LECTURE 9: CONVOLUTION THEOREMS

Ivan A. Canay
Northwestern University
Past & Future

So Far
- Local Asymptotic Normality
- Differentiability in Quadratic Mean
- Limit Distribution under Contig. Alt.
- Symmetric Location Model

Today
- Hodges’ Estimator
- Supper-Efficiency
- Convolution Theorems
- Anderson’s Lemma
Consider the following generic version of an estimation problem.

Data: $X_i, i = 1, \ldots, n$ i.i.d. with distribution $P \in P = \{P_\theta : \theta \in \Theta\}$.

Estimator: we wish to estimate $\psi(\theta)$ using the data and that we have an estimator $T_n = T_n(X_1, \ldots, X_n)$ such that for each $\theta \in \Theta$,

$$\sqrt{n} \left(T_n - \psi(\theta) \right) \overset{d}{\to} L_\theta$$

under P_θ - for short we may write “under θ” today.

Question: What is the “best” possible limit distribution for such an estimator?

It is natural to measure “best” in terms of concentration, and we can measure concentration with a loss function.
Bowl-shaped loss function

▸ **Loss function**: simply any function $\ell(x)$ that takes values in $[0, \infty)$.

▸ A loss function is said to be “bowl-shaped” if the sublevel sets

$$\{x : \ell(x) \leq c\}$$

are convex and symmetric about the origin.

▸ A common bowl-shaped loss function on \mathbb{R} is mean-squared error loss: $\ell(x) = x^2$.

▸ For a given loss function $\ell(x)$, a limit distribution will be considered “good” if

$$\int \ell(x) dL_\theta$$

is small.

▸ **Example**: If the estimator T_n is asymptotically normal,

$$L_\theta = N(\mu(\theta), \sigma^2(\theta)),$$

then to minimize the mean-squared error loss it is optimal to have $\mu(\theta) = 0$ and $\sigma^2(\theta)$ as small as possible. But we do not want to restrict attention to asymptotically normal estimators.
Hodges’ Estimator and Superefficiency

- Consider $P = \{P_\theta = N(\theta, 1) : \theta \in \mathbb{R}\}$ and $\psi(\theta) = \theta$.

- A natural estimator of θ is the sample mean: $T_n = \bar{X}_n$.

- This estimator has many finite-sample optimality properties (it’s minimax for every bowlshaped loss function, it’s minimum variance unbiased, etc.)

- We might reasonably expect it to be optimal asymptotically as well.

- A second estimator of θ, S_n, can be defined as follows:

$$S_n = \begin{cases}
T_n & \text{if } |T_n| \geq n^{-1/4} \\
0 & \text{if } |T_n| < n^{-1/4}
\end{cases}.$$

In words, $S_n = T_n$ when T_n is “far” from zero and $S_n = 0$ when T_n is “close” to zero.

- Immediate: $\sqrt{n} (T_n - \theta) \sim N(0, 1)$. But how does S_n behave asymptotically?
Asymptotic behavior of S_n

$$S_n = T_n \ I\{ |T_n| \geq n^{-1/4} \}$$

First consider the case where $\theta \neq 0$.
Asymptotic behavior of S_n

$$S_n = T_n \mathbb{I}\{|T_n| \geq n^{-1/4}\}$$

Next consider the case where $\theta = 0$.
Super-efficiency

- For $\theta \neq 0$: $\sqrt{n}(S_n - \theta) \xrightarrow{d} N(0, 1)$ under P_θ.

- For $\theta = 0$: $a_n(S_n - \theta) \xrightarrow{d} 0$ under any sequence a_n, including \sqrt{n}.

- The estimator is said to be superefficient at $\theta = 0$.

- Let L_θ denote the limit distribution of T_n and L'_θ denote the limit distribution of S_n.

- It follows from the above discussion that for $\theta \neq 0$
 \[\int x^2 dL_\theta = \int x^2 dL'_\theta \]

 and for $\theta = 0$,
 \[\int x^2 dL'_\theta = 0 < 1 = \int x^2 dL_\theta. \]

- Thus: S_n appears to be a better estimator of θ than T_n.
Reasoning again reflects the poor use of asymptotics. Our hope is that

$$\int x^2 \, dL'_\theta$$

is a reasonable approximation to the finite-sample expected loss

$$E_\theta \left[(\sqrt{n} (S_n - \theta))^2 \right].$$

Finite-samples: for θ “far” from zero, we might expect $S_n = T_n$, so L'_θ may be a reasonable approximation to the distribution of $\sqrt{n} (S_n - \theta)$; for “close” to zero, on the other hand, S_n will frequently differ from T_n, so the distribution of $\sqrt{n} (S_n - \theta)$ may be quite different from L'_θ.

