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Abstract

Many scarce public resources are allocated at below-market-clearing prices, and
sometimes for free. Such “non-market” mechanisms necessarily sacrifice some surplus,
yet they can potentially improve equity. In this paper, we develop a model of mech-
anism design with redistributive concerns. Agents are characterized by a privately
observed social welfare weight and willingness to pay for quality, as well as a publicly
observed label. A market designer controls allocation and pricing of a set of objects of
heterogeneous quality, and maximizes the expectation of a welfare function defined by
the social welfare weights. We derive structural insights about the form of the optimal
mechanism, leading to a framework for determining how and when to use non-market
mechanisms. The key determinant is the strength of the statistical correlation of the
unobserved social welfare weights with the label and the willingness to pay that the
designer can, respectively, directly observe or elicit through the mechanism.
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1 Introduction

Many scarce public resources—such as public housing, road access, school seats, national

park permits, and certain types of healthcare—are allocated at below-market-clearing prices,

and sometimes for free. Such “non-market” mechanisms naturally raise concerns among

economists because they necessarily sacrifice some allocative surplus by failing to allocate

resources to those with the highest willingness to pay. At the same time, however, policy-

makers often justify non-market mechanisms on fairness grounds: If resources were allocated

using market-clearing prices, they argue, agents with the lowest willingness to pay would of-

ten be excluded from enjoying their benefits. Because low willingness to pay for many goods

and services is likely to be correlated with adverse social and economic circumstances—such

as low wealth, health problems, or unemployment—marketplace designers may be naturally

concerned about the welfare of such agents. But how should we think about the result-

ing efficiency–equity trade-off? In this paper, we develop a market-design approach to this

question.

We study a model in which a market designer or policymaker must decide about the

allocation of a fixed supply of goods with heterogeneous quality. Each agent’s utility is linear

in the quality of the received good and in monetary transfers—allowing us to parameterize

agents’ preferences by a single parameter called willingness to pay. Besides the privately

observed willingness to pay for quality, each agent is characterized by a publicly observed

label, and an unobserved social welfare weight. We characterize the optimal incentive-

compatible and individually-rational mechanism for a designer who seeks to maximize the

expectation of the welfare function, given by the sum of agents’ utilities weighted by their

social welfare weights.

While optimal redistribution has been extensively in the context of public finance, here

we take a complementary market-design approach. The designer decides about the allocation

of a single type of good without considering the interaction of this allocation process with

macro-level redistribution. The supply of goods and the social welfare weights are thus

modeled as exogenous. While these assumptions are limiting in some contexts, they are

natural descriptions of many relevant policy problems. For a recent example, consider the

question of how to allocate vaccines during the Covid-19 pandemic. A state government

may face an inelastic supply of vaccines in the short run. Quality in this example may

be understood as time priority (higher quality means getting the vaccine sooner). While

state governments can effect redistribution by setting taxes, they have also been separately

considering redistributive consequences of allocating vaccines1—for instance, setting a high

1See for example Schmidt et al. (2020), Pathak et al. (2020), and the references therein.



price for the vaccine would exclude large parts of poorer populations from getting it.

Our results show how the form of the optimal mechanism depends on the relationship

between agents’ observed and unobserved characteristics. Our analysis thus provides a frame-

work for determining when and how non-market allocation is socially beneficial. In particu-

lar, we show that the key parameters that determine the optimal redistributive scheme are

as follows.

Social preferences and the information available to the policymaker. The un-

derlying premise of our analysis is that in the presence of perfect information the market

designer would know exactly what social welfare weight to attach to every individual by

taking into account all of her relevant characteristics.2 However, in practice information

is not perfect. Instead, the designer has access to two types of information. First, she can

observe some publicly available (or verifiable) information summarized by the agent’s label—

examples could include employment status, tax data on income, or marital status. Second,

the designer can elicit information through the mechanism—we show that she can addition-

ally infer the willingness to pay of each agent (but nothing else). As a result, the designer

must form Bayesian beliefs about the remaining unobservable characteristics that could be

relevant for the welfare weights—such as the detailed financial situation, or consumption

and health shocks. Formally, when maximizing the welfare function, the designer attaches

to each agent a Pareto weight equal to the expectation of the unobserved welfare weight

conditional on the publicly observed label and the elicited willingness to pay. (Hereafter, to

avoid any confusion, we will use the term “welfare weights” to refer to the underlying social

preferences, and “Pareto weights” to refer to the expected weights in the designer’s objective

function.)

We show how the shape of the Pareto weights—as a function of the label and willingness

to pay—translates into the properties of the optimal mechanism. The dependence of Pareto

weights on publicly available information about individuals allows us to capture applications

like affirmative action or preferential treatment of low-income households. The dependence

of Pareto weights on willingness to pay is due to a more subtle statistical link between

unobservable characteristics relevant for social preferences and the agent’s behavior in the

mechanism—this effect also shapes the form of optimal redistribution by complementing the

use of verifiable information.

2A social welfare weight has a natural interpretation in our quasi-linear model: It is the social value of
giving a dollar to a given agent. See Saez and Stantcheva (2016) for a general treatment.
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The importance and role of raising revenue. Unless all goods are allocated for

free, the mechanism generates some strictly positive revenue; the optimal allocation scheme

naturally depends on whether this revenue is used redistributively or not.3 In our welfare

function, we introduce a parameter α that reflects the marginal value, or opportunity cost,

of a dollar of revenue. Effectively, α is a Pareto weight placed on the beneficiary of the

monetary surplus generated by the mechanism.

If the designer “rebates” the revenue directly and frictionlessly to the target population,

then α equals the average Pareto weight in the population (possibly conditioned on labels).

An α below the average Pareto weight allows us to capture the case in which there are frictions

associated with direct transfers, for example reflecting administrative costs or unmodeled

inefficiencies associated with giving cash to agents suffering from behavioral biases.4 Finally,

α above the average Pareto weight implies that the designer subsidizes a socially valuable

outside cause.

The type of goods being allocated. Intuitively, in-kind transfers are typically associated

with goods that are deemed “essential” in the sense that every agent must consume them

(e.g., housing and food). An essential good can be captured in our model by specifying that

the willingess to pay for it in the population is bounded away from zero; we explain how the

essentiality of the good influences the amount of in-kind redistribution that emerges in the

optimal mechanism.

Preview of results

We construct an optimal mechanism for our setting in two steps: First, we solve the optimal

allocation problem for each group of agents with the same observable characteristics (i.e.,

the same label) separately, conditional on a given allocation of goods to that group. Then,

we show how that within-group solution gives rise to a simple greedy algorithm for optimally

allocating goods across the groups.

For a given set of goods to allocate to a group of agents with the same label, the optimal

within-group mechanism partitions agents into blocks according to their willingness to pay,

and within each block allocates the good either (i) uniformly at random or (ii) assortatively,

with higher-quality goods assigned to agents with higher willingness to pay. Which allocative

3For example, the proceeds from running a public housing program can be used to finance infrastructure
investments, or subsidize the city budget. Alternatively, revenue can be returned to the target population,
in the form of direct subsidizes or via a reduction in taxes.

4An extreme case of α = 0 corresponds to the case when agents “pay” for the goods not using money but
by engaging in a costly activity such as waiting in line; in that case, revenue is just an aggregate measure of
the size of the costly screening activity that has no intrinsic value in itself.
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mechanism is used is determined by a trade-off: increasing the amount of randomization

relative to assortative matching increases the probability that agents with lower willingness to

pay receive the good and lowers prices for all agents—but also reduces allocative inefficiency

and lowers revenue.

Given our solution for an optimal mechanism within groups, we find the optimal alloca-

tion of goods across groups by identifying a simple statistic characterizing which group will

have the highest marginal return to a unit of quality q. We show that the optimal mechanism

allocates goods across groups greedily with respect to this “group value” statistic, starting

with lowest-quality goods and proceeding to the highest.

The main insight of this paper is that the use of below-market-clearing prices and random

allocation (in-kind redistribution) in the optimal mechanism is largely determined by three

key factors:

1. the level of dispersion in Pareto weights as a function of willingness to pay (conditional

on any fixed label);

2. the relationship between the average Pareto weight (for a given group) and the oppor-

tunity cost of revenue; and

3. whether the good is essential or not.

Roughly speaking, a random allocation at below-market prices is more likely to emerge as

optimal, ceterius paribus, when the opportunity cost of revenue is low, the good is essential,

and the level of dispersion in Pareto weights is intermediate. Concretely, we prove the

following results on within-group allocation.

A fully random allocation in some group can only be optimal when the average Pareto

weight on that group is strictly higher than the opportunity cost of revenue α. In particular,

a necessary condition is that the designer cannot target a lump-sum transfer to this group

of agents (or that this is sufficiently costly). If a lump-sum transfer to the entire population

is feasible, then a necessary condition is that this group is “preferred” in the sense that the

group has a strictly-higher-than-average Pareto weight (as in affirmative action).

If the good is essential, then being a “preferred group” that cannot receive direct lump-

sum transfers is also sufficient for random allocation to be used in the optimal mechanism.

Formally, we show that if the weight on revenue α is strictly below the average Pareto weight

for some group of agents, then the optimal mechanism allocates some goods for free to those

with the lowest willingness to pay within that group.

In contrast, if lump-sum transfers are feasible (so that α is weakly above the average

Pareto weight), then as long as Pareto weights are non-increasing in the willingness to pay,
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it is optimal to use assortative matching—at least for agents with the highest willingness

to pay within a group. Moreover, for non-essential goods and Pareto weights that are not

too dispersed as a function of willingness to pay, a fully assortative matching within each

group is optimal. Monotonicity and dispersion of Pareto weights are determined by the

statistical correlation between the unobserved social welfare weights and willingness to pay:

Pareto weights are non-increasing if willingess to pay and social welfare weights are negatively

correlated; they have low dispersion, when that correlation is not too strong.

Sometimes, in the optimal mechanism, random allocation to low-willigness-to-pay agents

co-exists with assortative matching to high-willingness-to-pay agents. In this case, the effect

of dispersion in Pareto weights is non-monotone. That is, assortative matching becomes

optimal both when the weights are nearly constant (willingness to pay does not influence

the Pareto weight too much) and when the weights become extremely skewed (almost all

the weight is attached to the individuals with the lowest willingness to pay). Thus, the use

of random allocation is maximized at some intermediate level of dispersion.5

Finally, we investigate how the structure of the optimal mechanism within each group in-

fluences the allocation of objects across groups. We first show that fully assortative matching

and fully random matching lead to two opposite properties of the across-group allocation:

When assortative matching is used within each group, the allocation of objects is “horizon-

tal” in the sense that each group receives both the lowest- and highest-quality objects. When

a fully random allocation is used within each group, meanwhile, the allocation of objects is

“vertical” in the sense that groups can be ordered (by their average Pareto weights), and

groups higher in the order receive higher quality.

When allocation is random in some groups and assortative in others, we prove that, in

general, the groups with random allocation should receive goods of intermediate quality. To

understand why, note that assortative matching leads to higher revenue when the quality of

the good is more dispersed (so that a relatively high price can be charged for high-quality

goods). In contrast, when the good is allocated uniformly at random, both the revenue and

the utility of agents only depend on the average quality. Thus, goods with extreme quality

(both high and low) are typically allocated to groups with assortative matching.

We furthermore discuss the market design consequences of our findings in Section 5.

5For intuition, note that when the dispersion in Pareto weights is low, the motive to maximize total
surplus dominates the redistribution concerns. On the other extreme, when only the agents with lowest
willingness to pay receive large Pareto weights, it becomes optimal to maximize revenue (which is achieved
by allocating assortatively) and redistribute via lump-sum subsidies—this is because, by definition, agents
with lowest willingness to pay have the highest relative value for receiving money (relative to receiving the
good).
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1.1 Related work

We are far from being the first to study the question of how to allocate goods when the

designer’s preferences account for various measures of agent welfare. This question was

asked at least as early as the work of Weitzman (1977), who showed that a fully random

allocation can be better than competitive pricing when the agents’ needs (as reflected in

the designer’s objective function) are not well expressed by their willingness to pay. Yet,

we would like to emphasize that while a huge number of papers have been written on the

problem of maximizing revenue and efficiency in mechanism design, the question of optimal

redistribution (in the absence of the second welfare theorem) has received incomparably less

attention, despite its obvious practical relevance.

