PREVIOUS EXPERIENCE CONSTRAINS ADAPTATION: PHONOTACTICS AND SPEAKER LANGUAGE BACKGROUND

Thomas Denby and Matt Goldrick
Northwestern University
9/16/17
Research Supported by NSF Ling-DDRI grant #1728173
Phonotactics

- Constraints on sound sequences within syllables and words

- Constraints vary between languages
 - e.g. English: [sʌŋ] but *[ŋʌs]
 - Vietnamese [ŋũ] (“sleep”)

- Variation in phonotactic constraints not characteristic of individual talkers (Pierrehumbert, 2001)
Phonotactic adaptation

- In experimental settings, listeners quickly learn novel constraints (e.g. “syllables cannot end in voiceless stops”)

- Listeners make more false memory errors for syllables that follow, rather than violate, experimental constraint (Denby, et al, in press)

- Adaptation effects also appear in speech errors (Dell, et al, 2000) and repetition times (Onishi, Chambers, and Fisher, 2002)
Big question

How does our prior experience with phonotactic variation constrain adaptation to novel phonotactics?
Big question

How does our prior experience with phonotactic variation constrain adaptation to novel phonotactics?

Hypothesis

Listeners adapt to systematic variation while ignoring irrelevant variation using their prior experience.
Big question

How does our prior experience with phonotactic variation constrain adaptation to novel phonotactics?

Hypothesis

Listeners adapt to systematic variation while ignoring irrelevant variation using their prior experience

- E.g. variation in consonant production due to individual variation/dialect vs. speaker with disrupted production due to pen in mouth (Kraljic, Samuel, & Brennan, 2008)
Big question

How does our prior experience with phonotactic variation constrain adaptation to novel phonotactics?

Hypothesis

Listeners adapt to systematic variation while ignoring irrelevant variation using their prior experience

• Prior experience ➔ systematic phonotactic variation between speakers of different languages, little variation between speakers of the same language/dialect
Big question

How does our prior experience with phonotactic variation constrain adaptation to novel phonotactics?

Predictions

- Talker-specific phonotactic constraints (e.g. 2 speakers of English) ➔ lower degree of adaptation
- Language-specific constraints (1 English speaker vs. 1 French speaker) ➔ greater degree of adaptation
Recognition Memory Task

- Listeners hear a series of nonsense syllables without breaks
- No explicit information about talkers included
- Prompt: “Have you heard this sound before?”
- After stimulus plays: respond “YES” or “NO”

- Listeners asked to track nonsense syllables in memory
- Can probe learnability of constraints (Bernard, 2015, 2017; Steele, et al., 2015; Denby et al., in press)
Recognition Memory

“No fricatives in coda; stops unrestricted”

- Phase I: Familiarization
 - Expose listeners to repeated instances following constraint

 \[
 \text{pak, sut, kut, jap, kut, pak, tap} \ldots
 \]
Recognition Memory

“No fricatives in coda; stops unrestricted”

• Phase II: Generalization
 • Expose listeners to occasional novel generalization syllable

 tap, sut, pak, puk, kut, tus, jap…
Recognition Memory

“No fricatives in coda; stops unrestricted”

• Phase II: Generalization
 • Expose listeners to occasional novel generalization syllable
 tap, sut, pak, puk, kut, tus, jap…

• Legal (follows constraint) or illegal (violates constraint)

Do participants incorrectly respond “yes” more often on legal syllables?
Experiment Overview

- English listeners exposed to talker-specific constraints
 - E.g. “Speaker A does not end their syllables in fricatives; speaker B doesn’t end their syllables in stops”

- Experiment 1
 - Preregistered with Open Science Foundation
 - Number of participants set to maximize power ($\beta = .804$)
 - Determined by Monte Carlo simulations based on results from pilot study

- Experiment 2
 - Follow-up study
Experiment 1 Overview

- English listeners exposed to talker-specific constraints
- 4 conditions

<table>
<thead>
<tr>
<th>Language Background</th>
<th>Native Shared</th>
<th>Non-Native Shared</th>
<th>Weak Different</th>
<th>Strong Different</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared English</td>
<td>[i, u]</td>
<td>[i, y]</td>
<td>[i, u]</td>
<td>[i, y]</td>
</tr>
<tr>
<td>French vs. English</td>
<td>[i, u]</td>
<td>[i, y]</td>
<td>[i, u]</td>
<td>[i, y]</td>
</tr>
</tbody>
</table>
Experiment 1 Overview

- English listeners exposed to talker-specific constraints
- 4 conditions

<table>
<thead>
<tr>
<th></th>
<th>Native Shared</th>
<th>Non-Native Shared</th>
<th>Weak Different</th>
<th>Strong Different</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Background</td>
<td>Shared English</td>
<td>Shared French</td>
<td>English vs. French</td>
<td>English vs. French</td>
</tr>
<tr>
<td>French vs. English vowels</td>
<td>[i, u]</td>
<td>[i, y]</td>
<td>[i, u]</td>
<td>[i, y]</td>
</tr>
<tr>
<td>Control: Gender</td>
<td>Different</td>
<td>Different</td>
<td>Same</td>
<td>Same</td>
</tr>
</tbody>
</table>
Methods

