Lecture 9: Reputational Bargaining II

Harry PEI Department of Economics, Northwestern University

Spring Quarter, 2022

Overview

Last lecture:

- Abreu and Gul (2000): Introduce obstinate types to bargaining.
- Reputational bargaining in discrete time with frequent offers \approx continuous-time war-of-attrition.
- When offers are frequent and players have a rich set of commitment types, each player's payoff ≈ his Rubinstein bargaining payoff.

This lecture:

- 1. Alternative formulation of the reputational bargaining problem.
- 2. What will happen when players have outside options?
- 3. Can we use this machinery to deliver sharp predictions in repeated games with two comparably patient players?

Kambe (1999)

- Time $t \in [0, +\infty)$. Two players with discount rates r_1 and r_2 .
- Before time 0, players simultaneously announce their demands $\alpha_1^*, \alpha_2^* \in [0, 1].$
- If $\alpha_1^* + \alpha_2^* \le 1$, then the game ends at 0 where player *i* receives $\alpha_i^* + \frac{1}{2}(1 \alpha_1^* \alpha_2^*)$.
- If $\alpha_1^* + \alpha_2^* > 1$, then play enters a *war-of-attrition phase*.

Player *i* becomes committed at time 0 with prob $\varepsilon_i > 0$ (is player *i*'s private info and is independent of whether player -i is committed).

At every $t \in [0, +\infty)$, the flexible type of every player decides whether to concede.

Player *i* chooses α_i^* in order to maximize their expected payoff.

Result

Theorem 1 in Kambe (1999)

When $\varepsilon_1, \varepsilon_2 \to 0$ while keeping $\frac{\varepsilon_1}{\varepsilon_2}$ fixed, every equilibrium converges to the following limit point.

- Players' initial demands are their Rubinstein payoffs $\left(\frac{r_2}{r_1+r_2}, \frac{r_1}{r_1+r_2}\right)$.
- Players will reach a deal without any delay.

Intuition: Player *i* secures payoff close to $\frac{r_{-i}}{r_i+r_{-i}}$ by demanding $\frac{r_{-i}}{r_i+r_{-i}}$.

• Player -i has an incentive to make a compatible offer in order to avoid the loss from being committed.

Kambe (1999) also considers the case in which whether player *i* is committed is known to player *i* before choosing α_i^* .

• Results are less clean, require stronger refinement, and restrict attention to pure strategies when choosing demands.

Kambe (1999) vs Abreu and Gul (2000)

Advantages of Kambe's formulation.

- The commitment types' demands are endogenous.
- Avoid requirements on rich type spaces.
- Convenient in context with incomplete info about values/costs/quality, or when players can make complicated commitments.
- Examples: Wolitzky (2012), my recent work with Maren, and so on.

Disadvantages of Kambe's formulation:

- Why players do not know whether they are committed or not when choosing their initial demands? Stories?
- The signaling formulation is not tractable.

Compte and Jehiel (2002): Outside Options

Discrete time bargaining game with one commitment type on each side.

- $t = 0, \Delta, 2\Delta, \dots$
- In even periods, P1 either takes the outside option (the game ends), or makes a new offer.

P2 either accepts P1's offer and ends the game, or rejects the offer.

- In odd periods, P2 either takes the outside option or makes a new offer. P1 either accepts P2's offer or rejects.
- If a player takes the outside option, then payoffs are (β_1^*, β_2^*) , satisfying

$$\begin{split} &1-\alpha_2^* < \beta_1^* < \frac{1-e^{-r_2\Delta}}{1-e^{-(r_1+r_2)\Delta}} \approx \frac{r_2}{r_1+r_2}, \\ &1-\alpha_1^* < \beta_2^* < \frac{1-e^{-r_1\Delta}}{1-e^{-(r_1+r_2)\Delta}} \approx \frac{r_1}{r_1+r_2}. \end{split}$$

Outside option is better than conceding, but is worse than each player's Rubinstein bargaining payoff.

Benchmark: Game without Commitment Type

Theorem: Binmore, Shaked and Sutton (1987)

Suppose players' payoffs from the outside option are such that

$$\beta_1^* < \frac{r_2}{r_1 + r_2}$$

and

$$\beta_2^* < \frac{r_1}{r_1+r_2},$$

then the unique subgame perfect equilibrium attains the same outcome as the Rubinstein bargaining game without any outside option.

Intuition: Since the outside option is inferior to the Rubinstein bargaining payoff, taking the outside option is not a credible threat.

