]
so
\[E_t \left[\frac{A_{t+1} F_k (k_{t+1}, l_{t+1}) + p_{t+1}}{G_{1,t}} \right] > \frac{1}{q} \]

- This is a form of precautionary behavior: entrepreneurs are avoiding excess leverage because they anticipate states of the world in which the rate of return on their wealth will be higher than today (high \(\lambda_{t+1}/\lambda_t \))
- Notice that entrepreneurs are risk neutral, so “precautionary behavior” is really driven by general equilibrium forces

2. Linear Technology

- Suppose \(F (k, l) = k \) and \(A_t = a_t \) that is an i.i.d. shock
- Model can be analyzed with single state variable
 \[s_t = a_t - \bar{b}_t \]
- Recursive equilibrium is given by
 \[\lambda (s), x (s), b (s) \]
 where
 \[x_t = \frac{k_{t+1}}{k_t} \]
 the three functions must satisfy three sets of conditions for all \(s > s_0 \), where \(s_0 \) is a lower bound to be determined
- Recursive condition for \(\lambda \)
 \[\lambda (s) = \beta E \left[\lambda (a' - b (s)) \right] \frac{[a' - b (s) - G_2 (x (a' - b (s)), 1)]}{G_1 (x (s), 1) - qb (s)} \]
- Condition for \(x (s) \) that
 \[s + qb (s) x (s) \geq G (x (s), 1) \]
 with strict equality if \(\lambda (s) > 1 \)
- Condition for the borrowing ratio \(b (s) \)
 \[q\lambda (s) \geq \beta E [\lambda (a' - b (s))] \]
 and
 \[b (s) \leq -\eta \min_{a'} G_2 (x (a' - b (s)), 1) \]
 with complementary slackness
- Equilibrium can be computed recursively
- As initial condition think of finite horizon problem, set \(\lambda = 1 \) in the final period and \(G_2 \) to some fixed value
- Code stoch_KM.m computes equilibrium using following algorithm
• Iteration, endogenous gridpoint method, find \hat{b} that satisfies

 $$b = -\theta \min_{a'} G_2 (x (a' - b), 1),$$

• Choose candidate pairs (b, λ) as follows

 • Set $b = \hat{b}$ and let
 $$\hat{\lambda} = \max \{ \frac{\beta}{q} E [\lambda (a' - b)], 1 \},$$

 then choose any λ in $[\hat{\lambda}, \infty)$

 • Set $b < \hat{b}$ and if
 $$\frac{\beta}{q} E [\lambda (a' - b)] < 1$$

 discard, otherwise set
 $$\lambda = \frac{\beta}{q} E [\lambda (a' - b)]$$

 • For each pair (b, λ) find x that solves
 $$\lambda [G_1 (x, 1) - qb] = \beta E [\lambda (a' - b) [a' - b - G_2 (x (a' - b), 1)]] ,$$

 or

 $$\lambda [G_1 (0, 1) - qb] \geq \beta E [\lambda (a' - b) [a' - b - G_2 (x (a' - b), 1)]] ,$$

 if $\lambda = 1$ this is the optimal solution for all s that satisfy

 $$s \geq G (x, 1) - qbx,$$

 if $\lambda > 1$ this is the optimal solution for

 $$s = G (x, 1) - qbx$$

• The lower bound for s is

 $$s = \min_{x \geq 0} G (x, 1) - q\hat{b}x$$

 (which arises when $\lambda \to \infty$)

• Functional form used for G is

 $$G (k', k) = k' - k + \frac{\xi (k' - k)^2}{2}$$

 or

 $$G (x, 1) = x - 1 + \frac{\xi}{2} (x - 1)^2$$

 so derivatives are

 $$G_1 = 1 + \xi (x - 1)$$

 and

 $$G_2 = -1 - \xi (x - 1) - \frac{\xi}{2} (x - 1)^2$$
• Then this equation
\[\lambda [G_1(x, 1) - qb] = \beta E [\lambda (a' - b) \left[a' - b - G_2(x(a' - b), 1) \right]], \]
becomes
\[x = 1 + \frac{1}{\xi} \left\{ \frac{\beta E [\lambda (a' - b) \left[a' - b - G_2(x(a' - b), 1) \right]]}{\lambda} + qb - 1 \right\} \]

• Frictionless benchmark
\[G_1(x, 1) = qE[a - G_2(x, 1)] \]
investment constant with \(x \) solving
\[1 + \xi(x - 1) = q \left[Ea + 1 + \xi(x - 1) + \frac{\xi}{2}(x - 1)^2 \right] \]
• Assume that
\[r < Ea < r + \frac{\xi}{2}r^2 \]
where \(r = 1/q - 1 \) to ensure that a solution to the frictionless problem exists and is bounded

Choose: solution with \(x < 1 + r \) to satisfy transversality condition