The two most related papers to ours are those of Condorelli (2013) and Dworczak ®

Kominers ® Akbarpour (2020). Condorelli (2013) provided conditions for the optimality

of market and non-market mechanisms for allocating k identical objects to n agents in an

environment where the designer maximizes agents’ values that may be different from their

willingness to pay. We extend Condorelli’s analysis by considering heterogeneous quality

of objects, a continuum of goods and agents, and groups of agents with the same observ-

able characteristics. Moreover, we allow the designer to have preferences over revenue, and

accommodate cases when lump-sum transfers are not feasible. These additional elements

lead to new economic insights about the structure of optimal mechanisms. For example,

many of our conclusions depend crucially on how the average Pareto weight relates to the

weight on revenue; the dispersion in Pareto weights as a function of willingness to pay is a

key determinant of the use of randomized allocation; and heterogeneous quality makes the

“across” problem and various notions of matching meaningful—all these elements are absent

from Condorelli’s analysis. Finally, by specializing the designer’s objective to be a weighted

sum of agents’ utilities and revenue, our paper has an applied focus and attempts to connect

market circumstances with the model’s conclusions about the optimal design.

Dworczak ® Kominers ® Akbarpour (2020) (henceforth, DKA) studied a closely re-

lated question in the context of buyers and sellers trading a good of homogeneous quality.

They show that the optimal mechanism—subject to market-clearing and budget-balance

constraints—may in general deviate from competitive trading in two simple ways: via the

introduction of lump-sum payments to one side of the market and the use of rationing (of-

fering the good at an attractive price but with an interior probability of transacting). This

departure from the conclusion of the second welfare theorem is driven by the fact that the

designer maximizes a weighted sum of agents’ utilities with weights that depend on the side

of the market and willingness to pay. Thus, the two papers share the interest in investigating

properties of social preferences that justify the use of non-market mechanisms. However, the
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current paper takes a more practical approach by focusing on the problem of allocating public

resources and incorporating a range of features that play a key role for real-life policymakers:

heterogeneous quality of objects, richer preferences over revenue, additional observable infor-

mation about the agents, and a restriction on the use of lump-sum transfers. Heterogeneity

of object qualities creates new dimensions of the design problem, with potentially multiple

“regions” of assortative versus random matching in the optimal mechanism. When revenue

receives a sufficiently high weight in the designer’s objective, the optimal mechanism may

leave some objects unassigned. Additional observable information creates a novel problem

of how to split the objects among groups of agents sharing the same public characteristics,

allowing applications to affirmative action. Finally, when lump-sum transfers are not fea-

sible, randomization in the mechanism may be optimal even under conditions that would

make rationing suboptimal in the setting of DKA.

In both this paper and DKA, the designer is assumed to have control over the entire

market. A recent paper Kang (2020b) enriches the framework by allowing for an exogenous

private market where agents can also purchase the good (of potentially higher quality). The

presence of a private market creates an endogenous outside option for agents that the de-

signer must take into account. Despite this complication, Kang derives the optimal design

of the public option and shows that it involves a small number of tiers, each corresponding

to a different probability of obtaining the good. While Kang’s results and ours are comple-

mentary, there are some connections. For example, in Kang’s model, agents with the highest

willingness to pay purchase the high-quality good in the private market; we derive conditions

under which the optimal allocation of quality is assortative (corresponding to a competitive

market outcome) at the top of the distribution of willingness to pay.

The introduction of observable characteristics to our model is a classical idea in the

taxation literature. For example, Akerlof (1978) describes how “tagging” could be used

in the tax system for redistributive purposes. The interpretation of Pareto weights in our

model is also closely analogous to how they are used in public finance; specifically Saez and

Stantcheva (2016) introduced generalized social marginal welfare weights in the context of

optimal tax theory and interpreted them as the value that society puts on providing an

additional dollar of consumption to any given individual.

We think of the designer in our model as either a marketplace regulator, such as a local

government or agency, or more abstractly as a reflection of social preferences. The implicit

assumption underlying our analysis is that the designer can only control the marketplace in

question, and does not have access to macroeconomic tools such as income taxation. As a

consequence, the designer takes the inequality in the market as given, and does not take into

account how her mechanism might potentially influence the welfare weights. This is in con-
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trast to many classical public finance models (such as the canonical framework of Diamond

and Mirrlees, 1971, or Atkinson and Stiglitz, 1976), where inequality is determined endoge-

nously within the model, and redistribution is primarily accomplished via taxing income of

workers with privately observed ability. While we share the interest in the redistribution

question with the public finance literature, our market-design approach to the problem—

with quasi-linear utilities, unit demand, and emphasis on allocation rules—is distinct and

complementary. Because of the special structure, agents’ behavior in our model is described

by a bang-bang solution, rather than first-order conditions that are used in much of modern

public finance. As a result, the redistribution question in our context is especially tractable,

and the optimal mechanism can often be found in closed form.

Our paper relates to a large literature in economics on price controls as a redistributive

tool. Viscusi, Harrington, and Vernon (2005) study how price regulations can lead to al-

locative costs. Bulow and Klemperer (2012), meanwhile, characterized when price controls

can be harmful to all market participants. An extreme version of price control—providing

the good for free as an in-kind transfer—has also been studied. The literature on in-kind

redistribution already emphasized that individuals’ market behavior can help the planner

identify their type. Besley and Coate (1991) analyze the problem of providing a free, public

option for a good that is already being provided in the private market. The public option

is funded by taxing individuals, who are either rich or poor. They show that providing a

“lower quality” public option can benefit the poor, as rich individuals opt for the private

option but pay the tax anyways. Gahvari and Mattos (2007) compare in-kind transfers with

direct cash as two forms of helping those who are in need. The show that in-kind transfers

have the advantage that when “needs” are private information, in-kind transfers can help

identify individuals who truly need a good.

Although we analyze a model with monetary transfers, in the special case when the de-

signer attaches no weight to revenue maximization, our framework becomes mathematically

equivalent to a costly-signaling (“money-burning”) setting, in which assortative matching can

only be obtained when agents engage in a socially wasteful activity to separate from lower

types. Several papers have analyzed conditions on the distribution of willingness to pay un-

der which screening maximizes total surplus (see, for example, Hartline and Roughgarden,

2008, Condorelli, 2012, Chakravarty and Kaplan, 2013).6 Roughly, assortative matching is

optimal when the inverse hazard rate is non-decreasing (this requires that the willingness to

pay is unbounded from above), and a fully random allocation is optimal in the opposite case.

6Similar conditions are obtained as early as McAfee and McMillan (1992) in a setting where bidders
collude but cannot share payments among each other; then, bidding in the auction becomes equivalent to
burning utility.
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Related results appear in the literature on matching contests, e.g., Damiano and Li (2007),

Hoppe, Moldovanu, and Sela (2009), and Olszewski and Siegel (2019), as well as two-sided

matching markets, e.g., Gomes and Pavan (2016, 2018). We contribute to this literature by

adding the Pareto weights that depend on agent’s willingness to pay, and showing how their

monotonicity and dispersion interacts with the monotonicity of the inverse hazard rate.

While certain additional steps are needed to accommodate several features of our frame-

work, the methods we use to solve the “within” problem are not novel and can be seen as

a generalization of the ironing technique developed by Myerson (1981).7 Following the intu-

itive approach to ironing developed by Bulow and Roberts (1989), Hartline and Roughgarden

(2008) applied it to a problem with multiple goods, and Condorelli (2012) to multiple goods

with heterogeneous quality. In concurrent research, Muir and Loertscher (2020) rely on sim-

ilar techniques to solve a problem of a revenue-maximizing seller in the presence of resale;

Ashlagi, Monachou, and Nikzad (2020) show that these methods can be also used in de-

signing the optimal dynamic allocation in a multi-good environment by optimizing over how

much information is disclosed about different types of objects; finally, Kleiner, Moldovanu,

and Strack (2020) demonstrate that all these procedures can be obtained as a special case of

a general property of extreme points that arise in optimization problems involving majoriza-

tion constraints. Kang (2020a) derives a variant of this approach based on a tool called the

constrained maximum principle, and applies it to the problem of optimal allocation of goods

with externalities.

2 The model

Framework. A designer allocates a set of objects of heterogeneous quality to a set of agents

who differ in both their observable and unobservable characteristics. There is a unit mass of

agents, with each agent characterized by a type vector (i, r, λ). The three dimensions of a

type vector have a joint distribution in the population that is known to the designer.8 The

first ingredient of the type vector, called the label, takes one of finitely many values from the

set I, and is assumed to be publicly observed. Agents with the same label form a group; there

are µi > 0 agents in group i. The parameter r ∈ R+ is the willingness to pay (for quality)

which is privately observed by the agent. Conditional on label i, r has a distribution with

cumulative distribution function Gi and continuous density gi, fully supported on [ri, r̄i].

Finally, λ ∈ R+ is the social welfare weight on a given individual, interpreted as the social

7See also Toikka (2011).
8We do not introduce notation for the joint distribution because it will not play a direct role in our formal

analysis.
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value of giving that individual one unit of money. Neither r nor λ of any given individual

are observed by the designer.9

There is a mass µ ≤ 1 of objects, with each object characterized by a one-dimensional

quality q ∈ Q ⊆ [0, 1], where Q is a compact set. Let F denote the (generalized) cumulative

distribution function of q, that is, F (q) is the total mass of objects of quality equal to or less

than q. If an agent with willingness to pay r is assigned a good with quality q in exchange

for a monetary transfer t, that agent’s utility is rq − t; if that agent has a social welfare

weight λ, the contribution of that individual to the social welfare function will be λ(rq− t).
Because not being assigned any object is equivalent to being assigned an object of quality

0, we can without loss of generality assume that F (1) = 1 by putting enough mass at q = 0.

Thus, all agents receive an object (but possibly with quality 0).

Our framework incorporates a few strong assumptions about the environment. First,

we assume that agent’s utility is quasi-linear in money. Second, agents differ only in their

“intensity” of preferences but they agree on the ranking of qualities. Third, each agent’s

utility only depends on the expected quality of the good—agents are risk neutral.10 Fourth,

social preferences are captured by weights that are constant—capturing the implicit assump-

tion that the designer does not take into account how her chosen allocation impacts social

preferences.

Assignments and Mechanisms. An assignment Γ is a collection of |I| measurable func-

tions Γi : [ri, r̄i] → ∆(Q) with Γi(q| r) interpreted as the probability that an agent with

willigness to pay r in group i is assigned an object with quality q or less.11 The assignment

Γ is feasible if

Γi(·| r) is a CDF for all i, and r ∈ [ri, r̄i]; (2.1)∑
i∈I

µi

� r̄i

ri

Γi(q| r)dGi(r) ≥ F (q), ∀q ∈ Q. (2.2)

Condition (2.2) states that the distribution of assigned qualities is first-order stochastically

dominated by the distribution of available qualities. The condition reflects the availability of

free disposal—a decrease in quality can be achieved by randomizing between a given quality

and quality 0. Because the utility of agents only depends on the expected quality, it will be

9As we show, it does not matter whether an individual can observe her own social welfare weight λ.
10We can define the agent’s utility to be rv(q) − t for some concave function v, partly capturing the

consequences of risk aversion. In that case, we would define a new random variable q̃ = v(q) with CDF F̃ ,
called “risk-adjusted quality,” and apply our results with F̃ as the primitive distribution of quality.

11We assume that all agents with the same willigness to pay r are assigned the same lottery over objects.
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convenient to denote

QΓi(r) =

� 1

0

qdΓi(q| r).

We will write Qi(r) if the reference to the underlying assignment Γi is irrelevant.

To describe feasible mechanisms, we rely on the Revelation Principle. A direct mechanism

(Γi, ti)i∈I asks agents to report their willingness to pay r, assigns objects according to Γi(q| r)
in group i, and charges agents according to the transfer function ti(r). As it will turn out,

we do not have to include the social welfare weight λ in the agent’s report because no

incentive-compatible mechanism can improve the social welfare function by trying to elicit

this information from agents (see Claim 1 below).