Result: No Reputation Building

Theorem: Compte and Jehiel

In every PBE of the reputational bargaining game with outside options,

- The rational type of player 1 demands $\frac{1-e^{-r_2\Delta}}{1-e^{-(r_1+r_2)\Delta}}$ at time 0 and the rational type player 2 accepts immediately.
- If player 1 demands α_1^* , then the rational player 2 takes the outside option.
- If player 1 demands sth greater than $\frac{1-e^{-r_2\Delta}}{1-e^{-(r_1+r_2)\Delta}}$ but not α_1^* , then player 2 rejects and offers $\frac{1-e^{-r_1\Delta}}{1-e^{-(r_1+r_2)\Delta}}$.
- If player 2 demands α₂^{*} in period Δ, then the rational type player 1 takes the outside option.
- When a player imitates the commitment type, his opponent takes the outside option immediately.
- Otherwise, play proceeds as in the Rubinstein bargaining game.

Why no reputation building?

Rational players have no incentive to imitate the commitment type. Why?

- Outside option > concession \Rightarrow Rational type never concedes.
- If my opponent never concedes, then there is no benefit for me to imitate the commitment type.
- The reputational equilibrium in Abreu and Gul unravels.

Board and Pycia (14): outside options unravel the Coase conjecture.

Comments:

- Contrasts to Binmore, Shaked and Sutton (87): Outside options do not matter if they lead to payoffs inferior to Rubinstein bargaining payoffs.
- What if there is a rich set of commitment types?
- Is the Rubinstein bargaining payoffs a robust prediction?
- How should we think about wars, strikes, and so on?

Motivation: Repeated Games with Contracts

In general, it is hard to make sharp predictions in repeated games with two equally patient players.

Abreu and Pearce (2007): Sharp predictions in repeated games when

• players can sign a binding contract,

after which future play is pinned down by the terms of the contract. Example:

-	L	R
T	1,1	0,0
B	0,0	0,0

Before agreeing on a contract, player 1 chooses $\alpha_{1,t} \in \Delta\{T, B\}$ and player 2 chooses $\alpha_{2,t} \in \Delta\{L, R\}$. A contract specifies what payoffs players receive in future periods, subject to feasibility constraints.

Model

Stage game: two-player finite game $\mathcal{G} = (I, A, U)$.

In each integer time t = 0, 1, 2, ..., player *i* chooses $\alpha_i \in \Delta(A_i)$ and offers a binding contract (v_1, v_2) to player *j*.

- After signing a contract, continuation values are (v_1, v_2) .
- We focus on Pareto optimal contracts.

Players' mixed actions are perfectly monitored.

At every $t \in [0, +\infty]$, players can accept the other player's contract.

Player *i*'s payoff if an agreement (v_1, v_2) is reached at τ :

$$r\int_0^\tau e^{-rt}u_i(\alpha_{1,t},\alpha_{2,t})dt+e^{-r\tau}v_i,$$

where $\alpha_{i,t}$ is player *i*'s action at time $\lfloor t \rfloor$.

Commitment Types

Player $i \in \{1, 2\}$ is either rational (w.p. $1 - z_i$) or committed (w.p. z_i).

A finite set of commitment types Γ_i for player *i*.

• Every $\gamma_i \in \Gamma_i$ specifies $\alpha_i \in \Delta(A_i)$ and (v_1, v_2) , s.t. commitment type γ_i takes action α_i until their contract (v_1, v_2) is accepted.

Conditional on committed, player *i*'s type follows distribution $\pi_i \in \Delta(\Gamma_i)$.

Before the game starts, players simultaneously announce which commitment type they want to imitate.

- Every commitment type truthfully announces their type.
- Every rational type decides which commitment type to announce, or announces that they are rational.

Important: Once the game starts at time 0, each player's belief assigns positive prob to at most one commitment type.

How to solve this model?

Directly solving this model is hard.

• If there exists some particular commitment type for each player, then players' payoffs are pinned down regardless of other types.

Detour: Nash Bargaining (Nash 1950)

Convex bargaining set $\Pi \subset \mathbb{R}^2$, and disagreement point $(d_1, d_2) \in \Pi$.

• Let
$$\Pi(d_1,d_2) \equiv \Big\{ (d_1',d_2') \in \Pi \Big| d_1' \ge d_1, d_2' \ge d_2 \Big\}.$$

• Nash bargaining payoff:

$$u^{N}(d_{1}, d_{2}) \equiv \arg \max_{(u_{1}, u_{2}) \in \Pi(d_{1}, d_{2})} \Big\{ (u_{1} - d_{1})(u_{2} - d_{2}) \Big\}.$$

One can show that $u^{N}(d_{1}, d_{2})$ is uniquely defined and is Pareto efficient.

