LECTURE 7: CONTIGUITY

Ivan A. Canay
Northwestern University
ECON 481-3
Past & Future

So Far
- Naive Power Approximations
- Local Power Approximations
- Symmetric Location Model
- t-test vs sign test

Today
- Absolute Continuity and LR
- Contiguity and Le Cam’s 1st Lemma
- Le Cam’s 3rd Lemma
- Wilcoxon Signed Ranked Test
Today: about a technique to obtain the limit distribution of a sequence of statistics under underlying laws \(Q_n \) from a limiting distribution under laws \(P_n \).

Particularly useful to compute local asymptotic power of different statistics.

First, let’s start with a non-asymptotic analog

DEFINITION

Let \(P \) and \(Q \) be measures on a measurable space \((\Omega, \mathcal{A}) \). We say \(Q \) is **absolutely continuous** with respect to \(P \) if for every measurable set \(A \) we have that

\[
P\{A\} = 0 \implies Q\{A\} = 0.
\]

Absolute continuity is denoted by \(Q \ll P \).

Furthermore, \(P \) and \(Q \) are **orthogonal** if \(\Omega \) can be partitioned as \(\Omega = \Omega_P \cup \Omega_Q \) with \(\Omega_P \cap \Omega_Q = \emptyset \) and \(P\{\Omega_Q\} = Q\{\Omega_P\} = 0 \). Orthogonality is denoted by \(P \perp Q \).
Theorem (Radon-Nikodym)

Suppose Q and P are probability measures on (Ω, \mathcal{A}). Then $Q \ll P$ if and only if there exists a measurable function $L(x)$ such that,

$$Q\{A\} = \int_A L(x) \, dP, \text{ for all } A \in \mathcal{A}.$$

The function $L(x) \equiv \frac{dQ(x)}{dP(x)}$ is called the Radon-Nikodym derivative (or density) or **likelihood ratio**.
Properties

- **Note!**: two measures P and Q need be neither absolutely continuous nor orthogonal.

- Suppose these measures have densities p and q wrt a measure μ. Then, $\Omega_P = \{p > 0\}$ and $\Omega_Q = \{q > 0\}$. The measure Q can be written as the sum $Q = Q^a + Q^\perp$ of the measures,

\[
Q^a[A] = Q[A \cap \{p > 0\}] ; \quad Q^\perp[A] = Q[A \cap \{p = 0\}].
\]

This decomposition is called the **Lebesgue decomposition of Q** with respect to P.

- The likelihood ratio is a random variable $dQ/dP : \Omega \mapsto [0, \infty)$ and we want to study its law under P.

Lemma

Let P and Q be probability measures with densities p and q wrt a measure μ. Then,

1. $Q = Q^a + Q^\perp$, $Q^a << P$, $Q^\perp \perp P$.

2. $Q^a[A] = \int_A (q/p)dP$ for every measurable set A.

3. $Q << P$ if and only if $Q\{p = 0\} = 0$ if and only if $\int (q/p)dP = 1$.

The function q/p is a density of Q^a with respect to P. It is denoted dQ/dP (not dQ^a/dP), so that $dQ/dP = q/p$, P-a.s.

Question: Suppose that $T = f(X)$ is an estimator or test statistic. How can we compute the distribution of T under Q if we know how to compute probabilities under P?

Answer: If Q is absolutely continuous wrt P, then the Q-law of a random variable X can be calculated from the P-law of the pair $(X, q/p)$ through the formula:

Remark: The validity of this formula depends essentially on the absolute continuity of Q with respect to P, because a part of Q that is orthogonal to P cannot be recovered from any P-law.
We wish to consider an **asymptotic version** of the problem.

Let \((\Omega_n, \mathcal{A}_n)\) be measurable spaces, each equipped with a pair of probabilities \(P_n\) and \(Q_n\).

Let \(T_n\) be some random vector and suppose the asymptotic distribution of \(T_n\) under \(P_n\) is easily obtained, but the behavior of \(T_n\) under \(Q_n\) is also required.

Example: if \(T_n\) represents a test function for testing \(P_n\) versus \(Q_n\), the power of \(T_n\) is the expectation under \(Q_n\).

Question: Under what conditions can a \(Q_n\)-limit law of random vectors \(T_n\) be obtained from suitable \(P_n\)-limit laws? The concept is called **contiguity** and essentially denotes a notion of “asymptotic absolute continuity”.