Lump-sum payments to agents may or may not be allowed in different applications of

our framework. We use the following modeling approach to accommodate all possible cases.

There is no hard budget constraint for the designer but the mechanism must use non-negative

transfers: ti(r) ≥ 0 for all i and r.12 However, lump-sum payments to agents may happen

“outside of the mechanism;” this is captured through the designer’s value for generating

monetary surplus in the mechanism (in the objective function that we formally introduce

in the next subsection). For example, if the value for generating monetary surplus is 0

in the designer’s objective, the constraint of non-negative transfers is binding and means

that lump-sum payments are not allowed. However, if the value for generating monetary

surplus is equal to the value of giving a lump-sum payment to all agents, then it is as

if lump-sum payments to all agents were allowed. We comment on other cases later. For

incentive-compatible mechanisms, the condition that transfers are non-negative is equivalent

to requiring that for each group i, the utility U i of type ri satisfies U i ≤ QΓi(ri)ri.

Formally, a mechanism (Γi, ti)i∈I is feasible if

� Γ is a feasible assignment, i.e., it satisfies conditions (2.1)-(2.2);

� each agent reports her willingness to pay truthfully:

rQΓi(r)− ti(r) ≥ rQΓi(r̂)− ti(r̂), ∀i, r, r̂; (2.3)

� each agent receives non-negative utility from the mechanism but does not receive a

positive money transfer:

0 ≤ U i ≤ QΓi(ri)ri, ∀i. (2.4)

12Because agents are buyers in our framework, this constraint on transfers has no impact on the set of
implementable allocation rules—it only constrains lump-sum transfers.
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By standard arguments (see Myerson, 1981), we can represent the utility of an agent with

willigness to pay r in an incentive-compatible mechanism as

Ui(r) ≡ rQΓi(r)− ti(r) = U i +

� r

ri

QΓi(τ)dτ. (2.5)

Moreover, a mechanism is feasible if and only if Γ is a feasible assignment, QΓi(r) is non-

decreasing in r for all i, and ti(r) satisfies (2.5) for some U i ∈ [0, QΓi(ri)ri].

The objective function. We assume that the designer maximizes the expectation of a

weighted sum of revenue and agents’ utilities weighted by their social welfare weights. The

following observation—which has been made before in different contexts—implies that our

definition of a feasible mechanism is without loss of generality for maximizing this objective.

Claim 1 (Jehiel and Moldovanu (2001); Che et al. (2013)13). The designer cannot increase

the expectation of her objective function by using an incentive-compatible mechanism that

elicits information about λ.

Claim 1 is intuitive: Since, conditional on r, λ has no bearing on the individual’s prefer-

ences over choices offered by any allocation mechanism, no mechanism can truthfully elicit

information about λ. As a consequence, the designer must form beliefs about λ based on the

information she does observe which is r and i. Define λi(r) = E[λ| i, r] as the expectation

of λ conditional on i and r, under their joint distribution. To distinguish λi(r) from the

underlying social welfare weight λ, we call λi(r) the Pareto weight on an agent with label i

and willingess to pay r.

With this, we can write the designer’s objective function as

α
∑
i∈I

µi

(� r̄i

ri

ti(r)dGi(r)

)
︸ ︷︷ ︸

revenue

+
∑
i∈I

µi

(� r̄i

ri

λi(r)Ui(r)dGi(r)

)
︸ ︷︷ ︸

social surplus with weights λi

,

where α ≥ 0 is the weight on revenue. For technical reasons, we assume that λi(r) is

continuous in r for each i. A simple calculation shows that this objective function can be

represented by a function of the form

∑
i∈I

µi

(� r̄i

ri

Vi(r)Q
Γi(r)dGi(r) + vi U i

)
, (2.6)

13See also Dworczak ® Kominers ® Akbarpour for the formulation of this claim in an analogous economic
context.
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by setting vi = λ̄i − α, where

λ̄i =

� r̄i

ri

λi(τ)dGi(τ)

is the average Pareto weight for group i, and

Vi(r) = αJi(r) + Λi(r)hi(r),

where hi(r) = (1 − Gi(r))/gi(r) denotes the inverse hazard rate of Gi, Ji(r) = r − hi(r) is

the virtual surplus function, and

Λi(r) = Er̃∼Gi
[λ(r̃)|r̃ ≥ r],

is the average Pareto weight attached to agents with willigness to pay above r. With fully

transferable utility, the objective function reduces to Ji(r) + hi(r) = r yielding the usual

measure of allocative efficiency. With α = 0 and constant Pareto weights, the objective

function reduces to hi(r), and the designer maximizes total agent surplus under “money

burning.” In our general setting, hi(r), which is a measure of information rents, is weighted

by the function Λi(r) representing the Pareto weights.

Our objective function is quite general but has important limitations within the context

of redistribution. Primarily, the approach of using exogenous welfare weights reflects the

assumption that the designer takes inequality as given. With this formulation, she cannot

express preferences over the inequities created by the mechanism itself. In particular, we do

not accommodate quotas that control the overall fairness of the outcome, and are popular

in some contexts, such as school choice (see for example Bodoh-Creed and Hickman, 2018).

Interpretation. Claim 1 makes it clear that λi(r)—the Pareto weight—is effectively a

primitive of our model. Indeed, we have not even specified the underlying joint distribution

of the three dimensions of the type vector because it is only relevant for determining the

shape of λi(r) and the marginal distributions of (i, r). Nevertheless, we introduced the

unobserved social welfare weights to emphasize the economic forces that give rise to any

particular λi(r).

The average Pareto weights λ̄i and λ̄j differ to the extent that the labels i and j capture

observable information that is correlated with the social welfare weights. For example, if

tax data allows the designer to determine the income bracket for each agent, then agents

associated with lower income brackets might receive a higher average Pareto weight.

Similarly, dispersion in λi(r) for any given i should be interpreted as residual correlation

between willingness to pay and social welfare weights, conditional on i. For a concrete ex-
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ample, suppose first that no observable information is available, but we elicit the willingness

to pay of two individuals, A and B, for a high-quality house in an attractive neighborhood.

Agent A is willing to pay $500, 000, while agent B is only willing to pay $50, 000. While

the differences between A and B’s willingness to pay may be driven by preferences, they

likely also reflect characteristics such as income and opportunity cost of money that could

in turn affect the welfare weights. Thus, without observing the characteristics that inform

welfare directly, the designer may place a higher Pareto weight on the agent with lower

willingness to pay, reflecting her Bayesian belief that this agent is more likely to be poor.

Now suppose that the designer additionally has access to tax data, and she knows that these

agents A and B have the same income. Conditional on that information, the correlation

between willingness to pay and welfare weights will get weaker; willingness to pay originally

appeared to be more strongly correlated with welfare weights due to the omission of a rel-

evant variable—income. However, that correlation is likely still negative, as long as other

unobserved characteristics—such as health shocks or future job prospects—influence both

the welfare weights and willingness to pay for a house. More generally, the more informative

the label, the less residual correlation one would expect between r and λ. There are also

cases when the correlation can be very weak even in the absence of very informative labels.

For example, when the good to be allocated is a movie ticket, and agent A is willing to

pay $10, while agent B is only willing to pay $1, the most likely inference is that agent A

enjoys watching movies more than agent B; not that B is very poor or otherwise socially

disadvantaged. Summarizing, λi(r) naturally depends on the strength of the underlying

social preferences and the degree to which they are uncovered by the label i, but also on

the characteristics of the good, such as the importance of personal taste for determining the

willingness to pay for it.

As discussed in the Introduction, we think of α—the weight on revenue—as representing

the marginal social value (or opportunity cost) of a dollar spent by the designer on some

cause. For example, if a city mayor designs a public housing program, the revenue she raises

can be used to subsidize the city budget, or invest in the construction of new homes.

Several special cases are of particular interest. We will refer to the problem with α = λ̄i

as internal redistribution within group i, and to the problem with α = λ̄ :=
∑

i µiλ̄i simply as

internal redistribution. The interpretation is that a dollar of revenue has the same worth to

the designer as giving a dollar to a randomly selected agent within group i, or to a randomly

selected agent from the entire population, respectively. This is mathematically equivalent to

allowing lump-sum payments to agents in group i, or all agents, respectively.

We view the internal redistribution case as particularly natural when the set of agents as

representative of the entire (local) population, so that we can think of the designer’s revenue
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as being the property of the agents. At the same time, this case rules out lump-sum payments

to “preferred” groups i that are subject to affirmative action, understood as λ̄i > λ̄. This

can reflect political constraints, or an unmodeled inability of the designer to prevent agents

from pretending that they have label i (e.g., if the label i denotes the income level, agents

can misrepresent their income, or even purposefully decrease it to be eligible for a free cash

payment).

More generally, the assumption of non-negative transfers has bite whenever λ̄i > α.

One interpretation is that lump-sum payments are allowed but there are frictions (such

as administrative costs) that decrease their marginal value. In the extreme case α = 0,

our model becomes mathematically equivalent to a costly-screening (utility-burning) model

in which an agent’s payment to the designer is more appropriately interpreted as a costly

activity (such as standing in a queue) that is socially wasteful.

On the other hand, when α > λ̄i, the designer has a higher value from spending the

revenue outside of group i. This could be because there is another group j with λ̄j > λ̄i to

which the designer can give a lump-sum payment. Another possibility is that the designer

can spend the monetary surplus generated by the mechanism on a socially valuable outside

cause.

We will say that the good is essential for group i if ri > 0, that is, the agents’ willingness

to pay is bounded away from 0. This assumption should be economically interpreted as

saying that the distribution Gi is mostly concentrated on values of r above ri rather than

that there are literally no agents with values below ri (our results that assume essential

goods continue to hold for distributions that attach a small enough mass to r ∈ [0, ri]).

3 Optimal mechanisms

We identify an optimal mechanism for our setting in two steps:

1. First, the objects are allocated “across” groups: F is split into |I| CDFs F ?
i .

2. Then, the objects are allocated “within” groups: For each label i, the objects F ?
i are

allocated optimally according to the expected-quality schedule Q?
i .

3.1 The “within” problem

In this step, we assume that Fi is the CDF of object qualities that are to be allocated to

agents with label i. Formally, we will refer to the within problem for group i as maximizing

(2.6) subject to feasibility with I = {i}, µi = 1, and F = Fi. For a function Ψ, let co(Ψ)
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denote the concave closure of Ψ (the point-wise smallest concave function that bounds Ψ from

above) and let dco(Ψ) denote the decreasing concave closure of Ψ (the point-wise smallest

concave decreasing function that bounds Ψ from above). When i is fixed, we will sometimes

abuse terminology slightly by referring to r as the agent’s type.

We say that there is assortative matching among types r ∈ [a, b], if Q?
i (r) = F−1

i (Gi(r))

for all r ∈ [a, b]. To account for the possibility that some objects may remain unallocated, we

say that the matching is effectively assortative when it is assortative for r ∈ [inf{r : Q?
i (r) >

0}, r̄i]. We will say that there is random matching among types r ∈ [a, b] if Q?
i (r) = q̄ for

some q̄ and all r ∈ [a, b].14

Remark 1. Because we have not imposed any assumptions on F (for example, we haven’t

ruled out degenerate distributions of quality), assortative and random matching could coin-

cide (if Fi is constant in the relevant range). In particular, the two concepts do not differ

when all types in a given interval are not allocated any objects. The distinction between

random and assortative matching can be guaranteed to be meaningful for each group i by

assuming that F (0) = 0, F is continuous, and it is optimal to allocate all objects within

group i which is implied by
� ri
ri

(αJi(r) + Λi(r)hi(r))dGi(r) ≥ 0 for all ri.

Theorem 1. Define

Ψi(t) :=

� 1

t

Vi(G
−1
i (x))dx+ max{0, λ̄i − α} ri 1{t=0}.

The value of the within problem for group i is given by

� 1

0

dco(Ψi)(Fi(q))dq.