Detour: Nash Bargaining with Threat (Nash 1953)

Normal-form game $\mathcal{G} \equiv (A, U)$, let Π be the convex hull of feasible payoffs.

- 1. Players simultaneously choose $\alpha_1 \in \Delta(A_1)$ and $\alpha_2 \in \Delta(A_2)$.
- 2. Players' payoffs are given by $u^N(u_1(\alpha_1, \alpha_2), u_2(\alpha_1, \alpha_2))$,

i.e., Nash bargaining payoff with threat point $(u_1(\alpha_1, \alpha_2), u_2(\alpha_1, \alpha_2))$.

Theorem: Nash Bargaining with Threat

Suppose $\mathcal{G} \equiv (A, U)$ is finite, the game where players payoffs are $u^N(u_1(\alpha_1, \alpha_2), u_2(\alpha_1, \alpha_2))$ admits at least one Nash equilibrium.

All Nash equilibria lead to the same payoff $u^*(\mathcal{G}) \in \mathbb{R}^2$.

Assumptions on the Set of Commitment Types

We assume that NBWT posture is adopted by at least one commitment type.

Assumption: NBWT Posture Exists For every $i \in \{1, 2\}$, there exists $\gamma_i^* \in \Gamma_i$ such that γ_i^* offers contract $u^*(\mathcal{G}) \equiv (u_1^*, u_2^*)$ and plays his equilibrium strategy in the NBWT game α_i^* .

We assume that after a player has a perfect reputation for being any commitment type, their opponent has a strict incentive to concede.

Assumption: NBWT Type Penalizes Rejection

For every $i \in \{1, 2\}$ and $\gamma_i \equiv (\alpha_i^*, u_1^*, u_2^*) \in \Gamma_i$,

 $u_j^* > \max_{a_j \in A_j} u_j(a_j, \alpha_i^*).$

Theorem: Repeated Games with Contracts

Theorem: Abreu and Pearce (2007)

Under the two assumptions on Γ_i . For every ε , R > 0, there exists $\overline{z} > 0$, such that if $\max\{z_1, z_2\} < \overline{z}$ and $\max\{\frac{z_1}{z_2}, \frac{z_2}{z_1}\} \leq R$, then players' payoffs in any PBE of the repeated game with contracts is within ε of $u^*(\mathcal{G})$.

Proof: Suppose P1 announces NBWT bargaining posture $\gamma_1^* \equiv (\alpha_1^*, u_1^*, u_2^*)$ and never accepts any contract that offers less than his NBWT payoff u_1^* .

- If P2 offers a contract that gives $P1 \ge u_1^*$, then P1's payoff $\ge u_1^*$.
- Next: If P2 takes action α_2 and offers contract (v_1^*, v_2^*) s.t. $v_1^* < u_1^*$ and $v_2^* > u_2^*$, we show that P1's concession rate is higher than P2's.
- Similar to Abreu and Gul, if a player's concession rate is higher, then his opponent concedes with prob close to 1 at time 0 when z₁, z₂ → 0.

Recall that

- P1 offers NBWT payoffs (u_1^*, u_2^*) and takes NBWT action α_1^* .
- (v_1^*, v_2^*) is P2's offer with $v_1^* < u_1^*$ and $v_2^* > u_2^*$, and P2 commits to α_2 .

Let λ_i be player *i*'s concession rate.

P2 is indifferent between accepting P1's contract and waiting:

$$\lambda_1(v_2^* - u_2^*) = r(u_2^* - u_2(\alpha_1^*, \alpha_2)).$$

P1 is indifferent between accepting P2's contract and waiting:

$$\lambda_2(u_1^* - v_1^*) = r(v_1^* - u_1(\alpha_1^*, \alpha_2)).$$

P1 has an advantage iff $\lambda_1 > \lambda_2$, which is equivalent to

$$\frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{v_1^* - u_1(\alpha_1^*, \alpha_2)} > \frac{v_2^* - u_2^*}{u_1^* - v_1^*}$$

We want to show that:

$$\frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{v_1^* - u_1(\alpha_1^*, \alpha_2)} > \frac{v_2^* - u_2^*}{u_1^* - v_1^*}$$

Since (α_1^*, α_2^*) is an equilibrium of the NBWT game, P2's payoff in the NBWT game is weakly lower than u_2^* when the threat point is (α_1^*, α_2) .

$$(w_1^*, w_2^*) \equiv \arg \max_{(w_1, w_2) \ge (u_1(\alpha_1^*, \alpha_2), u_2(\alpha_1^*, \alpha_2))} \Big\{ (w_1 - u_1(\alpha_1^*, \alpha_2))(w_2 - u_2(\alpha_1^*, \alpha_2)) \Big\}.$$