Contiguity
Absolute Continuity for all \(n \) is not enough

Example

Let \(P_n = N(0, 1) \) and \(Q_n = N(\xi_n, 1) \) with \(\xi_n \to \infty \).
Let Q_n and P_n be sequences of measures. We say that Q_n is **contiguous** w.r.t. to P_n, denoted $Q_n \triangleleft P_n$, if for each sequence of measurable sets A_n, we have that

$$P_n\{A_n\} \to 0 \Rightarrow Q_n\{A_n\} \to 0.$$

We saw that absolute continuity does not imply contiguity. The following example provides an extension.

Example (Cont)\)

Suppose P_n is the joint distribution of n i.i.d. observations X_1, \ldots, X_n from $N(0, 1)$ and Q_n is the joint distribution of n i.i.d. observations from $N(\xi_n, 1)$. **Unless** $\xi_n \to 0$, P_n and Q_n cannot be contiguous.
For probability measures P and Q, Lemma (3) implies that the following are equivalent,

$$Q << P, \quad Q \left(\frac{dP}{dQ} = 0 \right) = 0, \quad E_P \left[\frac{dQ}{dP} \right] = 1.$$

Le Cam: this equivalence persists if the three statements are replaced by their asymptotic counterparts.

Notation: $P_n \Rightarrow$ to denote \rightarrow under P_n.

Lemma (Le Cam’s First Lemma)

Let P_n and Q_n be sequences of probability measures on measurable spaces $(\Omega_n, \mathcal{A}_n)$. Then the following statements are equivalent:

1. $Q_n << P_n$.

2. If $dP_n / dQ_n \Rightarrow U$ along a subsequence, then $\Pr\{U > 0\} = 1$.

3. If $dQ_n / dP_n \Rightarrow V$ along a subsequence, then $E[V] = 1$.

4. For any statistic $T_n : \Omega_n \to \mathbb{R}^k$ if $T_n \Rightarrow 0$, then $T_n \Rightarrow 0$.

Le Cam’s First Lemma

- For probability measures P and Q, Lemma (3) implies that the following are equivalent,

$$Q << P, \quad Q \left(\frac{dP}{dQ} = 0 \right) = 0, \quad E_P \left[\frac{dQ}{dP} \right] = 1.$$

Le Cam: this equivalence persists if the three statements are replaced by their asymptotic counterparts.

Notation: $P_n \Rightarrow$ to denote \rightarrow under P_n.

Lemma (Le Cam’s First Lemma)

Let P_n and Q_n be sequences of probability measures on measurable spaces $(\Omega_n, \mathcal{A}_n)$. Then the following statements are equivalent:

1. $Q_n << P_n$.

2. If $dP_n / dQ_n \Rightarrow U$ along a subsequence, then $\Pr\{U > 0\} = 1$.

3. If $dQ_n / dP_n \Rightarrow V$ along a subsequence, then $E[V] = 1$.

4. For any statistic $T_n : \Omega_n \to \mathbb{R}^k$ if $T_n \Rightarrow 0$, then $T_n \Rightarrow 0$.

Corollary

Let $dQ_n/dP_n \overset{P_n}{\sim} V$ and suppose $\log(V) \sim N(\mu, \sigma^2)$ (this is, V has a log normal distribution). Then Q_n and P_n are mutually contiguous if and only if $\mu = -\frac{1}{2} \sigma^2$, which follows from $E[V] = \exp(\mu + \frac{1}{2} \sigma^2)$.

Example (Contiguity does not imply absolute continuity)

Let $P_n = U[0, 1], Q_n = U[0, \theta_n], \theta_n \to 1, \theta_n > 1$.
Examples

Example

Let $P_n = N(0, 1)$ and $Q_n = N(\xi_n, 1)$. Then,

$$\log(L_n(X)) = \log\left(\frac{dQ_n}{dP_n}\right) = \xi_n X - \frac{1}{2} \xi_n^2.$$
Example

Suppose P_n is the joint distribution of n i.i.d. observations X_1, \ldots, X_n from $N(0, 1)$ and Q_n is the joint distribution of n i.i.d. observations from $N(\xi_n, 1)$. Then,

$$\log(L_n(X_1, \ldots, X_n)) = \xi_n \sum_{i=1}^{n} X_i - \frac{n\xi_n^2}{2},$$

and so

$$\log(L_n(X_1, \ldots, X_n)) \sim N\left(-\frac{1}{2}n\xi_n^2, n\xi_n^2\right) \quad \text{under} \quad P_n.$$

By the same arguments as before, Q_n is contiguous to P_n if and only if $n\xi_n^2$ remains bounded, i.e.

$$\xi_n = O(n^{-\frac{1}{2}}).$$
Contiguity. The sequences of measures P_n and Q_n do not separate asymptotically: given data from P_n or Q_n it is impossible to tell with certainty from which of the two sequences the data is generated, at least in an asymptotic sense, as $n \to \infty$.