An optimal solution is given by an expected-quality schedule

Q?
i (r) = Φ?

i (Gi(r))1{r≥G−1
i (x?i )},

where [0, x?i ] is the maximal interval on which dco(Ψi) is constant, and Φ?
i is non-decreasing

and satisfies

Φ?
i (x) =


� b
a F
−1
i (y)dy

b−a if x ∈ (a, b) and (a, b) is a maximal interval on which co(Ψi) is linear,

F−1
i (x) otherwise,

14Throughout, H−1(x) denotes the generalized inverse of a right-continuous non-decreasing function H on
[a, b]: H−1(x) = min{y ∈ [a, b] : H(y) ≥ x}, for all x ≤ maxyH(y).
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for almost all x.15

Moreover, it is optimal to set U i = 0 when α ≥ λ̄i, and U i = Q?
i (ri)ri when α ≤ λ̄i.

As mentioned in Section 1.1, the proof of Theorem 1 uses relatively standard techniques

known as “generalized ironing” that extend Myerson’s methods to richer environments. For

completeness, and because several features of our setting (primarily the non-negativity of

transfers and the continuous distribution of quantity) require these methods to be adjusted,

we present a complete argument in the appendix. In the proof, we work with an arbitrary

objective function of the form (2.6), not necessarily coming from maximizing a weighted sum

of revenue and surplus.

The theorem describes a simple procedure to obtain a closed-form solution to the within-

group problem:

1. Compute the function Ψi that is a non-linear transformation of the original objective

function. A noteworthy feature of Ψi is that it incorporates the constraint that transfers

are non-negative: Whenever λ̄i > α, this constraint must bind, and hence U i is set

to the maximal feasible level Qi(ri)ri. In the transformed objective function Ψi, this

corresponds to an upward jump at 0. (This potential discontinuity of Ψi at 0 will be

responsible for one of our key results in the next section.)

2. Compute the concave closure co(Ψi) and the decreasing concave closure dco(Ψi) of Ψi.

3. If one some initial interval [0, x?i ], co(Ψi) < dco(Ψi), then objects of quality below the

x?i quantile of Fi are not allocated (the designer uses the free disposal option), and

hence agents with willingness to pay below r?i = G−1
i (x?i ) are assigned quality 0. This

can only happen if Ψi is not decreasing everywhere, which requires Vi(r) to be negative

for some r, which is possible when Ji(r) < 0.

4. The remaining object qualities are partitioned into intervals; the remaining agents are

partitioned in the order of increasing willingness to pay to match the mass of objects

within each interval; whenever co(Ψi) is linear on a (maximal) interval, the matching

between types and quality is random within that interval; whenever co(Ψi) is strictly

concave on an interval, the matching between types and quality is assortative.

The function Ψi plays a key role in determining the properties of the optimal mechanism.

To gain intuition, we can use integration by parts and substitution, and obtain that for any

r > ri,

Ψi(Gi(r)) =

� r̄i

r

τλi(τ)dGi(τ) + (α− Λi(r))r(1−Gi(r)). (3.1)

15An interval (a, b) is a maximal interval on which co(Ψi) is linear if co(Ψi) is linear on (a, b) and no
interval (c, d) ) (a, b) has that property.
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Thus, the value of Ψi at some quantile x = Gi(r), is simply the payoff to the designer from

selling quality 1 at a price of r.

3.2 The “across” problem.

Based on the solution to the within problem for each i separately, we can now formulate the

“across” problem as

max
(Fi)i∈I

∑
i∈I

µi

� 1

0

dco(Ψi)(Fi(q))dq, (3.2)

s.t.
∑
i∈I

µiFi(q) = F (q), ∀q ∈ Q. (3.3)

Once the optimal F ?
i are found that solve the problem (3.2)–(3.3), the optimal solution

within each group i is described by Theorem 1.

Our second technical result describes a solution procedure for the “across” problem. Let

si(x) ≡ |dco(Ψi)
′(x)| denote the (absolute value of the) slope of dco(Ψi) at quantile x.

Theorem 2. There exists a non-decreasing non-negative function S(q) such that for all i

and q, the optimal solution (F ?
i )i∈I to the problem (3.2)–(3.3) satisfies

F ?
i (q) = 0 if si(0) > S(q),

F ?
i (q) = 1 if si(1) < S(q),

F ?
i (q) solves si(F

?
i (q)) = S(q) otherwise.

Moreover, S(q) = mini:F ?
i (q)<1 si(F

?
i (q)).

Theorem 2 describes a “greedy” procedure that allocates all objects to the |I| groups.

Roughly speaking, the algorithm can be seen as allocating the objects by gradually increasing

the CDFs F ?
i , in the order of increasing slopes si(·) = |dco(Ψi)

′(·)|. The function S(q) keeps

track of the running minimum over these slopes. Starting from the lowest quality, we first

increase the CDF F ?
i for group i with the smallest slope si at 0 (in the case where there are

several such groups, the proof of Theorem 2 describes how to break the ties). At any q, we

increase the CDF of group(s) i with the lowest slope si at F ?
i (q). That is, only groups i with

si(F
?
i (q)) = S(q) are allocated objects with quality q. When some F ?

i (q) reaches 1, we stop

increasing the CDF for that group. Of course, what allows the algorithm to be “greedy” is

the fact that dco(Ψi) is a non-increasing concave function for all i, and thus the slopes si

are non-decreasing.
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The proof is in the appendix. Intuitively, we solve the program (3.2)–(3.3) by considering

a relaxed problem in which the constraint that Fi(q) is a CDF is dropped, and later verifying

that there exists a solution to the relaxed program that is feasible. The index S(q) is the

Lagrange multiplier on the resource constraint (3.3) for the relaxed problem.

4 Economic implications

Proposition 1 (In-kind redistribution). If the average Pareto weight λ̄i in some group i is

strictly larger than the weight on revenue α, and the good is essential (ri > 0), then there

exists r?i > ri such that the allocation is random at a price of 0 for all types r ≤ r?i .

Our first result states that it is always optimal to allocate the objects randomly to

the lowest-willingness-to-pay agents at a price of 0 if (i) the designer cares more about the

surplus of an average agent within group i than about revenue, and (ii) the good is essential.

The first assumption is likely to hold in cases when label i is associated with preferential

treatment or affirmative action but targeting a purely monetary transfer to group i is not

feasible. For the internal redistribution problem (α = λ̄), we have α < λ̄i if the label i is

associated with a group of agents that the designer wants to redistribute to. The second

assumption says that the good is essential, that is, the willingness to pay is bounded away

from 0.

Mathematically, the result is an immediate consequence of Theorem 1: The two assump-

tions imply that there is an upward jump in Ψi at 0, and thus the concave closure co(Ψi)

must be strictly above Ψi (and hence linear) in the neighborhood of 0, resulting in a random

allocation.

To understand the result from an economic perspective, note that when λ̄i > α, holding

fixed the allocation, the designer would like to minimize the transfers that agents are paying

in the mechanism. The non-negative transfers condition prevents the designer from giving a

monetary transfer to agents directly, and implementing assortative matching requires prices

to be increasing. Consider, instead, providing some goods for free to the lowest-r agents; this

policy raises their utility if they value quality, that is, the good is essential. Proposition 1

predicts that the designer can always improve her overall objective this way. However, the

reason why this policy is effective is not that the designer is concerned about the welfare

of agents with the lowest willingness to pay; note that the only assumption we made is

about the average Pareto weight that is consistent with, for example, placing no weight

on agents with the lowest r. Rather, the correct intuition is that providing the goods for

free to agents with the lowest willingness to pay allows the designer to lower prices—and

hence increase utility—for all higher types. Of course, a caveat is that providing the goods
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for free precludes any screening of the corresponding types (reducing allocative efficiency

and welfare). However, it can be shown that the reduction in allocative efficiency is always

second-order compared to the benefits when the region of random matching is small (see

Appendix A for a formal argument that confirms this intuition). The optimal mechanism

determines the size of the random-allocation interval by trading off providing more goods

for free against a decrease in allocative efficiency.

Our next result describes conditions under which the trade-off is resolved towards full

randomization. By Theorem 1, full randomization is optimal if and only is dco(Ψi) is linear

which is when the graph of Ψi lies below the line connecting (0, Ψi(0)) with (1, Ψi(1)):

Ψi(Gi(r)) ≤ (1−Gi(r))

� r̄i

ri

rλi(r)dGi(r),

for all r. Using equation (3.1), we can interpret this condition as stating that the designer’s

payoff from a price mechanism with price r (with quality normalized to 1) is smaller than

the payoff from allocating the same set of objects uniformly at random at a price of 0, for

any r.

Proposition 2 (Full randomization). A necessary condition for full randomization to be

optimal within group i is that

αr̄i ≤
� r̄i

ri

rλi(r)dGi(r). (4.1)

A sufficient condition is (4.1) and quasi-convexity of αJi(r) + Λi(r)hi(r).

A first noteworthy aspect of Proposition 2 is that optimality of full randomization requires

that the average Pareto weight λ̄i be strictly higher than the weight on revenue α (this is a

direct consequence of inequality (4.1)). In particular, if lump-sum transfers to group i are

feasible for the designer, then a fully random allocation cannot be optimal. As discussed

above, if α is taken to be equal to the average Pareto weight for all agents, then this implies

that full randomization can be optimal only in groups associated with preferential treatment.

The necessary condition comes from a hypothetical scenario in which the designer has only

one (infinitesimal) unit of the object with quality 1 to allocate: It must be that the value of

revenue from selling that object at a maximal price to the highest willingness-to-pay agent

is smaller than the value of allocating this object uniformly at random at a price of 0.

Perhaps more surprisingly, this necessary condition becomes sufficient if αJi(r)+Λi(r)hi(r)

is quasi-convex. For example, αJi(r) + Λi(r)hi(r) could be increasing, so that Ψi is strictly

concave on (0, 1], and yet full randomization will be optimal (dco(Ψi) will be linear) when
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the upward jump at 0 in Ψi is large enough. Economically, this means that the force identi-

fied in Proposition 1 can be strong enough (when (λ̄i − α)ri gets large) to induce a random

allocation for all types.

The type of in-kind redistribution predicted by Proposition 2 is quite common in practice:

the good is allocated for free to those satisfying certain verifiable eligibility criteria, as

captured by the label i. The result states that for such a form of redistribution to be

optimal, several conditions must be met. First, the designer should not be able to give these

“eligible” agents a direct lump-sum transfer, as only then it is possible that λ̄i > α. Second,

the weight on revenue (measuring how effectively it can be used for other purposes) should

be small relative to the Pareto weights on agents that are eligible. Third, such programs

are more likely to be optimal for essential goods; note that if the Pareto weights are non-

increasing, the right-hand side of (4.1) is bounded above by (1/2)(r̄i + ri)λ̄i, and thus when

ri = 0, the average Pareto weight must be at least twice as large as the weight on revenue.

However, when ri is large, it may suffice that λ̄i is only slightly above α.

Next, we show that when the assumptions of Proposition 2 fail, the optimal mechanism

features assortative matching at the “top of the distribution.” Formally, we say that there

is assortative matching at the top if the mechanism allocates the highest-quality objects

assortatively to agents with willingness to pay r above some threshold. For this result,

we assume that Pareto weights are non-increasing, an assumption that is justified when

willingness to pay is negatively correlated with the unobserved welfare weights. This is a

natural case that arises, for example, when the designer has a preference for redistribution

towards agents with lower wealth, and willingness to pay increases—everything else being

equal—with the wealth level.

Proposition 3 (Assortative matching at the top). If Pareto weights are non-increasing, and

α ≥ λ̄i, any optimal mechanism features assortative matching at the top within group i.

The result is intuitive: Non-increasing Pareto weights along with the assumption that the

weight on revenue is weakly larger than the average Pareto weight, imply that the weight on

revenue is larger than the weight on the utility of agents with high willingness to pay. Since

assortative matching is optimal for revenue maximization at the top of the distribution (the

so-called “no distortion at the top” result), it dominates random allocation for high enough r.

The condition α ≥ λ̄i rules out the force behind random matching in Proposition 1.

However, we show that even though assortative allocation may be optimal at the top of the

distribution, it will still be often optimal to use a random matching for some set of types.

Proposition 4 (Fully assortative matching). Effectively assortative matching is optimal

within group i if and only if (i) either α ≥ λ̄i or ri = 0 and (ii) αJi(r) + Λi(r)hi(r) is

21



non-decreasing.

