Setup

- **Generic testing problem:** observe data $X_i, i = 1, \ldots, n$ i.i.d. with distribution $P \in \mathbf{P} = \{P_\theta : \theta \in \Theta\}$

 and test

 \[H_0 : \theta \in \Theta_0 \text{ versus } H_1 : \theta \in \Theta_1. \]

- **Test function:** a function $\phi_n = \phi_n(X_1, \ldots, X_n)$ that returns the probability of rejecting the null hypothesis after observing X_1, \ldots, X_n.

- **Example:** ϕ_n might be the indicator function of a certain test statistic $T_n = T_n(X_1, \ldots, X_n)$ being greater than some critical value $c_n(1 - \alpha)$.

Definition (Pointwise Asymptotically of Level α)

The test is said to be (pointwise) asymptotically of level α if,

\[\limsup_{n \to \infty} E_\theta [\phi_n] \leq \alpha, \quad \forall \theta \in \Theta_0. \]

- **Includes:** Wald tests, quasi-likelihood ratio tests, and Lagrange multiplier tests.
Symmetric Location Model

Question: given two different tests of the same null hypothesis, $\phi_{1,n}$ and $\phi_{2,n}$, both being (pointwise) asymptotically of level α. How can one choose between these two tests?

Symmetric Location Model

- Let P_θ be the distribution with density $f(x - \theta)$ on the real line (w.r.t. Lebesgue measure). Suppose further that (1) f is symmetric about 0 and that (2) it’s median, 0, is unique.

- f is symmetric about 0 $\Rightarrow f(x - \theta)$ is symmetric about θ.

- We also have that $E_\theta[X] = \theta$ and $\text{med}_\theta[X] = \theta$.

- Finally, suppose that (3) the variance of P_0 is positive and finite; that is, $\sigma^2_0 = \int x^2f(x)dx \in (0, \infty)$.

Testing Problem: $\Theta_0 = \{0\}$ and $\Theta_1 = \{\theta \in \mathbb{R} : \theta > 0\}$; i.e., we wish to test the null hypothesis

$$H_0 : \theta = 0 \text{ versus } H_1 : \theta > 0.$$

How could we test this null hypothesis?
\(\Phi_{1,n} = I \left\{ \frac{\sqrt{n} \bar{X}_n}{\hat{\sigma}_n} > z_{1-\alpha} \right\} \)
SLM: Sign-test

\[\phi_{2,n} = I \left\{ \frac{2}{\sqrt{n}} \sum_{1 \leq i \leq n} \left(I\{X_i > 0\} - \frac{1}{2} \right) > z_{1-\alpha} \right\}. \]
It is natural to base comparisons of two different tests on their power functions.

Power function: the function

$$\pi_n(\theta) = E_\theta[\phi_n],$$

i.e., the probability of rejecting the null hypothesis as a function of the unknown parameter θ.

In this problem it will be difficult to compare the finite-sample power functions of the two tests.

We may try to do so in an asymptotic sense.

To this end, let’s compute the power functions of each of the above two tests at a fixed $\theta > 0$.

A Naive Approach to Power
A Naïve Approach: t-test

Power function: $\pi_{1,n}(\theta) = E_\theta[\phi_{1,n}]$
A Naive Approach: sign-test
A Naive Approach: sign-test

\[S_n \equiv \frac{2}{\sqrt{n}} \sum_{1 \leq i \leq n} \left(I\{X_i > 0\} - \frac{1}{2} \right) = \frac{2}{\sqrt{n}} \sum_{1 \leq i \leq n} \left(I\{X_i > 0\} - (1 - F(-\theta)) \right) + 2\sqrt{n} \left(\frac{1}{2} - F(-\theta) \right). \]
QUESTIONS?
There are an innumerable number of ways of embedding our situation with a sample of size n in a sequence of hypothetical situations with sample sizes larger than n.

Keep in mind: we are really interested in the finite-sample behavior of the power function.

In our sample of size n we know that the power is not 1 uniformly for $\theta > 0$. May be very close to 1 for θ “far” from 0, but for θ “close” to 0 we would expect the finite-sample power function to be < 1.

What we mean by “far” and “close” will change with our sample size n.

Figure: Exact Power Function
Local Asymptotic Power

- **Local Asymptotic Approximation**: considers the behavior of the power function evaluated at a sequence of alternatives \(\theta_n \), where \(\theta_n \) tends to 0 (the null) at some rate. This provides a local (to the null) asymptotic approximation to the power function.

- If \(\theta_n \) tends to 0 **slowly enough**, then the power function will still tend to 1 as \(n \) tends to infinity.

