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Abstract

Consider a Bayesian persuasion problem in which the Sender’s preferences depend only on the

mean of posterior beliefs. We show that there exists a price schedule for posterior means such that

the Sender’s problem becomes a consumer-like choice problem: The Sender purchases posterior means

using the prior distribution as her endowment. Prices are determined in equilibrium of a Walrasian

economy with the Sender as the only consumer and a single firm that has the technology to garble

the state. Welfare theorems provide a verification tool for optimality of a persuasion scheme, and

characterize the structure of prices that support the optimal solution. This price-theoretic approach

yields a tractable solution method for persuasion problems with infinite state spaces. As an application,

we provide a necessary and sufficient condition for optimality of a monotone partitional signal.

We show that the approach extends to competition in persuasion and persuasion problems with no

restrictions on Sender’s utility.
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1 Introduction

Bayesian persuasion has become a canonical model of communication with commitment power following

Kamenica and Gentzkow (2011).1 However, the standard approach to optimal persuasion based on con-

cavification of the value function has limited power when the state space is large. The concavification

method alone is typically not sufficient to characterize the optimal signal, and fails to provide intuition for

the structure of the underlying persuasion scheme. To overcome this difficulty, we develop a price-theoretic

approach to Bayesian persuasion under the assumption that the Sender’s preferences only depend on the

mean of posterior beliefs.

We show that the Sender acts as a consumer who purchases posterior means at their prices, subject to

a budget constraint, using the prior distribution as her endowment. Prices are determined in a Walrasian

equilibrium of a “Persuasion Economy” which features posterior means as “goods”, the Sender as the only

consumer, and a single firm. The firm has the technology to garble the state, or “merge the goods”, and

maximizes profits.

We prove analogues of the two welfare theorems for this economy. In Theorem 1, we show that com-

petitive equilibria are efficient (hence, since there is only one agent, optimal). This provides a verification

tool for optimality of a candidate solution to the Sender’s problem. In Theorem 2, under mild regularity

assumptions we show that the Walrasian approach is also necessary: given any optimal persuasion scheme,

it is always possible to find a price schedule that supports it as an equilibrium allocation.

Using the analogy to a Walrasian economy, we derive joint restrictions on equilibrium prices and

allocations which provide insights about the structure of the optimal persuasion scheme. We show that

the technological constraints of the persuasion economy imply that the price schedule must be convex.

Moreover, in regions where the price function is strictly convex, the state must be fully revealed. Pooling

only happens in regions where prices are linear. These restrictions narrow down the set of candidate

solutions to a relatively low-dimensional class in which the optimal solution can often be found using a

simple graphical method.

Persuasion mechanisms used in practice often have a simple structure: information is either fully

revealed or adjacent types are pooled together (e.g. coarse ratings used by bond rating agencies). In

Theorem 3, we use our approach to derive a necessary and sufficient condition on the Sender’s utility

function under which a monotone partitional signal is optimal for any prior distribution of the state.

We use the price-theoretic approach to solve two examples. In the first application, an agent must be

persuaded to exert effort on a project. The agent is rewarded with a fraction of the value of the project but

only the principal knows how much the project is worth if successful. We prove that the principal should

disclose the project’s value when it is low, and pool high realizations into the lowest signal that induces

maximal effort. In the second application, a financial analyst who possesses private information on the

profitability of a risky asset wants to persuade an agent to invest in it; the optimal persuasion mechanism

has a tractable structure in which the informativeness of the recommendation depends on the agent’s

degree of risk aversion. In both applications, a simple graphical analysis combined with our verification

result is enough to characterize the optimal persuasion mechanism.

We show that our methods extend beyond the simple case in which a single Sender’s utility depends

1Prior works containing important contributions to the literature on communication under commitment include Aumann
and Maschler (1995), Calzolari and Pavan (2006), Ostrovsky and Schwarz (2010) and Rayo and Segal (2010).
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solely on the one-dimensional posterior mean. In Section 7.1, we consider a model of competition in

persuasion. There are multiple Senders with access to the same information, and they disclose signals

simultaneously. Using our method, we characterize the set of equilibrium distributions of posterior means.

In Section 7.2, we show that our verification result extends immediately to the multidimensional setting,

where a (single) Sender’s preferences depend only on the vector of posterior means.

In Section 8, we demonstrate that the analogy to Walrasian equilibrium holds for a general Bayesian

persuasion problem, with no restrictions on the objective function of the Sender. In this case, prices are

defined on the space of posterior beliefs rather than posterior means. We show that supporting prices

provide a dual characterization of the Sender’s value function, complementary to concavification, and can

be seen as a “convex closure” of the utility function. We apply this approach to solve an example in which

the Sender’s utility depends on a continuous state through two moments of the posterior distribution.