• 64 participants/condition (AMT; passed criteria for attending to task)

• Stimuli
 • 72 CVC nonsense syllables
 • 6 onsets [s,ʃ,f,t,k,p] * 2 vowels [i,u/y] * 6 codas
 • One speaker ends syllables in fricatives; other speaker in stops (counter-balanced)

• Procedure
 • Familiarization: 4 reps of 36 syllables
 • Generalization: 9 more reps of familiarization syllables, intermixed with 36 novel generalization syllables (4/block)
 • 504 continuous trials
Generalization syllables following familiarization pattern are *legal*, those that don’t are *illegal*.

<table>
<thead>
<tr>
<th></th>
<th>Speaker A: Fricative codas</th>
<th>Speaker B: Stop Codas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familiarization</td>
<td>fuf, kij, tis, juf</td>
<td>fut, kip, tik, juk</td>
</tr>
<tr>
<td>Generalization - legal</td>
<td></td>
<td>fif, kuji, fit, kup</td>
</tr>
<tr>
<td>Generalization - illegal</td>
<td></td>
<td>tus, tuf, tuk, ship</td>
</tr>
</tbody>
</table>

Adaptation: More false alarms on legal vs. illegal
Experiment 1 predicted results
Experiment 1 predicted results

![Graph showing predicted legality advantage for different categories: Native Shared, NN Shared, Weak Dif, Strong Dif. The graph indicates that predicted legality advantage increases with stronger difference.]
Experiment 1 results

![Graph showing the legality advantage for different conditions. The x-axis represents conditions: Native Shared, NN Shared, Weak Dif, Strong Dif. The y-axis represents the legality advantage percentage, ranging from 0% to 20%. The graph includes error bars indicating variability.](image-url)
Experiment 1 limitations

1. Familiarization and generalization syllables did not always match
 • All generalization syllables had [i] or [u] (never [y])
 ➢ *May have inhibited adaptation in Strong Different condition*

2. French talkers were phonetically dissimilar
 • Different pitch contours across male and female French speakers
 • Female speaker had not recently been in French-dominant environment
 ➢ *Listeners may have inferred multiple language backgrounds in “NN shared” condition*
Experiment 2

- *NN shared* and *Strong different* conditions
- Generalization syllables match familiarization ([y] instead of [u])
- Recorded novel French female speaker
 - Imitated French male speaker’s utterances
Experiment 2 results
Experiment 2 results

![Bar chart showing legality advantage]

- Native Shared Exp1
- NN Shared
- Strong Dif
Experiment 2 results

Strong > NN shared > Native shared

Both presence of NN speech + language differences → adaptation
Summary

Hypothesis

Listeners adapt to systematic variation while ignoring irrelevant variation using their prior experience

- Listeners show largest degree of adaptation to talker-specific constraints when talkers differ in language background
- Future work will investigate if listeners are sensitive to differences between non-native languages
Summary

Hypothesis

Listeners adapt to systematic variation while ignoring irrelevant variation using their prior experience

• Additionally, listeners show moderate adaptation when talkers share a non-native language background
 • Presence of non-native speakers may increase listener confidence that talkers do not share a language background
 • Future work will manipulate strength of non-native language background cues within NN Shared condition
Conclusion

Phonotactic adaptation is constrained by previous experience

- Not simply associative pattern learning (Anderson, Holmes, & Dell, 2016)
- Informed by previous linguistic experience (e.g., Pajak, et al., 2016)
Thank you!

Thanks to the NSF for their generous funding, and to Jennifer Cole, Ann Bradlow, Melissa Baese-Berk, Chun Chan, and the NU SoundLab for their help and feedback!

tdenby [at] u.northwestern.edu
sites.northwestern.edu/denby
Northwestern University
APPENDIX
Experiment 2 discussion

• What’s driving the increase in legality advantage for *Strong-different* condition between Exp1 + 2?
 • Vowel?
 • No: largest increase in legality advantage from Exp1 to 2 for syllables with /i/
 • Talker?
 • No: similar legality advantage for male and female French talkers

• Adaptation not driven by English talker in different conditions
Experiments 1 + 2 results

- False Recognition

- Legal
- Illegal

Native Shared - NN Shared - NN Shared2 - Weak Dif - Strong Dif - Strong Dif2
Experimental criteria

<table>
<thead>
<tr>
<th>Condition</th>
<th>Passing Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native Shared</td>
<td>52%</td>
</tr>
<tr>
<td>NN Shared</td>
<td>65%</td>
</tr>
<tr>
<td>NN Shared2</td>
<td>42%</td>
</tr>
<tr>
<td>Weak Different</td>
<td>56%</td>
</tr>
<tr>
<td>Strong Different</td>
<td>56%</td>
</tr>
<tr>
<td>Strong Different2</td>
<td>45%</td>
</tr>
</tbody>
</table>