- If \(\theta_n \) tends to 0 **quickly enough**, then for asymptotic purposes it’s as if \(\theta_n = 0 \). For any such sequence, the power function tends to \(\alpha \) as \(n \) tends to infinity in each of the above two examples.

- **Delicate rate** in between the two extremes above such that if \(\theta_n \) tends to 0 at this rate, then the power will tend to a limit in \((\alpha, 1)\). This rate may be different in different problems, but in problems such as this one in which the distribution depends on \(\theta \) in a “smooth” way it must be that

\[
\theta_n = O \left(\frac{1}{\sqrt{n}} \right).
\]

- We will consider sequences \(\theta_n = \frac{h}{\sqrt{n}} \), where \(h \in \mathbb{R} \).
Let $X_{i,n}, i = 1, \ldots, n$ be i.i.d. with distribution P_{θ_n} and let $Y_{i,n} = X_{i,n} - \theta_n \sim P_0$.
Local Power: sign-test

Start by studying
\[\frac{1}{n} \sum_{1 \leq i \leq n} I\{X_{i,n} > 0\} \] under \(P_{\theta_n} \).
THEOREM

For each n, let $Z_{n,i}, i = 1, ..., n$ be i.i.d. with distribution P_n. Suppose $E_n[Z_{n,i}] = 0$ and $V_n[Z_{n,i}] = \sigma_n^2 < \infty$. If for each $\epsilon > 0$

$$\lim_{n \to \infty} \frac{1}{\sigma_n^2} E_n \left[Z_{n,i}^2 I\left\{|Z_{n,i}| > \epsilon \sqrt{n} \sigma_n \right\} \right] = 0$$

then

$$\frac{\sqrt{n} \tilde{Z}_{n,n}}{\sigma_n} \xrightarrow{d} N(0, 1)$$

under P_n.

We would like to use this result to assert that

$$S_n(\theta_n) = \frac{1}{\sqrt{n}} \sum_{1 \leq i \leq n} (I\{X_{i,n} > 0\} - (1 - F(-\theta_n)))$$

converges in distribution under P_{θ_n} to a normal distribution.
CLT states that
\[
\frac{\sqrt{n} \tilde{Z}_{n,n}}{\sigma_n} \xrightarrow{d} N(0, 1) \quad \text{if} \quad \lim_{n \to \infty} \frac{1}{\sigma_n^2} E_n [Z_{n,i}^2 I\{|Z_{n,i}| > \epsilon \sqrt{n} \sigma_n\}] = 0.
\]

Let \(Z_{n,i} = I\{X_{i,n} > 0\} - (1 - F(-\theta_n)) \) with \(\sigma_n^2 = F(-\theta_n)(1 - F(-\theta_n)) \).
Recall: \[S_n = 2S_n(\theta_n) + 2\sqrt{n} \left(\frac{1}{2} - F(-\theta) \right) \] and \[2S_n(\theta_n) = 2\sigma_n \frac{S_n(\theta_n)}{\sigma_n} \xrightarrow{d} N(0, 1) \]
Local Asymptotic Power: summary

\[\pi_{1,n}(\theta_n) \rightarrow 1 - \Phi \left(z_{1-\alpha} - \frac{h}{\sigma_0} \right) \quad \text{versus} \quad \pi_{2,n}(\theta_n) \rightarrow 1 - \Phi \left(z_{1-\alpha} - 2hf(0) \right). \]

- **If** \(2f(0) > \frac{1}{\sigma_0} \): the sign test will be preferred to the t-test in a local asymptotic power sense.

- **Normal case**: If \(f \) is the normal density, the t-test should be uniformly most powerful for testing the null hypothesis.

 \(\Rightarrow \) If we plug in the standard normal density for \(f \), we find that the above analysis bears this out.

- If we consider distributions with "fatter" tails (i.e., Laplace), the situation is reversed.

- **Moral of this story**: if the underlying distribution is symmetric, then, the t-test, while preferred for many distributions, is not as robust as the sign test to "fat" tails.

- **Asymptotic Relative Efficiency**: defined as the square of the ratio of \(2f(0) \) to \(1/\sigma_0 \),

\[ARE_{2,1} = 4f(0)^2 \sigma_0^2. \]
QUESTIONS?
The local power function is **monotonic** and it has essentially the **same shape** as the power function in the normal location model.

However: the **accuracy** of the approximation can be poor at non-local alternatives.

Non-monotonicity: If the finite sample power curve is non-monotone, the asymptotic local power approximation will be poor at non-local alternatives.