We are not the first to study Bayesian persuasion in the case where payoffs only depend on the posterior

mean. Kolotilin (2017) uses duality theory to characterize the optimal persuasion scheme in a related

model, and introduces the idea of prices for messages in the context of an example. The graphical approach

introduced in Gentzkow and Kamenica (2015) gives further insights about the structure of the problem.

We defer discussion of the related literature to Section 9.

The rest of the paper is organized as follows. The next section sets up the model. In Section 3, we

prove our main results, and describe the connection to Walrasian equilibria. In Section 4, we analyze the

structure of the optimal solution and equilibrium prices. Section 5 provides a necessary and sufficient

condition for optimality of monotone partitional signals. In Section 6, we work through two applications

of our methods. In Section 7 we discuss extensions to competition in persuasion and to multidimensional

persuasion. In Section 8 we discuss the general persuasion problem and the connection of our approach to

concavification. Finally, in Section 9, we discuss the related literature. Proofs and additional applications

are collected in the Appendix.

2 Model

The state of nature is the realization of a real-valued random variable X with a cumulative distribution

function F .2 We assume that X has realizations in some non-degenerate bounded interval [x, x̄], and its

support includes the endpoints x and x̄. Without loss of generality, we normalize x = 0 and x̄ = 1. F is

common knowledge between the two players, Sender and Receiver.

The Sender commits to an information structure which determines the signal that is sent to the Receiver.

An information structure is a measurable mapping π : [0, 1]→ ∆(S), for some signal space S.3

Given an information structure π, every signal realization s ∈ S induces a posterior belief over the

distribution of X. We assume that the Sender’s final utility depends on posterior beliefs only through the

posterior mean. Formally, there exists a measurable function u : [0, 1]→ R such that u(x) is the ex-post

utility of the Sender when the induced posterior mean is x.

The assumption is satisfied when the Receiver’s optimal action only depends on the expected state

2We assume throughout that there exists a probability space (Ω, F , P) on which X is defined. The explicit probability
space plays no further role in the analysis.

3The signal space S is endowed with a relevant σ-field, and π is measurable with respect to the σ-field on [0, 1] with
respect to which X is a random variable (which can be taken to be, for example, the Borel σ-field).
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and when the Sender’s preferences over actions depend linearly on the state (in particular, if they are

state-independent). The Receiver’s problem only influences the persuasion problem via the shape of the

function u, and thus the Receiver will not play any role in the analysis.

Under this assumption, the expected value of an information structure π depends only on the distri-

bution of posterior means that it induces. It is thus natural to optimize over distributions of posterior

means directly. Given the prior F , a distribution of posterior means G is induced by some information

structure if and only if F is a mean-preserving spread of G (Blackwell, 1953; Kolotilin, 2017; Gentzkow

and Kamenica, 2015).4

The Sender’s problem is thus

max
G

ˆ 1

0

u(x)dG(x) (2.1)

subject to the constraint that F is a mean-preserving spread of G.

3 A price-theoretic approach to persuasion

Our first result provides a way to verify optimality of a candidate solution G by means of an auxiliary

function p.

Theorem 1. If there exist a cumulative distribution function G and a convex function p : [0, 1]→ R, with

p(x) ≥ u(x) for all x ∈ [0, 1], that satisfy

supp(G) ⊆ {x ∈ [0, 1] : u(x) = p(x)}, (3.1)

ˆ 1

0

p(x)dG(x) =

ˆ 1

0

p(x)dF (x), and (3.2)

F is a mean-preserving spread of G, (3.3)

then G is a solution to problem (2.1).

Proof. See Appendix A.1.

We will be using Theorem 1 primarily as a tool to solve problem (2.1). However, the result also

provides a useful interpretation of the optimal persuasion scheme as a Walrasian equilibrium allocation.

The auxiliary function p describes equilibrium prices for posterior means. The Sender is a consumer

endowed with F who selects a bundle G to maximize utility subject to a budget constraint, similar to

conditions (3.1) – (3.2). A single firm transforms states into posterior means using a technology that

satisfies the mean-preserving-spread condition (3.3). We formalize the analogy next.