By Theorem 1, assortative matching is optimal when Ψi is a concave function.16 This

requirement is inconsistent with an upward jump of Ψi at 0 which is what the first assumption

rules out. The second condition says that the derivative of Ψi is non-increasing. Together

with Proposition 2, we obtain the conclusion that λ̄i > α is necessary for fully random

allocation while λ̄i ≤ α is necessary for a fully assortative allocation when goods are essential.

To show why fully assortative matching often fails to be optimal, note that the second

condition in Proposition 4 is violated as long as for some r, (assuming enough differentiabil-

ity)

α + Λ′i(r)hi(r) + (Λi(r)− α)h′i(r) < 0.

Assume that the inverse hazard rate is non-increasing; this assumption is satisfied by many

popular distributions with bounded support, and implies that assortative matching max-

imizes revenue. Fixing Gi, assortative matching will fail to be optimal for agents with

willingness to pay close to r if either (i) the average Pareto weight on types above r is

sufficiently greater than the weight on revenue, or (ii) the Pareto weights are declining suffi-

ciently fast with r. That last condition can be interpreted as saying that, even conditional on

i, willingness to pay is strongly correlated with the unobserved social welfare weights. This

is more likely to be true when the label i is not very informative of the agents’ underlying

weights (e.g., when the label does not include any information about the agent’s income),

forcing the designer to rely on willingness to pay to identify individuals who are most in

need.

Dworczak ® Kominers ® Akbarpour (2020) show that when Pareto weights are deceasing

in r, competitive pricing (which is a special case of our assortative matching) is optimal when

the dispersion in Pareto weights is low (there is low inequality), and rationing may become

optimal when it is high. They allow for lump-sum transfers, but not for exogenous value for

revenue, and do not consider labels— this amounts to assuming that α = λ̄i. In our more

general setting, under the assumption of non-increasing inverse hazard rate, non-increasing

Pareto weights, and λ̄i ≤ α, observe that

d

dr
[αJi(r) + Λi(r)hi(r)] = α + Λi(r)− λi(r) + (Λi(r)− α)h′i(r) ≥ α + Λi(r)− λi(r),

and thus a sufficient condition for assortative matching is that α ≥ maxr{λi(r) − Λi(r)}.
Note that maxr{λi(r)−Λi(r)} measures both the level and dispersion of Pareto weights; for

16Strictly speaking, Theorem 1 only implies this conclusion when Ψi and hence co(Ψi) are strictly concave;
however, when co(Ψi) is linear and equal to Ψi on an interval, then both assortative and random matching
are optimal on that interval. Thus, the conclusion extends to the case when Ψi is only weakly concave.
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example, when the weights are constant, it is equal to 0, and hence assortative matching is

optimal. In the special case when maxr{λi(r) − Λi(r)} = λi(ri) − Λi(ri) and α = λ̄i, this

condition reduces to the low-inequality condition from DKA.

Proposition 4 also relates to results from the literature (see Hartline and Roughgarden,

2008, Condorelli, 2012, Chakravarty and Kaplan, 2013) that predict that in the costly-

signaling setting (α = 0), assortative allocation maximizes unweighted agent surplus when

the inverse hazard rate is non-decreasing. Proposition 4 extends this condition to the

case when surplus is weighted by the Pareto weights—it is now required that the prod-

uct Λi(r)hi(r) of the inverse hazard rate at r and the average Pareto weight on all types

above r is non-decreasing.17 Our paper also points out that this result is true only under

the assumption that the good is non-essential (that is, ri = 0, an assumption that is made

in all of the above papers).

So far, we have argued that a dispersion in Pareto weights is likely to lead to suboptimality

of fully assortative matching but we have not analyzed how far the optimal mechanism

deviates from being fully assortative. Our next result establishes a (perhaps surprising)

conclusion that, when α ≥ λ̄i, the set of types for which the allocation is random must

shrink both when the weights are approximately constant and when they get extremely

skewed towards low types. Thus, there is a certain non-monotonicity of the use of random

allocation in the level of inequality.

Proposition 5 (Non-monotonicity in the use of non-market mechanisms). Suppose that

J ′i(r) ≥ J i > 0, for all r and some J i. Consider any sequence of within-group-i problems

indexed by n ∈ N, differing only in the specification of Pareto weights λni . Assume that, for

all n, λni (r) is non-increasing in r, and λ̄ni ≤ α. If either

� for all r and ε > 0, |λni (r)− λ̄ni | < ε for large enough n, or

� for all r > r and ε > 0, λni (r) < ε for large enough n,

then any convergent sequence of optimal allocations converges point-wise to effectively assor-

tative matching.

The first case of Proposition 5 is intuitive because we know from the preceding discussion

that when α ≥ λ̄i, a constant Pareto weight leads to optimality of assortative matching

(however, Proposition 5 relaxes the assumption that the inverse hazard rate is non-increasing

to a weaker assumption that the virtual surplus function is strictly increasing).

17Because we assume bounded support of willingness to pay, we have hi(r̄i) = 0, and thus assortative
matching is never optimal in our model when α = 0.
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The second case looks at the opposite extreme in which low willingness to pay uniquely

identifies the individuals in society that the designer cares about (while the average weight

does not increase above α). While the optimal mechanism may (and typically will) use a

random allocation for the lowest types, the randomization region vanishes as the weights

become increasingly skewed. The utility of the lowest type converges to the utility she

receives in the assortative matching (which is 0 if α > λ̄i) even though her Pareto weight

diverges to infinity. The key to understanding this result is to recall that the average Pareto

weight stays below the weight on revenue, and that the allocation to the lowest type affects

the allocation that can be given to all types, because of IC constraints. While the designer

could maximize the welfare of the lowest type by giving her a random good at a price of 0,

this would necessarily decrease revenue to 0. As the weight on the lowest types increases, the

weight on all higher types converges to 0 which makes assortative matching (which maximizes

revenue) increasingly attractive, and optimal in the limit.

Proposition 5 suggests that the use of random allocation is maximized (under α ≥ λ̄i)

when the dispersion in Pareto weights is intermediate.

So far we have focused on allocation within each group i. We now focus on what the

above insights, combined with Theorem 2, tell us about the allocation of objects across the

groups. We begin by characterizing the structure of supp(F ?
i )—the set of object qualities

allocated to group i—in simple cases in which allocation takes the same form in all groups.

Proposition 6 (Across-group allocation with random matching). Suppose that under the

optimal mechanism, all groups have fully random matching. Relabel the groups so that lower

i = 1, ..., |I| corresponds to lower
� r̄i
ri
τλi(τ)dGi(τ). Then, there exists an optimal mechanism

in which supp(F ?
i ) = [qi, qi+1]∩ supp(F ), where q1 = min supp(F ) and q|I|+1 = max supp(F ).

The result is straightforward. Mathematically, if there is fully random matching within

groups, the slope of dco(Ψi) is constant for each i and equal to Ψi(0). Thus, groups with

higher Ψi(0) receive uniformly higher quality objects.18 Economically, the conclusions follows

from the observation that the designer’s marginal value from allocating a unit of quality to

group i is constant and equal to
� r̄i
ri
τλi(τ)dGi(τ).

Proposition 7 (Across-group allocation with assortative matching). Suppose that under the

optimal mechanism, all groups have effectively assortative matching. Relabel the groups so

that lower i = 1, ..., |I| corresponds to lower αr̄i. Then there exists an optimal mechanism in

which supp(F ?
i ) = [q

i
, q̄i] ∩ supp(F ), where q̄i ≤ q̄i+1. Moreover, if ri = 0 and α > λ̄i for all

i, then all q
i

= min supp(F ).

18By “uniformly higher quality” we mean that the lowest quality allocated to one group is higher than the
highest quality allocated to another group.
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Note that in the special case of the result when all groups have the same support of

willingness to pay, with lower bound equal to 0, then they also have the same support of

quality in the optimal allocation. This is in some sense the opposite of the conclusion for

random matching, where the quality levels allocated across groups are almost disjoint.

Mathematically, the result follows from Theorem 2 and a few observations. First, dco(Ψi)

is a concave function with a continuous derivative, so it follows immediately that in the greedy

algorithm based on Theorem 2, the quality levels allocated to a given group are an interval

within the support of the distribution of quality F . Moreover, the lower and upper bounds

of the interval are pinned down by the slope of dco(Ψi) at 0 and at 1, respectively. Second,

when there is assortative matching, the function Ψi coincides with its decreasing concave

closure, except potentially in some initial interval. Because the derivative of Ψi at 1 is equal

to −αr̄i, r̄i determines the allocation of the “last” (highest-quality) good allocated in the

greedy algorithm. Finally, if ri = 0 and α > λ̄i (note that at least one of these conditions

must hold, by Proposition 4), then in all groups some objects are not allocated, and thus all

dco(Ψi) have a zero slope in some initial interval. Thus, all groups are allocated the lowest

quality objects.

The conclusion about the upper bound on the quality allocated to each group continues

to hold as long as there is assortative matching at the top. That is, if there is assortative

matching at the top in all groups, the highest-quality object is allocated to the group with

the highest maximal willingness to pay.

It may seem surprising that the allocation of the highest-quality object does not depend

on the Pareto weights within group i, even though these Pareto weights (including on the

highest type) could be as large as the weight on revenue. For example, if r̄i is only slightly

higher than r̄j, then group i always gets the highest-quality object even if the designer puts

no weight on the welfare of agents in group i, and a high weight on the welfare of agents in

group j. The resolution of this puzzle lies in the realization that the utility of the highest

type r̄i is pinned down by the allocation to lower types r < r̄i within her group (see the

envelope formula (2.5)). Since there is assortative matching at the top, when the highest-

quality object is allocated, it always goes to the agent with the highest r within her group;

however, whatever the quality of this object is, the highest-r type’s utility is the same –

higher quality simply translates to a higher price. This implies that the allocation at the top

of the distribution only affects the designer’s revenue, and hence the highest-quality object

is allocated to the group with the highest maximal type r̄i.

A more interesting case arises when some groups have a fully random allocation, while

others have assortative matching at the top.

Proposition 8 (Highest quality to a random-matching group). Suppose that all groups have
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the same upper bound r̄i of the support of willingness to pay. Then, any group with fully

random allocation gets uniformly higher quality than any group for which there is assortative

matching at the top.

The results follows from Theorem 2 and two observations. First, if there is assortative

matching at the top in group i, then the slope of |dco(Ψi)
′(1)| is equal to αr̄i, and since

dco(Ψi) is concave, this is the highest slope for group i. If there is fully random allocation

in group j, then the slope of |dco(Ψj)
′(1)| must be weakly higher than αr̄j = αr̄i, and since

the slope of dco(Ψj) is constant, it is uniformly higher than the slope of dco(Ψi). Hence,

group i gets uniformly higher quality in the optimal allocation.

In practice, when a certain group of agents receives the good for free (as in some social

housing or food stamps programs), typically the quality of these goods is lower than the

quality in the “market.” Thus, we view the value of Proposition 8 as indicating that its

assumption of equal upper bounds of willingness to pay should be violated in order to avoid

its extreme conclusion. Loosely interpreted, this indicates that if the designer defines the

label i of agents eligible for a free allocation of the good, then this category should exclude

agents with high willingness to pay.

Our final result indicates, however, that groups of agents that receive the object for free

should be allocated intermediate-quality goods in general.

Proposition 9 (Intermediate quality to a random-matching group). Suppose that |I| = 2

and that in group 1 there is effectively assortative matching, and in group 2 there is fully

random matching. Then, there exist q ≤ q̄ such that supp(F ?
2 ) = [q, q̄] ∩ supp(F ), and

supp(F ?
1 ) = ([0, q] ∪ [q̄, 1]) ∩ supp(F ).

Moreover, q̄ < 1 if αr̄1 ≥
� r̄2
r2
τλ2(τ)dG2(τ), and q > 0 when αr1 ≤

� r̄2
r2
τλ2(τ)dG2(τ).

