LECTURE 11: A PRIMER ON RANDOM FORESTS

Ivan A. Canay
Northwestern University
LAST CLASS
- The Regression Discontinuity Design
- Sharp and Fuzzy RDD
- Bandwidth Choice
- Matching Estimators

TODAY
- Regression Trees
- Classification Trees
- Random Forests
Leo Breiman, 1928-2005

▶ 1954: PhD Berkeley (mathematics)

▶ 1960-1967: UCLA (mathematics)

▶ 1969-1982: Consultant

▶ 1982-1993: Berkeley (statistics)

▶ 1984: Classification & Regression Trees (with Friedman, Olshen, Stone)

▶ 1996: Bagging

▶ 2001: Random Forests
Let \((Y, X)\) be a random vector where \(Y \in \mathbb{R}\) and \(X \in \mathbb{R}^k\).

Start focusing on \(k = 2\) for simplicity and \(X \in [0, 1]^2\).

Let \(P\) be the distribution of \((Y, X)\).

We are interested in the **conditional mean** of \(Y\) given \(X\).

\[
g(x) = E[Y|X = x].
\]

Let \(\{(Y_1, X_1), \ldots, (Y_n, X_n)\}\) be an i.i.d. sample from \(P\).

Today:

- Regression Trees
- Bagging
- Random Forests

When \(Y\) is **discrete**: classification trees are more appropriate (CART)
Tree-based methods partition the X space into a set of rectangles.

Let’s denote these rectangles by

$$\{R_m : 1 \leq m \leq M\}.$$

They then fit a very simple model: usually, a constant,

$$\hat{g}(x) = \sum_{m=1}^{M} c_m I\{x \in R_m\}.$$ (1)

With continuous Y, c_m is usually the average of Y conditional on $X \in R_m$.

$$c_m = \frac{\sum_{i=1}^{n} Y_i I\{X_i \in R_m\}}{\sum_{i=1}^{n} I\{X_i \in R_m\}}.$$

Main issue: How to find “good” rectangles R_m.
Two Partitions of X

Figure $X = (X_1, X_2) \in [0, 1]^2$. Left: generic partition. Right: Tree partition

- **Left Panel**
 - Each partition line has a simple description, $X_1 = c$
 - However, resulting regions are hard to describe

- **Right Panel**
 - Arise from recursive binary partitions
 - First split $X_1 = t_1$. Then, for the region $X_1 \leq t_1$, we split at $X_2 = t_2$ and the region $X_1 > t_1$ is split at $X_1 = t_3$. Etc...
Recursive Binary Partitions: Trees

- **Trees**: split the space of X into recursive binary partitions.

- Terminal nodes, or "leaves", correspond to the regions R_1, \ldots, R_m.

- **Key advantage** \Rightarrow interpretability
 - Partition of X fully described by a single tree.
 - In higher dimensions regions are hard to describe, but "trees" are always easy.

![Diagram of a tree](image)

Figure: Tree in the previous example
Example: California Housing

Data: each of 20,460 neighborhoods (1990 census block groups) in California.

Response variable: \(Y \) is the median house value in each neighborhood.

The are a total of eight predictor variables (or covariates)

- Median income of neighborhood
- Median house age
- Housing features: average number of rooms and bedrooms.
- Housing density: number of houses
- Average occupancy in each house
- Location of each neighborhood (longitude and latitude)
Example: House Prices

Figure: California housing prices (relative to median)
Example: California Housing

- **Dataset:** median house prices by location in California (Longitude and latitude).

<table>
<thead>
<tr>
<th>MedianHouseValue</th>
<th>MedianIncome</th>
<th>MedianHouseAge</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>452600</td>
<td>8.3252</td>
<td>41</td>
<td>37.88</td>
<td>-122.23</td>
</tr>
<tr>
<td>358500</td>
<td>8.3014</td>
<td>21</td>
<td>37.86</td>
<td>-122.22</td>
</tr>
<tr>
<td>352100</td>
<td>7.2574</td>
<td>52</td>
<td>37.85</td>
<td>-122.24</td>
</tr>
<tr>
<td>341300</td>
<td>5.6431</td>
<td>52</td>
<td>37.85</td>
<td>-122.25</td>
</tr>
</tbody>
</table>

- **Goal:** grow a regression tree as a function of geographic coordinates.