3.1 The “Persuasion Economy”

We begin by describing the “Persuasion Economy”. Let [0, 1], the set of possible posterior means, be

the space of goods. A bundle of goods, possibly including negative quantities, is denoted by a function

4There are many equivalent definitions of mean-preserving spreads (see e.g. Müller and Stoyan, 2002). We will use two:

F is a mean-preserving spread of G if
´ 1
0 v(x)dF (x) ≥

´ 1
0 v(x)dG(x) for all convex v; equivalently, if

´ t
0 F (x)dx ≥

´ t
0 G(x)dx

for all t ∈ [0, 1] and
´ 1
0 F (x)dx =

´ 1
0 G(x)dx.
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G : [0, 1] → R, where G(x) is the total mass of goods in [0, x]. When the bundle includes non-negative

amounts of each good and the total mass of goods is 1, G is a cumulative distribution function. Let M

denote the set of possible bundles.5

There is a single consumer with utility u(x) for one unit of good x. Utility is linear in quantity and

additively separable across goods: utility of bundle G is
´ 1

0
u(x)dG(x). The consumer can only consume

non-negative amounts of each good, so the consumption set M+ ⊂M consists of non-negative bundles: G

must be non-decreasing. The consumer is initially endowed with a bundle F of goods.

There is a single competitive firm that chooses a production plan Z from the following production

possibility set:

Z =

{
Z ∈M :

ˆ x

0

Z(t)dt ≤ 0, ∀x ∈ [0, 1],

ˆ 1

0

Z(t)dt = 0, Z(1) = 0

}
.

Z describes the technology of taking mean-preserving contractions. That is, the firm takes “states” as

inputs, and produces posterior means as outputs. For example, a unit of good x1 and a unit of good x2

can be used to produce two units of good (x1 + x2)/2. The additional condition Z(1) = 0 says that the

total mass of inputs is equal to the total mass of outputs, and can be interpreted as no free disposal (this

rules out uninteresting equilibria). The consumer is the sole shareholder of the firm.

Definition. (G, Z, p) is a Walrasian equilibrium if

1. The consumer maximizes utility given the budget constraint:

G ∈ argmax
G̃∈M+

ˆ 1

0

u(x)dG̃(x) subject to

ˆ 1

0

p(x)dG̃(x) ≤
ˆ 1

0

p(x)dF (x) + π, (3.4)

where π is the dividend from the firm.

2. The firm maximizes profits π =
´ 1

0
p(x)dZ(x):

Z ∈ argmax
Z̃∈Z

ˆ 1

0

p(x)dZ̃(x). (3.5)

3. Markets clear:

G = F + Z. (3.6)

An equilibrium (G, Z, p) is not unique because prices p can be rescaled without affecting equilibrium

properties. We argue that (G, Z, p) is a Walrasian equilibrium if and only if (G, p′) satisfies conditions

(3.1)-(3.3) of Theorem 1, where p′ is an affine transformation of p.

1. In order for problem (3.5) to admit a solution, prices must be convex (otherwise, the firm can scale

up production and achieve infinite profits). Furthermore, when prices are convex, the firm cannot

make strictly positive profits (and can always achieve zero profits by not producing anything). Thus,

the firm breaks even in equilibrium. By market clearing, the firm must produce Z = G − F . The

zero-profit condition corresponds to (3.2).

5Formally, M is the set of signed, countably additive, regular, finite-variation measures on [0, 1] with the Borel σ-algebra.
With slight abuse of notation, we identify a measure µ ∈M with its cumulative distribution G(x) = µ([0, x]) =

´ x
0 dµ(z).
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2. In the consumer’s problem in the economy, let λ be the Lagrange multiplier on the consumer’s budget

constraint. Due to linearity, maximizing the Lagrangian is equivalent to supp(G) ⊆ argmaxx{u(x)−
λp(x)}. Moreover, the consumer chooses a bundle corresponding to a cdf in equilibrium: Market

clearing and the no-free-disposal condition for the firm imply G(1) = 1. By letting β ≡ maxx{u(x)−
λp(x)}, we can rescale prices to p′ = λp+β, and conclude that (3.1) and p′ ≥ u both hold. Conversely,

if we start with (G, p) satisfying (3.1)-(3.3), then G is a solution to the consumer’s problem because

the Lagrangian is maximized (with λ = 1), and the consumer’s budget constraint is satisfied by (3.2).

3. Market clearing is implicit in equations (3.1) – (3.3). Condition (3.3) corresponds to the technological

constraint of the firm.

3.2 Welfare Theorems for the Persuasion Economy

We can now interpret Theorem 1 as the First Welfare Theorem for the Persuasion Economy. If (G,Z, p) is

an equilibrium, then G is Pareto efficient.6 Efficiency in a one-consumer economy means that the allocation

maximizes the consumer’s welfare. Hence, G is optimal for the Sender.

Conversely, we might expect the Second Welfare Theorem to also hold for the Persuasion Economy:

Do there always exist prices that support an optimal solution as an equilibrium allocation? We give a

positive answer under mild regularity conditions on u (some assumption on u is clearly needed to guarantee

existence of an optimal G).