Much more: contiguity makes possible to derive asymptotic probabilities computed under Q_n from those computed under P_n. This is the content of Le Cam’s third lemma.

Application

A popular application of contiguity is the comparison of statistical tests where one is given a sequence of tests ϕ_n concerning a parameter θ attached to a statistical model $(P_n, \theta : \theta \in \Theta)$ and corresponding power functions

$$\pi_n(\theta) = E_{P_{n,\theta}}[\phi_n].$$

If P_{n,θ_0} and P_{n,θ_1} are asymptotically separated, then any “good” sequence of tests of the null hypothesis θ_0 versus the alternative θ_1 will have $\pi_n(\theta_0) \to 0$ and $\pi_n(\theta_1) \to 1$.

Contiguous alternatives will not allow this type of degeneracy, and hence may be used to pick a best test, or compute a relative efficiency of two given sequences of tests.
QUESTIONS?
Le Cam’s Third Lemma

Lemma (Le Cam’s Third Lemma)

Suppose that

\[
\left(X_n, \log \left(\frac{dQ_n}{dP_n} \right) \right) \xrightarrow{P_n} N \left(\left(\begin{array}{c} \mu \\ -\frac{1}{2} \sigma^2 \end{array} \right), \left(\begin{array}{cc} \Sigma & \tau \\ \tau' & \sigma^2 \end{array} \right) \right).
\]

Then,

\[
X_n \xrightarrow{Q_n} N(\mu + \tau, \Sigma).
\]

Result: under the alternative distribution \(Q_n\), the limiting distribution of the test statistic \(X_n\) is also normal but has mean shifted by

\[
\tau = \lim_{n \to \infty} \text{Cov} \left(X_n, \log \left(\frac{dQ_n}{dP_n} \right) \right).
\]

Testing: with asymptotically normal test statistics \(X_n\), a change from a null hypothesis to a contiguous alternative induces a change of asymptotic mean in the test statistics equal to the asymptotic covariance between \(X_n\) and \(\log \left(\frac{dQ_n}{dP_n} \right)\) and no change of variance.

It follows that good test statistics have a large (asymptotic) covariance with the log likelihood ratios.
Application: analyze the local asymptotic power of the Wilcoxon signed rank statistic.

Example: Suppose \(P_\theta \) is the distribution with density \(f(x - \theta) \) on the real line. Suppose further that \(f(x - \theta) \) is symmetric about \(\theta \). We observe \(X_1, \ldots, X_n \) from \(f \) and wish to test the null \(H_0 : \theta = 0 \).

Wilcoxon signed rank statistic serves to test this null and takes the form

\[
W_n = n^{-3/2} \sum_{i=1}^{n} R_{i,n}^+ \text{sign}(X_i),
\]

where

\[
\text{sign}(X_i) = \begin{cases}
1 & \text{if } X_i \geq 0 \\
-1 & \text{otherwise}
\end{cases}
\]

and

\[
R_{i,n}^+ = \sum_{j=1}^{n} I\{|X_j| < |X_i|\}
\]

is the rank of \(|X_i| \) among \(|X_1|, \ldots, |X_n| \).
Wilcoxon signed rank: null hypothesis

\[W_n = n^{-3/2} \sum_{i=1}^{n} R_{i,n}^+ \text{sign}(X_i) \]
Wilcoxon signed rank: Le Cam’s 3rd Lemma

Le Cam’s third lemma: suggest that we look at

$$(W_n, \log(dP_{\theta_n}/dP_0)).$$

Simplification: $P_{\theta_n} = N(\theta_n, 1)$ and $P_0 = N(0, 1)$. In this case,

$$p_{\theta_n}(X_1, \ldots, X_n) = \prod_{i=1}^{n} (2\pi)^{-1/2} \exp[-\frac{1}{2}(X_i - \theta_n)^2]$$

and then,

$$\log L_n = \log(dP_{\theta_n}/dP_0) = \log \frac{e^{-\frac{1}{2} \sum_{i=1}^{n} (X_i^2 - 2X_i\theta_n + \theta_n^2)}}{e^{-\frac{1}{2} \sum_{i=1}^{n} X_i^2}}$$

$$= \theta_n \sum_{i=1}^{n} X_i - \frac{n}{2} \theta_n^2$$

$$= h \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i - \frac{1}{2} h^2.$$
\[(W_n, \log(dP_{\theta_n}/dP_0)) = \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} U_i \text{sign}(X_i), h \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i - h^2/2 \right) + o_P(1), \]
THE END!