Proposition 9 follows immediately from Theorem 2 by observing that the slope of dco(Ψ2)

is constant, while the (absolute value of the) slope of dco(Ψ1)(q) is increasing in q. The last

part of the result gives sufficient conditions for the (constant) slope of |dco(Ψ2)| to lie strictly

between |dco(Ψ1)′(0)| and |dco(Ψ1)′(1)|.
The economic intuition behind the result is as follows. When a random-allocation mech-

anism is used for group 2, the designer’s payoff depends only on expected quality allocated

to that group—this is a consequence of the fact that the price does not depend on the quality

in this case (it is 0). In contrast, when assortative matching is used, the designer’s payoff

depends crucially on the dispersion in quality— that is why she allocates both the lowest-

and highest-quality objects to group 1. This is particularly intuitive in the context of revenue

maximization in which the seller lowers the allocation of low types in order to decrease the

information rents of the high types (see Myerson, 1981). In fact, it will often be optimal not

26



to allocate some objects in group 1, in which case the marginal value of quality is 0 up to

some point (in the greedy algorithm described in Theorem 2). However, the marginal value

of quality allocated to agents with high willingness to pay in group 1 may be large, especially

if r̄1 is high (in line with Proposition 8).

5 Market Design Implications

Our analysis leads to a number of general insights on the design of allocation mechanisms

under redistributive concerns. The optimal mechanism is always a combination of (i) ran-

dom matching, which can be seen as a form of in-kind redistribution, and (ii) assortative

matching, which is effectively the allocation that would arise in a competitive market equi-

librium. Moreover, we can characterize how the underlying social preferences, expressed by

the unobserved social welfare weights, filter through the observable information to produce

the optimal allocation.

In-kind redistribution. Random allocation can be optimal only if the designer is able to

identify the inequalities in the unobserved social welfare weights. The designer can observe,

directly or through the mechanism, the label and the willingness to pay. The label and the

willingness to pay thus give rise to two distinct reasons to use in-kind redistribution:

1. Label-revealed inequality: If some label i identifies a group of agents that have a high

welfare weight on average (higher than the weight on revenue α), then in-kind redis-

tribution becomes optimal when the good being allocated is essential (Proposition 1).

In this case, the designer does not attempt to redistribute to any particular subset of

agents within group i. Rather, she wants to increase the utility of all agents in the

group uniformly. In-kind redistribution achieves this goal for essential goods because

an essential good has a positive value to all agents, even those with the lowest will-

ingness to pay. Low-WTP agents benefit by getting a low-quality good for free, while

high-WTP benefit by paying a lower price for higher quality goods. Sometimes, the

trade-off is resolved in favor of a fully-random allocation, as predicted by Proposition 2.

Food stamp programs serve as a good illustration. Group i can be defined by a set of

verifiable eligibility criteria, such as low income, that are strongly correlated with what

society associates with those most in need. For various reasons, it might be impractical

or impossible to give monetary transfers to group i. Then, since food is arguably as

essential good, in-kind redistribution can be justified by our Proposition 1. It is even

plausible that the assumption of Proposition 2 is satisfied, because condition (4.1) is
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more likely to hold when the dispersion in willingness to pay is low.19 In that case, our

framework predicts that everyone who is eligible should receive the same food stamp

free of charge.

In contrast, consider the example of public housing programs. In case of housing, we

can plausibly assume that, even conditional on satisfying some eligibility criteria, peo-

ple will differ significantly in their willingness to pay. Then, a fully random allocation

is probably suboptimal. A superior solution, based on Proposition 1, is to provide

the lowest-quality houses at a minimal price in a lottery, and use a price gradient for

granting access to higher-quality housing. Using a low price for the lottery ensures

that even those who opt for higher quality can be charged a below-market price. At

the same time, the price gradient ensures a more efficient allocation, and raises more

revenue.

2. WTP-revealed inequality: The second, distinct reason for using random allocation

is when the label fails to accurately identify those most in need. This is the case

when there is high residual correlation between willingness to pay and the unobserved

welfare weight. In these cases, in-kind redistribution is used to specifically target those

individuals within group i who are likely to have a high welfare weight. The most

plausible case is when low willingness to pay reveals a high expected welfare weight,

which corresponds to violating the assumption of Proposition 4. In that case, the

designer introduces a reduced-price lottery for low-quality objects in order to separate

low- and high-WTP agents—and subsidize the former via a reduced price.

Unlike the prior case, this form of in-kind redistribution might be optimal in markets for

non-essential goods, if there are sufficient reasons to believe that low willingness to pay

is a consequence of unobserved adverse social and economic circumstances, rather than

taste or preferences. A good example is health care for non-life-threatening conditions.

Many European countries provide a wide range of health services to all citizens at

low or zero prices but often at a quality that is significantly lower than the quality of

services in the private sector (e.g., because of long waiting times). While there may be

many justifications for such systems, one is that using the public health system is likely

to be correlated with characteristics of an individual that are not easily observable and

yet influence the social welfare weight. In contrast, the US Medicare and Medicaid are

probably examples of the first reason for using in-kind redistribution, since they are

conditional on satisfying certain observable eligibility criteria.

19Indeed, as r̄i tends to ri, condition (4.1) “converges” to the requirement that α < λ̄i.
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Market allocation. An assortative matching, which can be seen as a form of market

allocation, also arises for two distinct reasons.

1. The revenue motive: As predicted by Proposition 3 and 4, assortative matching be-

comes optimal when α—the weight on revenue—exceeds the average Pareto weight λ̄i

in a given group i. This is the case, in particular, when the revenue can be used to

subsidize any group of agents via direct lump-sum transfers. But more generally, this

case obtains when the designer can use the revenue to subsidize an outside cause that

is valuable from a social perspective. In such situations, it is socially optimal to use

assortative matching to maximize revenue in order to subsidize that cause with the

resulting monetary surplus.

When the government allocates public goods, such as spectrum licenses or oil and gas

leases, to corporations, it is arguably the case that the marginal value of revenue—

which funds the government budget—exceeds the weight that the government places

on the welfare of the corporations and their owners. In such cases, it is optimal to use

auctions that allocate the highest-quality goods to those with highest willingness to

pay.

However, the same force behind optimality of assortative matching also applies in any

situation in which direct label-specific lump-sum payments are feasible (so that α ≥ λ̄i

for any group i). For example, if it is feasible to give cash transfers to those eligible for

public housing (perhaps in the form of tax credit), then there is an argument against

using lotteries to allocate public housing—we can do better by allocating assortatively

at least at the top of the distribution of willingness to pay, raising revenue, and using

that revenue it to fund monetary transfers to all eligible agents (see Proposition 3).

2. The efficiency motive: Assortative matching is also optimal for maximizing the ef-

ficiency of the allocation. This is the second force that works in favor of a market

allocation, even if the weight on revenue α is strictly below the average Pareto weight

λ̄i. Efficiency becomes the dominant force when Pareto weights do not vary too much

with willingness to pay, conditional on some label i. Indeed, Proposition 4 implies that

a fully assortative matching becomes optimal when α ≥ maxr{λi(r)−Λi(r)} which can

be true even for very low α when there is little dispersion in λi(r).
20 Low dispersion in

λi(r) can arise in two cases: (i) when the designer does not have strong redistributive

preferences to begin with (there is little dispersion in the unobserved welfare weights)

20Recall that λi(r) − Λi(r) is the difference between the expected welfare weight on agent (i, r) and the
average expected welfare weight on all agents (i, r̃) for r̃ ≥ r.
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or, more interestingly, (ii) when willingness to pay is not correlated with the underlying

welfare weights, conditional on the label.

Observation (ii) helps explain why a market allocation is desirable for most goods

and services even when the designer has strong preferences for redistribution. Agents’

needs are unlikely to be strongly correlated with willingness to pay for goods that are

relatively cheap (affordable, at least in small quantities, to most people) and whose

value depends heavily on tastes (soft drinks, video games, books etc.) Additionally,

the residual correlation between willingness to pay and the unobserved welfare weights

decreases when more information becomes available in the form of labels (see the

interpretation of the model in Section 2). For example, if a country provides free

health care to eligible citizens, it becomes less likely that the low willingness to pay

in the non-eligible group reflects adverse social or economic circumstances, since these

circumstances would likely be partly captured by the label. Hence, using in-kind

redistribution to address label-reveled inequality should be expected to coexist with a

market allocation to agents associated with non-preferential labels.

While it is useful to separately identify various forces behind random and assortative

allocation, these forces will typically co-exist, leading to more subtle conclusions. An ex-

ample is our Proposition 5, which predicts a certain non-monotonicity in the use of random

allocation. In the setting of Proposition 5, the weight on revenue is above the average Pareto

weight, and we vary the strength of the residual correlation between willingness to pay and

the unobserved welfare weights. Thus, there is a trade-off between the revenue motive (a

force behind assortative matching) and the WTP-revealed inequality (a force behind ran-

dom matching). When willingness to pay is relatively uninformative about agents’ needs,

the revenue motive dominates. As willingness to pay becomes increasingly informative, the

designer may opt for a partially random allocation to identify those most in need through

the mechanism. Eventually, when only a small fraction of agents receive an increasingly high

welfare weight, the use of random allocation becomes negligible because the revenue motive

dominates for all remaining agents.

Allocation across different groups. The form of allocation within groups influences the

optimal structure of allocation across groups. In particular, if objects are matched randomly

within groups, then the optimal mechanism gives the different groups essentially disjoint lev-

els of quality (Proposition 6). In contrast, if objects are matched assortatively within groups,

then the optimal mechanism involves giving the different groups objects of overlapping qual-

ity, with the maximum quality level determined solely by the maximum willingness to pay

in each group (Proposition 7). More generally, among groups with assortative matching at

30



the top, the highest-quality goods are allocated to the group with the highest maximum

willingness to pay. Relatedly, if all groups have the same maximum willingness to pay, then

groups that receive fully random allocation must also receive higher-quality objects because

the use of random allocation implies a higher Pareto weight on that group (Proposition 8).

Conversely, if we introduce a policy under which some group of agents is eligible to receive

the good for free—entertainment ticket giveaways for fans, for example—then we probably

do not want that group to include agents with the highest willingness to pay.

Last, in allocation programs in which one group is matched assortatively and another

group receives allocation by lottery, the optimal mechanism allocates middle-quality goods

in the lottery (Proposition 9). While this may seem counterintuitive at first, it has a natural

explanation: by keeping some low-quality goods in the pool used for assortative matching,

the designer increases competition for the high quality goods, which increases the revenue

raised through the assortative matching process. A loose implication, for example, is that it

may be optimal for states to provide scholarships throughout their university systems rather

than just for lower-tier schools, as the resulting constraints on the supply of top-tier positions

increases the revenue that can be raised from students with high willingness to pay.

6 Conclusion

Using a mechanism design framework, we examined the optimal way for a designer to allocate

a set of goods of heterogeneous quality to agents differing in three dimensions: the unobserved

social welfare weight, publicly observable label, and willingness to pay for quality. We

identified an optimal mechanism, and showed that its form depends on how informative the

observable characteristics are about the underlying and unobservable “need” captured by

the welfare weight.

Focusing on an objective function that assigns arbitrary welfare weights to market partic-

ipants sets this work apart from the standard mechanism design paradigm. Indeed, while the

mechanism design literature has developed an impressive framework for designing revenue-

maximizing auctions and allocatively efficient mechanisms, there has been far less focus on

how to use those same tools to understand how the structure of mechanisms responds to

redistributive goals. Our paper is thus one of relatively few attempts to use mechanism

design to give guidance to real-world market designers about how to optimally structure

market-level redistributive systems. We hope to see more work devoted to this problem.
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A A precise intuition for Insight 1

For a more precise intuition for Proposition 1, consider Figure A.1 (we drop the subscript i

to simplify notation). Suppose that the expected quality schedule Q(r) is strictly increasing.

Recall that utility of type r can be expressed as U(r) +
� r
r
Q(τ)dτ . Under the assumption

λ̄ > α, the designer wants to minimize prices subject to the constraint t(r) ≥ 0, and hence

we can assume t(r) = 0 and U(r) = Q(r)r.