We will consider one example of this phenomenon presented by Nelson and Savin (1990). Another one, perhaps empirically more relevant, is the one in Savin and Wurtz (1999).
Consider the following simple model in which

\[P \in \mathbf{P} = \{P_\theta : \theta \in \Theta\} \text{ and } P_\theta = N(\exp(\theta), 1). \]

Suppose that \(\Theta_0 = \{0\} \) and that \(\Theta_1 = \{\theta : \theta < 0\} \).

You can think of this as a simple case of the following non-linear regression model with normal errors,

\[X_i = \exp(Z_i \theta) + U_i, \]

where \(\theta \in \mathbb{R} \), \(Z_i \) is a scalar exogenous variable, and \(U_i \sim N(0, 1) \) i.i.d.

Simplicity of exposition: focus on the scalar case where \(X_i, i = 1, \ldots, n \) is i.i.d. with distribution \(P \) as above and wishes to test the null hypothesis \(H_0 : \theta = \theta_0 \).
Non-Monotonicity of the t-Test

The log-likelihood function for the model and its derivatives are the following:

$$\ell(\theta) = c - \frac{1}{2} \sum_{i=1}^{n} (X_i - \exp(\theta))^2,$$

$$s(\theta) = \sum_{i=1}^{n} (X_i - \exp(\theta)) \exp(\theta),$$

$$H(\theta) = \sum_{i=1}^{n} (X_i - 2 \exp(\theta)) \exp(\theta).$$

The Fisher’s information is then

$$I(\theta) = -E[H(\theta)] = (\exp(\theta))^2,$$

and the MLE of θ is just $\hat{\theta} = \log(\bar{X}_n)$.

t-statistic

$$t(\hat{\theta}) = -\frac{\sqrt{n}(\hat{\theta} - \theta_0)}{I(\hat{\theta})^{-1/2}} = \sqrt{n}(\theta_0 - \hat{\theta}) \left[(\exp(\hat{\theta}))^2\right]^{1/2} = \sqrt{n}(\theta_0 - \hat{\theta}) \exp(\hat{\theta}).$$
Non-Monotonicity of the t-Test

\[t(\hat{\theta}) = \sqrt{n}(\theta_0 - \hat{\theta}) \exp(\hat{\theta}) . \]

- t-statistic is a **non-monotonic function** of $\hat{\theta}$

\[\frac{\partial t(\hat{\theta})}{\partial \hat{\theta}} = \sqrt{n} \exp(\hat{\theta})[\theta_0 - \hat{\theta} - 1] , \]

- Has a maximum value of

\[\sqrt{n} \exp(\theta_0 - 1) \text{ at } \hat{\theta} = \theta_0 - 1 . \]

- Decreases to zero on the left and $-\infty$ on the right.

- **Figure**: suggests that for any sample size the more negative the estimate of θ, the less likely the null hypothesis will be rejected in favor of the alternative that θ is negative!

Figure: Wald test (line) versus signed \sqrt{LR} (dots)
Power Function of the \(t \)-Test

- **Power function:**

\[
\pi_n(\theta) = P_\theta \{ t(\hat{\theta}) > c_n(1 - \alpha) \} \\
= P_\theta \{ \theta_L < \hat{\theta} < \theta_H \} \\
= P_\theta \{ \exp(\theta_L) < \bar{X}_n < \exp(\theta_H) \},
\]

where \(\theta_L \) and \(\theta_H \) are the unique solutions to

\[
t(\theta_L) = t(\theta_H) = c_n(1 - \alpha) .
\]

- **Non-monotonicity:** two such values for any \(c_n(1 - \alpha) \) in the interval \((0, \sqrt{n} \exp(\theta_0 - 1)) \).

- **Exact power:** \(\bar{X}_n \sim N(\exp(\theta), n^{-1}) \).

- Exact power approaches one as the true value of \(\theta \) falls from 0 to about \(-0.85\) and then declines for smaller values of \(\theta \).

Figure: Exact Power (dots) versus local approximation (line)
Most hypotheses tested in binary response models are composite: the null hypothesis restricts only a subset of the parameters. The remaining parameters are referred to as nuisance parameters.

Example: one of the slope coefficients is zero.

Savin and Wurtz (99) show that for any fixed sample size, the power goes to zero along a particular sequence of alternatives that often occur in practice.

The result applies to any non-randomized test with size less than one, and is derived for a finite sample.

Therefore: the usual asymptotic results hold meaning that consistent tests can have non-monotonic power (in finite samples) for the sequence of alternatives of interest.
THE END!