We must have $w_2^* \le u_2^*$ and $w_1^* \ge u_1^*$, which means:

• Either

$$l \equiv \frac{u_2^* - w_2^*}{w_1^* - u_1^*} \qquad \geq \frac{v_2^* - u_2^*}{u_1^* - v_1^*}$$

since the bargaining set is convex

• or
$$w_2^* = u_2^*$$
 and $w_1^* = u_1^*$

$$l \equiv \frac{v_2^* - u_2^*}{u_1^* - v_1^*} = \frac{v_2^* - w_2^*}{w_1^* - v_1^*}.$$

We need to show that

$$\frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{v_1^* - u_1(\alpha_1^*, \alpha_2)} > \frac{v_2^* - u_2^*}{u_1^* - v_1^*}$$

Case 1: $l \equiv \frac{u_2^* - w_2^*}{w_1^* - u_1^*} \ge \frac{v_2^* - u_2^*}{u_1^* - v_1^*}$.

• Since (w_1^*, w_2^*) maximizes $(w_1 - u_1(\alpha_1^*, \alpha_2))(w_2 - u_2(\alpha_1^*, \alpha_2))$, and $(w_1^* - \Delta, w_2^* + l\Delta)$ belongs to the bargaining set for small Δ ,

$$l(w_1^* - u_1(\alpha_1^*, \alpha_2)) - (w_2^* - u_2(\alpha_1^*, \alpha_2)) \le 0 \quad \Rightarrow \quad l \le \frac{w_2^* - u_2(\alpha_1^*, \alpha_2)}{w_1^* - u_1(\alpha_1^*, \alpha_2)}$$

• Since $u_2^* > w_2^*$, $u_1^* < w_1^*$, and $v_1^* < u_1^*$, we have

$$l \le \frac{w_2^* - u_2(\alpha_1^*, \alpha_2)}{w_1^* - u_1(\alpha_1^*, \alpha_2)} < \frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{u_1^* - u_1(\alpha_1^*, \alpha_2)} < \frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{v_1^* - u_1(\alpha_1^*, \alpha_2)}$$

We need to show that

$$\frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{v_1^* - u_1(\alpha_1^*, \alpha_2)} > \frac{v_2^* - u_2^*}{u_1^* - v_1^*}$$

Case 2: $w_2^* = u_2^*$, $w_1^* = u_1^*$, and $l \equiv \frac{v_2^* - u_2^*}{u_1^* - v_1^*}$

• Since (u_1^*, u_2^*) maximizes $(w_1 - u_1(\alpha_1^*, \alpha_2))(w_2 - u_2(\alpha_1^*, \alpha_2))$, and $(u_1^* - \Delta, u_2^* + l\Delta)$ belongs to the bargaining set for small Δ ,

$$l(u_1^* - u_1(\alpha_1^*, \alpha_2)) - (u_2^* - u_2(\alpha_1^*, \alpha_2)) \le 0 \quad \Rightarrow \quad l \le \frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{u_1^* - u_1(\alpha_1^*, \alpha_2)}.$$

• Since $v_1^* < u_1^*$, we have

$$l \leq \frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{u_1^* - u_1(\alpha_1^*, \alpha_2)} < \frac{u_2^* - u_2(\alpha_1^*, \alpha_2)}{v_1^* - u_1(\alpha_1^*, \alpha_2)}.$$

Summary

Proof: Suppose P1 announces NBWT bargaining posture γ_1^* and never accepts anything that offers less than his NBWT payoff u_1^* .

- If P2 offers a contract that gives $P1 \ge u_1^*$, then P1's payoff $\ge u_1^*$.
- If P2 takes action α_2 and offers contract (v_1^*, v_2^*) s.t. $v_1^* < u_1^*$ and $v_2^* > u_2^*$, then P1's concession rate is higher than P2's.

P1 can guarantee payoff $\approx u_1^*$ by imitating their NBWT type.

Similarly, P2 can guarantee payoff $\approx u_2^*$ by imitating their NBWT type.

• Since (u_1^*, u_2^*) is Pareto optimal, players' payoffs must be close to (u_1^*, u_2^*) in every equilibrium.

Non-Stationary Bargaining Postures

Abreu and Pearce (2007) also consider non-stationary bargaining postures.

- Their payoff prediction remains robust.
- The announcement stage (or the transparent commitment type assumption) is very important.
- Wolitzky (2011) shows a folk theorem in repeated games with contracts without the announcement stage.

What will happen when players have different discount factors?

- How to adjust the formula for the Nash product to take into account this change?
- Treat this as a Pset question.