- R has several packages for trees: `Tree` being a simple one.

```r
require(tree)
calif = read.table("cadata.dat",header=TRUE)
treefit = tree(log(MedianHouseValue) ~ Longitude+Latitude)
plot(treefit)
text(treefit, cex=0.75)
```
FIGURE: Regression tree for predicting California housing prices from geographic coordinates.
Example: House Prices

Figure: Map of actual median house prices (color-coded by decile, darker being more expensive), and the partition of the treefit tree (12 leaves)
QUESTIONS?
How to Grow a Tree

- The algorithm needs to automatically decide on the **splitting variables** and **split points**, and also what topology (shape) the tree should have.

- To judge whether a given tree is good or bad we need a **criterion function**.

- Suppose we have a partition with \(M \) **regions**: \(R_1, \ldots, R_M \)

- Consider the estimator we discussed before

\[
\hat{g}(x) = \sum_{m=1}^{M} \hat{c}_m I\{x \in R_m\}.
\]

- We may choose \(\hat{c}_m \) in order to **minimize some criteria**: e.g., sum of squares,

\[
\sum_{i=1}^{n} (Y_i - \hat{g}(x))^2.
\]
Criterion: minimize the sum of squares. Easy to see that \hat{c}_m is just the average of Y_i in region R_m,

$$\hat{c}_m = \frac{\sum_{i=1}^{n} Y_i I\{X_i \in R_m\}}{\sum_{i=1}^{n} I\{X_i \in R_m\}} = \frac{1}{N_m} \sum_{X_i \in R_m} Y_i,$$

where $N_m = \sum_{i=1}^{n} I\{X_i \in R_m\}$.

Next: choose the number M and partition R_1, \ldots, R_M that deliver the minimum value of

$$\sum_{i=1}^{n} (Y_i - \hat{g}(x))^2.$$

Result: Best binary partition in terms of minimum sum of squares.

Problem: This is an NP-Hard problem.

The common get around is to use a greedy algorithm
Greedy Algorithm

Definition (Greedy Algorithm)

- Consider splitting variable \(j \) and split point \(s \). Define

 \[
 R_1(j, s) = \{ X | X_j \leq s \} \quad \text{and} \quad R_2(j, s) = \{ X | X_j > s \}
 \]

- Seek \(j \) and \(s \) that solve

 \[
 \min_{j, s} \left[\min_{c_1} \sum_{x_i \in R_1(j, s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j, s)} (y_i - c_2)^2 \right].
 \]

- For any choice of \(j \) and \(s \), the inner minimization is solved by

 \[
 \hat{c}_a = \frac{\sum_{i=1}^{n} Y_i I\{X_i \in R_a(j, s)\}}{\sum_{i=1}^{n} I\{X_i \in R_a(j, s)\}} \quad \text{for} \ a \in \{0, 1\}.
 \]

- For each variable \(j \), determination of split point \(s \) can be done quickly.
- Scanning all covariates can be done quickly too ⇒ best \((j, s)\).
- Given the best split, repeat the splitting process on each of the two regions.
- The process is repeated again on the resulting regions, etc.
How large should we grow a tree?

- Tree size is a **tuning parameter** governing the model's complexity.

- Optimal tree size should be **adaptively** chosen from the data.

- **Naive approach**: split tree nodes only if the decrease in sum-of-squares due to the split exceeds some threshold.

- **Short-sighted**: a seemingly worthless split might lead to a very good split below it.

- **Preferred strategy**: grow a large tree T_0, stopping the splitting process only when some minimum node size (say 5) is reached. Then prune this tree using **cost-complexity pruning**.

Definition (Pruning)

To prune a tree T in a (non-terminal) node t means that t becomes a leaf node and all descendants of t are removed. The resulting tree is called a **subtree**.
Pruning

Problem: If T is large, there are many subtrees.

Also, the larger the tree the better the fit (i.e., sum-of-squares)

Cost-Complexity: penalize the size/complexity of the tree:

- It avoids getting trees that are unnecessarily large.
- It reduces the number of subtrees to consider.
Cost-Complexity Pruning

Let $|T|$ denote the **number of terminal nodes** (indexed by m) in T and define

$$N_m = \sum_{i=1}^{n} I\{X_i \in R_m\}$$

$$\hat{c}_m = \frac{1}{N_m} \sum_{X_i \in R_m} Y_i$$

$$Q_m(T) = \frac{1}{N_m} \sum_{X_i \in R_m} (Y_i - \hat{c}_m)^2.$$

Definition (Cost Complexity Criterion)

$$C_\alpha(T) = \sum_{m=1}^{\frac{|T|}{\alpha}} N_m Q_m(T) + \alpha |T|.$$ (2)

Idea: For given α, find the subtree $T_\alpha \subseteq T$ to minimize $C_\alpha(T)$

Note: $\alpha = 0$ leads to T_0, as expected.
Weakest Link Pruning

- For each α: there is a **unique** smallest subtree T_α that minimizes $C_\alpha(T)$.