We will show that the designer’s objective is increased by a perturbation of the mechanism

that allocates objects at random and for free to some small set of types [r, r+ε]. This allows

her to decrease prices for everyone else (as long as r > 0) while only causing a second-order
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Figure A.1: An expected quality schedule Q(r) and the corresponding payment rule t(r)
(solid lines). Dotted lines indicate the perturbation of the mechanism (Q, t).

distortion to allocative efficiency. Let qε denote the expected quality of objects allocated to

types [r, r+ε] under Q, and let Qε(r) = qε for r ≤ r+ε and Qε(r) = Q(r) otherwise. Setting

tε(r) = 0 yields U ε(r) = qεr. The associated change in utility for type r equals

[U ε(r) +

� r

r

Qε(τ)dτ ]− [U(r) +

� r

r

Q(τ)dτ ] = (qε −Q(r))r +

� min{r, r+ε}

r

(qε −Q(τ))dτ

The first term is first-order in ε and captures the increase in utility due to the increase in

utility for the lowest type r (which happens as long as that type values the increase in quality,

that is, r > 0). For types above r + ε, this increase in utility is achieved by a price discount

which is possible when type’s r+ ε allocation is decreased, relaxing the IC constraints for all

higher types. The second term is second-order in ε and captures the welfare effects of the

distortion in allocation.

B Proofs omitted from the main text

B.1 Proof of Theorem 1

We prove the theorem under the assumption that the designer maximizes a general objective

function of the form � r̄

r

V (r)QΓ(r)dG(r) + v U (B.1)
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for some upper semi-continuous functions V : [r, r̄] → R, and some constant v ∈ R (we

dropped the subscripts i to simplify notation).

Given two non-decreasing functions F, G : [a, b]→ [c, d] that are 0 at a and coincide at

b, we will say that F is a mean-preserving spread of G if

� t

a

F (x)dx ≥
� t

a

G(x)dx, ∀t ∈ [a, b],

with equality for t = b. We will say that F first-order stochastically dominates G if F (x) ≤
G(x) for all x ∈ [a, b].

The following lemma describes all feasible expected quality assignments for a given dis-

tribution of quality F , assuming no free disposal.

Lemma 1. If F is the CDF of available qualities, then Q(r) is a feasible assignment of

expected qualities (with no free disposal) if and only if Q(r) = Φ(G(r)), where Φ : [0, 1] →
[0, 1] is non-decreasing, left-continuous, and

Φ is a mean-preserving spread of F−1.

Proof. Since F (q) is a CDF, we can apply Strassen’t Theorem (see Theorem 3.4.2(a) in Müller

and Stoyan, 2002): A CDF F̄ (q) is a distribution of posterior means of a random variable

distributed according to F if and only if F is a mean-preserving spread of F̄ . Moreover, by

the usual argument, the IC constraint (2.3) implies that the assignment of expected qualities

must be non-decreasing. This monotonicity condition uniquely pins down Q(r) given F̄ and

G: We know that F̄ (q) is the (normalized) mass of objects of quality q or less available to

agents. This mass must be allocated to agents with some rate r or lower. Therefore, for any

q, there exists r such that F̄ (q) = G(r), and it follows that

Q(r) = F̄−1(G(r)).

We claim that a function Φ is equal to F̄−1 for some feasible F̄ if and only if Φ satisfies the

conditions of the Lemma. That is,

F̄ is a CDF on [0, 1] and F is a MPS of F̄ ⇐⇒

F̄−1 : [0, 1]→ [0, 1] is non-decreasing, left-continuous, and F̄−1 is a MPS of F. (B.2)

This follows from Lemma 1 found in Brooks and Du (2019).

Intuitively, the proof of Lemma 1 can be understood through its connection to information
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design: We can treat F as the prior distribution of a random variable X (quality); Strassen’s

Theorem implies that a distribution F̄ of posterior means of X can be induced from the

prior F (under some signal when X is treated as a state variable) if and only if F is a mean-

preserving spread of F̄ . Hence, in our assignment problem, mean-preserving contractions of

the distribution F describe all feasible distributions of expected qualities available to agents.

Moreover, incentive-compatibility constraints imply that there is a unique assignment of

expected qualities to types because the assignment must be monotone in the willingness to

pay r.

Because the function Φ(q) from Lemma 1 is left-continuous, its value at 0 is not pinned

down. This is a reflection of the fact that the payoff from the mechanism does not depend

on the allocation for a measure-zero set of types, in particular, on the allocation for type

r. However, the allocation for type r, Q(r), appears in the constraint defining the non-

negative transfers condition. It is clear that this constraint is least binding when Q(r) is

set to its maximal feasible level which is Q(r+) (since Q must be non-decreasing). (Here,

and thereafter, we denote f(x+) = limy↘x f(y).) Because it is convenient to keep Φ left-

continuous also at 0, we will extend the function Φ by assuming that Φ(x) = 0 for all x ≤ 0,

and then the non-negative transfers condition becomes U ≤ rΦ(0+).

Given Lemma 1, we can write the problem of maximizing (B.1) under no-free-disposal as

max
Φ

� r̄

r

V (r)Φ(G(r))dG(r) + max{0, v} rΦ(0+)

subject to

Φ is a MPS of F−1.

Indeed, notice that when v ≤ 0, it is optimal to choose U as low as possible, and hence U = 0

in the optimal mechanism (U ≥ 0 by individual rationality). In contrast, when v > 0, the

non-negative transfers condition implies that it is optimal to set U to its maximal feasible

level rΦ(0+).

Integration by parts and by substitution yields

� r̄

r

V (r)Φ(G(r))dG(r) =

� 1

0

(� 1

t

V (G−1(x))dx

)
dΦ(t).

Whenever we write
�
f(x)dΦ(x) for some measurable function f , we mean the Lebesgue

integral with respect to the σ-additive measure µΦ defined by µΦ([a, b]) = Φ(b+)− Φ(a), in

particular, µΦ({a}) = Φ(a+)−Φ(a). Under this convention, and recalling that Φ(x) = 0 for
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x ≤ 0, we can also write

Φ(0+) =

� 1

0

1{t=0}dΦ(t).

Then, we can write (B.1) as

� 1

0

(� 1

t

V (G−1(x))dx+ max{0, v} r 1{t=0}

)
dΦ(t).

Therefore, using the definition of Ψ from Theorem 1, we obtain an objective function� 1

0
Ψ(x)dΦ(x). Next,we show that problems of this form admit an easy-to-describe solution.

Lemma 2. Consider the problem

max
Φ: Φ is a MPS of Φ0

� 1

0

Ψ(x)dΦ(x),

where Ψ(x) is an upper semi-continuous function and Φ0 is given. Then, the value of the

problem is
� 1

0
co(Ψ)(x)dΦ0(x), and the solution is given by

Φ?(x) =


� b
a Φ0(x)dx

b−a if x ∈ (a, b) and (a, b) is a maximal interval on which co(Ψ) is linear,

Φ0(x) otherwise,

for almost all x.

Proof. For any Φ, we have

� 1

0

Ψ(x)dΦ(x) ≤
� 1

0

co(Ψ)(x)dΦ(x).

Moreover, the function on the right hand side of the inequality is maximized at Φ = Φ0

because co(Ψ)(x) is a concave function. It follows that the value of the problem in the

lemma is bounded by
� 1

0
co(Ψ)(x)dΦ0(x). We show that this upper bound can be achieved.

Consider the candidate solution Φ?(x) from the statement of the lemma. First, this function

is feasible (by Kamenica Gentzkow 2016). Moreover, supp(Φ?) ⊆ {x : Ψ(x) = co(Ψ)(x)}
and on that set, Φ? = Φ0. Thus,

� 1

0
Ψ(x)dΦ?(x) =

� 1

0
co(Ψ)(x)dΦ0(x).

The form of the solution is consistent with the concurrent findings of Kleiner et al.

(2020) who derive general properties of extreme points that emerge as solutions to problems

of the form considered in the lemma. The maximization problem in Lemma 2 can also be

seen analogous to a Bayesian persuasion problem in which the designer’s preferences over

posterior beliefs depend only on the posterior mean (see Kolotilin, 2018, and Dworczak and
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Martini, 2019) with a key difference: The MPS condition is flipped, requiring the solution

Φ to be a mean-preserving spread (rather than a mean-preserving contraction) of the prior

Φ0. This makes the problem very easy to solve by finding a concave closure of the objective

function.

Lemmas 1 and 2 immediately imply that the value of the maximization problem under

no-free-disposal is given by

� 1

0

co(Ψ)(x)dF−1(x) =

� 1

0

co(Ψ)(F (q))dq,

where the equality follows from integration by substitution. Moreover, a solution is given by

Q?(r) = Φ?(G(r)), where Φ? is described in Lemma 2.

We can now derive Theorem 1. Allowing for free disposal is equivalent to allowing for

“downward” first-order stochastic dominance shifts in the distribution of expected quality

allocated to agents. That is, Q(r) is a feasible expected-quality schedule with free disposal

if Q(r) = Φ̄(G(r)) for some Φ̄ ≤ Φ, where Φ is a mean-preserving spread of F−1 (see Lemma

1). Note that Φ̄ dominates Φ in the FOSD order because the FOSD relation is reversed by

taking the inverse of the CDFs (and both Φ̄ and Φ are inverses of the CDFs of the expected

quality).

Therefore, to derive the optimal expected-quality schedule under free disposal from the

corresponding solution without free disposal, it is enough to solve an optimization problem

of the following form:

Lemma 3. Consider the problem

max
Φ

� 1

0

co(Ψ)(x)dΦ(x)

subject to

Φ(x) ≤ Φ?(x),

where Φ?(x) is the solution given in Lemma 1. The value of the problem is
� 1

0
dco(Ψ)(x)dΦ?(x),

and the solution is given by

Φ??(x) = Φ?(x)1{x≥x?}

for almost all x, where [0, x?] is the maximal interval on which the concave decreasing func-

tion dco(Ψ) is constant.

Proof. By definition of x?, the function dco(Ψ)(x) is constant and equal to co(Ψ)(x?) on
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[0, x?] and coincides with co(Ψ)(x) otherwise. On one hand, we have for any feasible Φ,

� 1

0

co(Ψ)(x)dΦ(x) ≤
� 1

0

dco(Ψ)(x)dΦ(x) ≤
� 1

0

dco(Ψ)(x)dΦ?(x),

where the first inequality follows from the fact that co(Ψ) ≤ dco(Ψ), and the second from

the fact that dco(Ψ) is non-increasing and Φ dominates Φ? in the FOSD order. On the other

hand, if we define Φ?? as in the statement of the lemma, then we have

� 1

0

co(Ψ)(x)dΦ??(x) =

� x?

0

co(Ψ)(x)dΦ??(x) +

� 1

x?
co(Ψ)(x)dΦ??(x)

= co(Ψ)(x?)Φ?(x?) +

� 1

x?
dco(Ψ)(x)dΦ?(x) =

� 1

0

dco(Ψ)(x)dΦ?(x),

by the properties of co(Ψ), dco(Ψ) and Φ??(x). Thus, Φ?? achieves the upper bound and

hence is a solution to the problem described in Lemma 3.

With Lemma 3, Theorem 1 follows directly from Lemma 1: The value of the problem is

� 1

0

dco(Ψ)(x)dΦ?(x) =

� 1

0

dco(Ψ)(x)dF−1(x) =

� 1

0

dco(Ψ)(F (q))dq

where the last equality follows from integration by substitution. The optimal solution is

given by an expected-quality schedule

Q?(r) = Φ??(G(r)) = Φ?(G(r))1{G(r)≥x?} = Φ?(G(r))1{r≥G−1(x?)},

where Φ? is described in Lemma 1. Finally, the choice of the optimal U was described in the

reasoning leading up to Lemma 2.

B.2 Proof of Theorem 2

We solve the program (3.2)–(3.3) by solving a relaxed problem in which the constraint that

Fi(q) is a CDF is dropped, and then verifying that the solution of the relaxed program is

feasible.