Figure: Risk of S_n
QUESTIONS?
Consider $\theta_n = \frac{h}{n^{1/4}}$ where $0 < h < 1$.

We are redefining $T_n = \tilde{X}_{n,n}$, where $X_{i,n}, i = 1, \ldots, n$ are i.i.d. with distribution $P_{\theta_n} = N(\theta_n, 1)$.

Finite Sample distribution: As before,
\[\sqrt{n} (T_n - \theta_n) \sim N(0, 1) \text{ under } P_{\theta_n}. \]

Question: how does S_n behave under θ_n? Star by noticing that
\[
P_{\theta_n} \left\{ |T_n| < n^{-1/4} \right\} = P_{\theta_n} \left\{ -n^{-1/4} < T_n < n^{-1/4} \right\}
= P_{\theta_n} \left\{ \sqrt{n}(-n^{-1/4} - \theta_n) < Z_n < \sqrt{n}(n^{-1/4} - \theta_n) \right\}
= P_{\theta_n} \left\{ -n^{1/4}(1 + h) < Z_n < n^{1/4}(1 - h) \right\} \to 1.
\]

Earlier this probability tended to 0 under $\theta \neq 0$, but now under $\theta_n = \frac{h}{n^{1/4}}$, this probability tends to 1.
Lesson from the local approximation

Result: under θ_n we have $S_n = 0$ with probability approaching 1. Hence, under θ_n,

$$\sqrt{n}(S_n - \theta_n) = -n^{1/4}h$$

with probability approaching 1, and $-n^{1/4}h \to -\infty$.

Lesson: S_n “buys” its better asymptotic performance at 0 at the expense of worse behavior for points “close” to zero. The definition of “close” changes with n, so this feature is not borne out by a pointwise asymptotic comparison for every $\theta \in \Theta$.

This example is quite famous and is due to Hodges: S_n is often referred to as Hodges’ estimator.
QUESTIONS?
Background: Theorems that in some way show that a normal distribution with mean zero and covariance matrix equal to the inverse of the Fisher information is a “best possible” limit distribution have a long history, starting with Fisher in the 1920s and with important contributions by Cramér, Rao, Stein, Rubin, Chernoff and others.

“The” theorem referred to is not true, at least not without a number of qualifications.

The above example illustrates this and shows that it is impossible to give a non-trivial definition of “best” to the limit distributions L_θ.

In fact, it is not even enough to consider L_θ under every $\theta \in \Theta$. For some fixed $\theta' \in \Theta$, we could always construct an estimator whose limit distribution was equal to L_θ for $\theta \neq \theta'$, but “better” at $\theta = \theta'$ by using the trick due to Hodges.

Hájek and Le Cam contributed to this issue, and eventually gave a complete explanation.

Under certain conditions, the “best” limit distributions are in fact the limit distributions of maximum likelihood estimators, but to make this idea precise is a bit tricky (convolution theorems)
Definition

T_n is called a sequence of **locally regular estimators** of $\psi(\theta)$ at the point θ_0 if, for every h

$$a_n \left(T_n - \psi(\theta_0 + h/a_n) \right) \xrightarrow{d} L_{\theta_0} \text{ under } P_{\theta_0 + h/a_n}$$

as $a_n \to \infty$ (typically, $a_n = \sqrt{n}$), where the limit distribution might depend on θ_0 but not on h.

- A regular estimator sequence attains its limit distribution in a “locally uniform” manner.

- **Intuition**: a small change in the parameter should not change the distribution of the estimator too much; a disappearing small change should not change the (limit) distribution at all.
A model $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$ is called **differentiable in quadratic mean** at θ if there exists a measurable function $\hat{\ell}_\theta$ such that, as $h \to 0$,

$$\int \left[\sqrt{p_\theta + h} - \sqrt{p_\theta} - \frac{1}{2} h' \hat{\ell}_\theta \sqrt{p_\theta} \right]^2 d\mu = o(||h||^2),$$

where p_θ is the density of P_θ w.r.t. some measure μ.

- Typically, $\hat{\ell}_\theta = \partial (\log p_\theta) / \partial \theta = \frac{\hat{p}_\theta}{p_\theta}$

- QMD is the condition that gives us LAN

- Theorems on local optimality of tests and estimators use a condition like QMD or require LAN directly.
Hájek's convolution theorem shows that the limiting distribution of any regular estimator T_n can be written as a convolution of $N(0, \cdot)$ and "noise".

Theorem (Hájek Convolution Theorem)

Suppose that 1) \mathbf{P} is differentiable in quadratic mean at each θ with non-singular Fisher information matrix

$$I_\theta = E_\theta [\ell_\theta \ell'_\theta],$$

and that 2) ψ is differentiable at every θ. 3) Let T_n be an at θ regular estimator sequence with limit distribution L_θ.