- To find T_α we use **weakest link pruning**:
 - Successively collapse the internal node that produces the smallest per-node increase $\sum_{m=1}^{[T]} N_m Q_m(T)$
 - Continue until producing the single-node (root) tree.
 - The approach delivers a sequence of subtrees $T_0, T_1, T_2, \ldots, T_p$

- Gives a (finite) sequence of subtrees that must contain T_α.

- **Importantly!** this holds for every value of α!

- In addition, for $\alpha > \alpha'$ it can be shown that $T_\alpha \subseteq T_{\alpha'}$.

- The last facts deliver an efficient algorithm to find the **smallest** minimizing subtrees at different values of α.

- The parameter α can then be chosen by **Cross Validation** $\Rightarrow \hat{\alpha}$

- The resulting tree is $T_{\hat{\alpha}}$.
Classification Trees

- Suppose the outcome is a **classification** outcome taking values 1, 2, ..., K.

- **Tree algorithm**: the criteria for splitting nodes and pruning the tree changes.

- In a node m, representing a region R_m with N_m observations, let
 \[
 \hat{p}_{mk} = \frac{1}{N_m} \sum_{X_i \in R_m} I\{Y_i = k\}
 \]
 be the **proportion of class** k observations in node m.

- We classify the observations in node m to the **majority class** in node m,
 \[
 k(m) = \arg \max_k \hat{p}_{mk}
 \]

- **Different measures** $Q_m(T)$: of node impurity include Misclassification Error,
 \[
 Q_m(T) = \frac{1}{N_m} \sum_{X_i \in R_m} I\{Y_i \neq k(m)\} = 1 - \hat{p}_{mk(m)}
 \]
 Gini Index, and Cross-Entropy. The last two are differentiable; hence amenable to optimization.
Tree Instability

- **Problem** trees have high variance.

- Often a small change in the data can result in a very different series of splits, making interpretation somewhat precarious.

- The major reason for this instability is the **hierarchical nature** of the process: the effect of an error in the top split is propagated down to all of the splits below it.

- One can alleviate this to some degree by trying to use a more stable split criterion, but the inherent instability is not removed.

- It is the price to be paid for estimating a simple, tree-based structure from the data.

- **Bagging** averages many trees to reduce this variance.
Bagging (Bootstrap Aggregating)

- Bagging stands for **Bootstrap Aggregating**

- **Idea:** In situations where we have an estimator \(\hat{g}(x) \) that has possibly high variance, we could reduce the variability by averaging the same estimator over bootstrap samples.

- Let \(\{(Y_1^*, b, X_1^*, b), \ldots, (Y_n^*, b, X_n^*, b)\} \) be a bootstrap sample from \(\hat{P}_n \), the empirical distribution of the original sample \(\{(Y_1, X_1), \ldots, (Y_n, X_n)\} \)

- Index the bootstrap samples by \(b = 1, \ldots, B \) and let \(\hat{g}^{*, b}(x) \) denote the estimate of \(g(x) \) using the \(b \)th bootstrap sample.

- The **bagging estimate** is defined by

\[
\hat{g}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{g}^{*, b}(x) .
\] (3)

- **Note:** the idea of bagging can be applied to any estimator (not necessarily tress)
Each bootstrap tree will typically involve different features than the original, and might have a different number of terminal nodes.

The bagged estimate is the average prediction at x from these B trees.

For classification problems, the bagged classifier selects the class with the most "votes" among the B trees.

Bagging can dramatically reduce the variance of unstable procedures like trees, leading to improved prediction.

Under square-loss: averaging reduces variance and leaves bias unchanged.

Several packages in R for bagging CART (classification and regression trees).
Bagging: Housing data

FIGURE: Trees for 6 bootstrap samples: CA housing data
Figure: Map of actual median house prices (color-coded by decile, darker being more expensive). Left (original). Right (6th bootstrap sample in previous slide)
QUESTIONS?
Random Forests

- **Random forests** (Breiman, 2001) is a substantial modification of bagging that builds a large collection of *de-correlated trees*, and then averages them.

- On many problems the performance of random forests is very similar to **boosting**, which in turn is an improved version of bagging (not covered here).

- Random forest are simpler to train and tune and, as a consequence, are **very popular**.