The relaxed program is to solve for the optimal Fi(q) for every q ∈ Q separately:

max
0≤xi≤1

∑
i∈I

µidco(Ψi)(xi), (B.3)

s.t.
∑
i∈I

µixi = F (q). (B.4)
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This program can be solved using standard Lagrangian techniques (concavity of dco(Ψi)

guarantees their validity). Fix q. There exists a Lagrange multiplier,21 that we will denote

by L(q), such that the optimal x?i maximizes
∑

i∈I µi[dco(Ψi)(xi)− L(q)xi] while satisfying

the constraint. Because the Lagrangian is concave, the first-order condition is both necessary

and sufficient. Let X?
i (q) be the set of points satisfying the first-order condition: X?

i (q) =

{x : dco(Ψi)
′(x) = L(q)} whenever this set is non-empty, and otherwise X?

i (q) = {0} if

dco(Ψi)
′(0) < L(q) and X?

i (q) = {1} if dco(Ψi)
′(1) > L(q). By the above, we know that

there exists a selection x?i ∈ X?
i (q) such that (B.4) holds. Moreover, because each dco(Ψi)

is concave and continuous, we know that each X?
i (q) is a closed interval (potentially a

singleton).

To prove the theorem, it remains to show that there exists a selection F ?
i (q) from each

X?
i (q) that is non-decreasing (then, it can be modified on a measure-zero set of points to

make it into a CDF; notice that it is guaranteed by the constraint (B.4) that each F ?
i is 0

at 0 and 1 at 1).

Because the constraint in (B.4) is increasing in q, it follows that the Lagrange multiplier

L(q) is a non-increasing function of q. Moreover, the sets X?
i (q) are non-decreasing in the

strong set order by concavity of dco(Ψi). Define a vector function

C(q, α) =
[
(1− α) minX?

1 (q) + αmaxX?
1 (q), ..., (1− α) minX?

|I|(q) + αmaxX?
|I|(q)

]
.

By definition, for each q,
∑

iCi(q, 0) ≤ F (q) while
∑

iCi(q, 1) ≥ F (q). By continuity,

there exists α?(q) such that
∑

iCi(q, α
?(q)) = F (q) (moreover, the values of Ci(q, α

?(q)) are

uniquely pinned down, even if α?(q) is not). We can now define F ?
i (q) as Ci(q, α

?(q)). By

direct inspection and the strong-set order property of X?
i (q), each F ?

i (q) is non-decreasing,

which finishes the proof once we set S(q) = −L(q).

B.3 Proofs of results in Section 4

Proof of Proposition 1. The proof is immediate from Theorem 1. The assumptions of Propo-

sition 1 ensure that there is an upward jump at 0 in Ψi, and therefore dco(Ψi)(x) must be

linear for small enough x. (Of course, when dco(Ψi)(x) is constant for small x, it is possible

that types r ≤ r?i do not receive any objects; however, we still call such allocation random,

in line with Remark 1.)

Proof of Proposition 2. By Theorem 1, full randomization is optimal if and only if dco(Ψi)

21In case there are multiple Lagrange multipliers, we pick the largest one.
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is linear which is true if and only if

Ψi(x) ≤ (1− x)Ψi(0) + xΨi(1),

for all x > 0. We have

Ψi(0) = max{0, α− λ̄i}ri +

� r̄i

ri

τλi(τ)dGi(τ).

Using the fact that Ψi(1) = 0, we can write the condition as, for all r > ri,

Ψi(Gi(r)) ≤ (1−Gi(r))

[
max{0, α− λ̄i}ri +

� r̄i

ri

τλi(τ)dGi(τ)

]
. (B.5)

To see that this implies α < λ̄i, note that by diving both sides by 1 − Gi(r), using the

expression (3.1), and taking the limit as r → r̄i, we get

αr̄i ≤ max{0, α− λ̄i}ri +

� r̄i

ri

τλi(τ)dGi(τ) < max{0, α− λ̄i}ri + r̄iλ̄i. (B.6)

Thus, if α ≥ λ̄i, we would get (α − λ̄i)r̄i < (α − λ̄i)ri which is a contradiction. Using this

observation in (B.6), we obtain the necessary conditions from Proposition 2, and equation

(B.5) gives us the necessary and sufficient condition states before Proposition 2.

Finally, suppose that αJi(r) + Λi(r)hi(r) is quasi-convex. This implies that Ψi is first

convex and then concave on (0, 1]. The necessary condition implies that Ψi(0) ≥ Ψi(1) −
Ψ′(1). Together this implies that Ψi(x) ≤ (1− x)Ψi(0) for all x.

Proof of Proposition 3. Suppose that there is random allocation at the top, that is, Ψi(x) is

linear for x ∈ [x, 1] for some x. Take x so that this is the maximal random-allocation region.

There are two cases to consider. If x = 0, then we have to rule out that Ψi(0) ≥ Ψi(1)−Ψ′i(1);

if x > 0, and then it suffices to rule out that Ψ′i(x) ≥ Ψ′i(1) (if x > 0 is the beginning of the

maximal interval of a random allocation, then the slope of dco(Ψi) at x must be equal to

the slope of Ψi, and that slope must be larger than the slope of Ψi at 1 since dco(Ψi) ≥ Ψi

with an equality at 1). Because Gi has a bounded support, its inverse hazard rate is 0 at

the upper bound; thus, Ψ′i(1) = −αr̄i. Thus, the first possibility can be ruled out if

αr̄i > (α− λ̄i)ri +

� r̄i

ri

τλi(τ)dGi(τ) ⇐⇒ α(r̄i − ri) > −λ̄iri +

� r̄i

ri

τλi(τ)dGi(τ).
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But we have

� r̄i

ri

τλi(τ)dGi(τ)− λ̄iri < r̄i

� r̄i

ri

λi(τ)dGi(τ)− λ̄iri = λ̄i(r̄i − ri),

thus this can be ruled out by α ≥ λ̄i. The second possibility can be ruled out if for all r,

αr − (α− Λi(r))hi(r) < αr̄,

which clearly holds as long as α ≥ Λi(r) which is true by the fact that λi(r) is non-increasing

and λ̄i ≤ α.

Proof of Proposition 4. The proof is immediate from Theorem 1.

Proof of Proposition 5. Throughout the proof, we drop the dependence on n from the nota-

tion.

Consider the first case first. We know that J ′i(r) = 1 − h′i(r) ≥ J i, so h′i(r) ≤ 1 − J i.
By Proposition 4, since we know that α ≥ λ̄i for all n, to prove that assortative matching is

optimal, it is enough to prove that the second derivative of Ψi is non-positive. The sign of

the second derivative of Ψi is opposite to the sign of the following expression:

α+Λi(r)−λi(r)+(Λi(r)− α)︸ ︷︷ ︸
≤0

h′i(r) ≥ α−2ε+(Λi(r)−α)(1−J i) = −2ε+Λi(r)+(α−Λi(r))J i ≥ 0,

for all 2ε < αmin{1, J i} ≤ Λi(r) + (α − Λi(r))J i. Thus, by taking ε satisfying that last

condition, and n large enough, we conclude that the solution to the problem is assortative

matching (this conclusion is stronger than that of Proposition 4 in that assortative matching

is exactly optimal for n large enough.)

Now consider the second case. By the same calculation as before, for any x > 0, there

exists a large enough n so that Ψi is strictly concave on [x, 1]. This means that if there is

a random-allocation region that does not vanish in the limit as n → ∞, then it must take

the form of [x0, x1] with x0 → 0 and xi > x > 0 as n → ∞, where x does not depend on

n. (Intuitively, while Ψi is concave on [x, 1] for any x if n is large enough, it could be the

case that the concave closure of Ψi is supported at a point x0 that converges to 0, and some

other point—bounded away from 0—that lies in the region where Ψi is concave.) We will

show that this leads to a contradiction.
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First, it is convenient to decompose

Ψi(x) =

� 1

x

Ji(G
−1
i (x))dx︸ ︷︷ ︸

ΨR
i

+

� 1

x

Λi(G
−1
i (x))hi(G

−1
i (x))dx︸ ︷︷ ︸

ΨW
i

.

Our strategy is to show that, for large enough n, ΨR
i is strictly concave (with a second

derivative bounded away from 0), while ΨW
i and its derivative are arbitrarily small, and thus

they cannot change the shape of Ψi in the limit.

Note that there exists m > 0 such that

(ΨR
i )′′(x) = −J

′
i(G

−1
i (x))

gi(G
−1
i (x))

< −m < 0,

by assumption that the derivative of Ji is lower bounded, and that the density gi is continuous

on its support (so it has an upper bound). Also note that for any ε > 0, and x such that

G−1
i (x) < ε, for large enough n, we have

ΨW
i (x) ≤ ΨW

i (0) =

� 1

0

(� r̄i

G−1
i (x)

λi(τ)dGi(τ)

)
dr ≤ λ̄iG

−1
i (x) + ε(r̄i − ri) ≤ ε ·M,

where the second to last inequality uses the assumption that Pareto weights are below ε for

large enough n, and M is some constant. By the same assumption, for any ε > 0, x > 0,

and large enough n,

|(ΨW
i )′(y)| ≤ | − Λi(G

−1
i (y))hi(G

−1
i (y))| ≤ ε,

for any y ≥ x.

We are ready to obtain a contradiction. A necessary condition for dco(Ψi) to be linear

on [x0, x1] is that

Ψi(x1)−Ψ′i(x1)(x1 − x0)−Ψi(x0) ≤ 0. (B.7)

Note, however, that

ΨR
i (x1)− (ΨR

i )′(x1)(x1 − x0)−ΨR
i (x0) = −

� x1

x0

y(ΨR
i )′′(y)dy ≥ 1

2
m(x1 − x0)2. (B.8)

Since x1 ≥ x > 0 for all n, and x does not depend on n, this expression is bounded away

from 0. Yet, by the inequalities established above on ΨW
i and (ΨW

i )′, we have

| (Ψi(x1)−Ψ′i(x1)(x1 − x0)−Ψi(x0))−
(
ΨR
i (x1)− (ΨR

i )′(x1)(x1 − x0)−ΨR
i (x0)

)
| ≤ ε · M̃,
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for some constant M̃ . For large enough n, we can take ε small enough so that ε · M̃ <
1
2
m(x1 − x0)2 which is inconsistent with (B.7) and (B.8), a contradiction.

Proof of Proposition 6. The conclusion is immediate from Theorem 2. When there is fully

random matching in group i, the function dco(Ψi) is linear, and thus its slope is constant,

equal to Ψi(0) (since Ψi(1) = 0). By Proposition 2, fully random matching requires that

λ̄i > α, and under this inequality, we have that Ψi(0) =
� r̄i
ri
rλi(r)dGi(r).

Proof of Proposition 7. By the assumption that assortative matching is optimal, we must

have dco(Ψi)(x) = Ψi(x), except possible for x ≤ x?i if dco(Ψi)(x) is constant on [0, x?i ].

By direct calculation (and using the fact that for bounded support distributions, the inverse

hazard rate is 0 at the upper bound), we obtain Ψ′i(1) = −αr̄i. The conclusion follows directly

from Theorem 2, and the observation that Ψi has a continuous derivative (by assumption

that gi(r) and λi(r) are continuous). When α > λ̄i and ri = 0, we have that

Ψ′i(0) = −α
(
ri −

1

gi(ri)

)
− λ̄i

1

gi(ri)
> 0,

and hence Ψi is increasing in the neighborhood of 0. Thus, dco(Ψi) is constant in some

initial interval, and hence has a zero slope. When α > λ̄i and ri = 0 for all i, by Theorem

2, all groups are allocated the lowest-quality objects.

Proof of Proposition 8. The proof of this result was presented after the statement in the

main text.

Proof of Proposition 9. The proof of the first part of this result was presented after the

statement in the main text.

We prove the second part. For q̄ < 1, we need that |dco(Ψ1)′(1)| > |dco(Ψ2)′(1)| = Ψ2(0),

by Theorem 2. This yields the condition αr̄1 ≥
� r̄2
r2
τλ2(τ)dG2(τ). For q > 0, we need

that |dco(Ψ1)′(0)| < |dco(Ψ2)′(0)| = Ψ2(0). Since group 1 features effectively assortative

matching, either |dco(Ψ1)′(0)| = 0 or dco(Ψ1)′(0) = Ψ′1(0) ≥ −αr1. This yields the condition

αr1 ≤
� r̄2
r2
τλ2(τ)dG2(τ).
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