Then, there exist distributions M_θ such that

$$L_\theta = N(0, \psi_\theta I_\theta^{-1} \psi_\theta') * M_\theta.$$

In particular, if L_θ has covariance matrix Σ_θ, then the matrix $\Sigma_\theta - \psi_\theta I_\theta^{-1} \psi_\theta'$ is nonnegative-definite.

The notation $*$ denotes the "convolution" operation between two distributions and should be interpreted as follows: If $X \sim F$ and $Y \sim G$ and $X \perp Y$, then $X + Y \sim F \ast G$.
Theorem (Almost Everywhere Convolution Theorem)

Suppose that 1. P is differentiable in quadratic mean at each θ with norming rate a_n and non-singular Fisher information matrix

$$I_\theta = E_\theta [\ell_\theta \ell'_\theta] ,$$

and that 2. ψ is differentiable at every θ. 3. Let T_n be any estimator such that for every θ

$$a_n (T_n - \psi(\theta)) \xrightarrow{d} L_\theta$$

under θ.

Then, there exist distributions M_θ such that for almost every θ w.r.t. Lebesgue measure

$$L_\theta = N(0, \psi_\theta I^{-1}_\theta \psi'_\theta) * M_\theta .$$
QUESTIONS?
Remarkable theorem: yields the assertion of Hájek’s convolution theorem at almost every parameter value θ, without having to impose the regularity requirement on the estimator sequence.

Indeed: Le Cam showed that it is roughly true that any estimator sequence T_n is “almost Hájek regular” at almost every parameter θ.

The convolution property implies that the covariance matrix of L_θ, if it exists, must be bounded below by the inverse Fisher information.

This theorem does not contradict the results of the previous section. In that case:

$$P = \{N(\theta, 1) : \theta \in \mathbb{R}\}, \quad \psi(\theta) = \theta, \quad \text{and} \quad N(0, \psi_\theta I_\theta^{-1} \psi_\theta') = N(0, 1).$$

For every $\theta \neq 0$,

$$\sqrt{n}(S_n - \theta) \xrightarrow{d} N(0, 1)$$

under P_θ, so the theorem is satisfied for M_θ the distribution with unit mass at 0.
Anderson’s Lemma

\(N(0, \hat{\psi}_\theta I_\theta^{-1} \hat{\psi}_\theta') \) is the limit distribution of the MLE of \(\psi(\theta) \). In order to assert that this is in fact the “best” limit distribution for more general loss functions, we need the following lemma.

Lemma (Anderson’s Lemma)

For any bowl-shaped loss function \(\ell \) on \(\mathbb{R}^k \), every probability distribution \(M \) on \(\mathbb{R}^k \), and every covariance matrix \(\Sigma \),

\[
\int \ell(x) dN(0, \Sigma) \leq \int \ell(x) d(N(0, \Sigma) * M).
\]

▶ If “best” is measured by any bowl-shaped loss function, then maximum likelihood estimators are “best” for almost every \(\theta \) w.r.t. Lebesgue measure.

▶ Lesson: the possibility of improvement over the \(N(0, \hat{\psi}_\theta I_\theta^{-1} \hat{\psi}_\theta') \)-limit is restricted on a null set of parameters.

▶ Improvement is also possible by considering special loss function (e.g., the James-Stein’s estimator).

▶ An important part of convolution theorems is the assumption that the model is QMD. The differentiability of \(\psi \) is also key.
MLE in models that are not QMD

Example

Suppose \(P = \{P_\theta = U(0, \theta) : \theta > 0\} \) and \(\psi(\theta) = \theta \) (Recall that \(P \) is nowhere QMD so the model does not satisfy the conditions of the previous Theorems). We know that the MLE of \(\theta \) is

\[
X_{(n)} = \max\{X_1, \ldots, X_n\}
\]

and that

\[
n(\theta - X_{(n)}) \xrightarrow{d} L_\theta, \quad \text{where } L_\theta \text{ has density } \frac{1}{\theta} \exp\left(-\frac{w}{\theta}\right). \quad (1)
\]

Clearly, the estimator is **not** asymptotically normal. Although it converges at rate \(n \), much faster than the usual \(\sqrt{n} \) rate, the fact that the limiting distribution lies completely to one side of the true parameter suggests that even better estimators may exists.

Claim: for \(\ell(x) = x^2 \), MLE is sub-optimal and dominated by \(\bar{\theta} = X_{(n)} + X_{(n)}/n \).
MLE dominated in the Uniform case

\[n(\theta - X_{(n)}) \xrightarrow{d} L_\theta \quad \text{where } L_\theta \text{ has density } \frac{1}{\theta} \exp\left\{-\frac{w}{\theta}\right\} \quad \text{so if } W \sim L_\theta \Rightarrow E(W) = \theta \]
THE END!