- They can be implemented in a variety of packages, including `randomForests` in R.
The essential idea in **bagging** is to average many noisy but approximately unbiased models to reduce the variance.

Since trees are notoriously noisy, they benefit greatly from the averaging.

An average of B i.i.d. random variables, each with variance σ^2, has variance

$$\frac{1}{B} \sigma^2.$$

With n.i.i.d. (identically distributed, but not independent) with positive pairwise correlation ρ, the variance of the average is

$$\rho \sigma^2 + \frac{1 - \rho}{B} \sigma^2.$$

As B increases, the second term disappears, but the first remains, and hence the size of the correlation of pairs of bagged trees **limits the benefits** of averaging.

Random forests: improve the variance reduction of bagging by reducing the correlation between the trees, without increasing the variance too much.
Random Forests: Algorithm

Random Forests Algorithm

1. For $b = 1, \ldots, B$
 1.1 Draw a bootstrap sample of size n from the training data.

 1.2 Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 1.2.1 Select s variables at random from the k variables.
 1.2.2 Pick the best variable/split-point among the s.
 1.2.3 Split the node into two daughter nodes

 1.3 Output the ensemble of trees $\{T_b : 1 \leq b \leq B\}$.

To make a prediction at a new point x:

Regression $\hat{g}_{\text{rf}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{g}_b(x)$

Classification $\hat{C}_{\text{rf}}(x) = \text{majority vote}\{C_b(x) : 1 \leq b \leq B\}$.
The main feature of a random forest is that, when growing a tree on a bootstrapped dataset:

Before each split, select $s < k$ of the input variables at random as candidates for splitting.

Intuitively, reducing s will reduce the correlation between any pair of trees in the ensemble, and hence reduce the variance of the average.

“Suggested” values of s are \sqrt{k} for classification and $k/3$ for regression.

Not all estimators can be improved by shaking up the data like this.

Highly nonlinear estimators, such as trees, benefit the most.
Random Forests vs Boosting: Housing Data

Figure: Random forests compared to gradient boosting on the California housing data. The curves represent mean absolute error on the test data as a function of the number of trees in the models.

- Random forests stabilize at about 200 trees, while at 1000 trees boosting continues to improve.
- Boosting has several tuning parameters.
- Boosting outperforms random forests here. More similar in other cases.
- **Note:** $s = 6$ performs better than the default value $\lfloor s/3 \rfloor = 2$.
- Unlike Boosting (which is sequential), RF grows trees in parallel.
Algorithm trained on synthetic data (computer graphics)
- Depth image capture: for each pixel computes relative depth (relative to two random directions)
- Goal: quickly classify joints (head, elbows, etc)
- Relatively easy to update algorithm with new images
- Note: no training in real time (training takes a long time) - only classification
- 1 million images: 1 day in 1,000 core cluster.
Application: Segmentation of Brain Tumors

Figure: Examples of results on eight (previously unseen) test patients. Results are obtained by a forest trained on 30 patients. The automatic segmentation results (bottom row) look very similar to the manual, ground truth segmentations (middle row).

- Delineation of tissue components is crucial for radiotherapy and surgery planning and is currently performed manually in a labor intensive fashion.
- Here we compare MRI segmentation done by a radiotherapist with that of a random forests algorithm (with some modifications not discussed here).
The methods we discussed are a type of non-parametric regression. They are about predicting Y given X and involve tuning parameters. Most of the "buzz" about these machine learning techniques come from accuracy in practical prediction problems (Kinect, Netflix contests, online searches, image recognition, etc). The theoretical properties of $\hat{g}_{rf}(x)$ still being developed.

1. Recent papers by Athey, Tibshirani, Wager, and others are making progress.
2. Methods suffer from the curse of dimensionally, but may work better in some families of DGPS.

$$g(x_1, x_2, x_3, x_4) = h_4(h_1(x_2, x_4), h_2(x_1), h_3(x_3)) = h_4 \circ h_3 \circ h_2 \circ h_4 \Rightarrow d^* = 2 < d = 4$$

Economics is less about prediction than other sciences ⇒ but causal parameters usually involve conditional expectations so...
THE END
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>24</td>
</tr>
<tr>
<td>25th Q</td>
<td>52</td>
</tr>
<tr>
<td>Median</td>
<td>61</td>
</tr>
<tr>
<td>Mean</td>
<td>64</td>
</tr>
<tr>
<td>75th Q</td>
<td>75</td>
</tr>
<tr>
<td>Max</td>
<td>100</td>
</tr>
</tbody>
</table>

Table: Distribution of grades
Midterm Exam 2021