Definition 1. Function u is regular if:

(i) u is upper semi-continuous with at most finitely many one-sided jump discontinuities at interior

points y1, ..., yk ∈ (0, 1);7

(ii) u has bounded slope in each interval (yi, yi+1);

(iii) for every convex function v such that v ≥ u pointwise, the set {x : v(x) > u(x)} can be represented

as a finite union of intervals.8

Theorem 2. Suppose that u satisfies conditions (i) and (ii) of regularity. Then there exists an optimal

solution G, and for every optimal solution G, there exists a convex and continuous p : [0, 1]→ R such that

the pair (G, p) satisfies conditions (3.1)–(3.3).

Proof. See Appendix A.2.

Because the Persuasion Economy has infinitely many goods, standard proofs of the Second Welfare The-

orem cannot be adopted easily. Instead, to prove Theorem 2, we use duality techniques from the literature

on optimization with stochastic dominance constraints (Dentcheva and Ruszczynski, 2003). We highlight

6Even when u is non-positive (so that consumer’s preferences are not necessarily locally insatiable) the First Welfare
Theorem holds because the consumer always exhausts her budget in equilibrium. If the budget constraint were slack, then
the firm would be making negative profits, which cannot happen in equilibrium.

7Upper semi-continuity could also be derived as a consequence of the primitives, under the additional assumption that
the Receiver chooses the Sender-preferred action when indifferent.

8If the function u is upper semi-continuous, then the set {x : v(x) > u(x)} is always a union of intervals, but the union
can in general require infinitely many elements. For example, f(x) = sin( 1

1−x )(1− x)2 for x < 1 and f(1) = 0 is continuous,

has bounded slope but is not regular.
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one element of our proof that uses properties of Walrasian equilibria: Among other technical complications,

problem (2.1) does not satisfy the qualification constraint imposed by Dentcheva and Ruszczynski. We

construct a sequence of problems approximating (2.1) in which the qualification constraint holds, and show

the appropriate convergence properties. However, this only gives us existence of one solution G supported

by a price function p (the limit of the sequence). To prove existence of supporting prices for any G, we

notice that our economy is quasi-linear: Because the consumer’s utility is linear in quantities, there exists

a numeraire good that can be treated as money. Gul and Stacchetti (1999) show that any equilibrium

allocation in a quasi-linear economy is supported by any equilibrium price function. This implies that if

G and G′ are two solutions to problem (2.1), and (G, p) satisfy the conditions of Theorem 1, then so do

(G′, p). Thus, Theorem 2 holds for any solution.

3.3 Further properties of Persuasion Economies

Before proceeding, we establish one more consequence of the analogy between optimal persuasion and

Walrasian equilibrium. One of the proofs of existence of Walrasian equilibria features a mythical player,

the Walrasian auctioneer, who chooses prices to maximize the value of the net trade. This can be used

to provide insights about the structure of equilibrium prices. In the Persuasion Economy, the net trade

is G − F − Z. Moreover, because
´ 1

0
p(x)dZ(x) = 0 and

´ 1

0
p(x)dG(x) is proportional to

´ 1

0
u(x)dG(x)

when the firm and the consumer are maximizing, our auctioneer focuses on minimizing the value of the

endowment F .

Proposition 1. Suppose that u is regular. If a price function p? solves

min
p

ˆ 1

0

p(x)dF (x) subject to p being convex and p ≥ u, (3.7)

then p? is an equilibrium price function, and in particular satisfies (3.1) - (3.3) with any optimal solution

G. Conversely, any price function satisfying (3.1) - (3.3) with some G is a solution to (3.7).

Proof. See Appendix A.3.

Proposition 1 characterizes the equilibrium price function from Theorem 1 as a feasible price function

that minimizes the value of the endowment of the consumer (the constraint p ≥ u is needed to obtain

the particular normalization of the price function used in Theorem 1). It also provides a solution method

for the Bayesian persuasion problem (2.1): First, solve (3.7) to find equilibrium prices. Then, find G to

satisfy conditions (3.1) – (3.3). While this is always a valid approach under the regularity assumptions on

u, solving (3.7) is non-trivial. We derive an alternative approach based on joint restrictions on (G, p) in

the next section.

4 Structure of prices

We first show how to construct supporting prices for the cases in which the solution to the persuasion

problem is known and takes a simple form. We then characterize the general structure of supporting prices

which allows us to use Theorem 1 to solve non-trivial persuasion problems.
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Corollary 1. If there exists an affine function q such that q(x) ≥ u(x) for all x and q(EX) = u(EX),

then pooling (revealing nothing about X) is a solution to problem (2.1).

In this case it is enough to take p ≡ q. Since p is affine, condition (3.2) is equivalent to equality of

unconditional means of F and G. The distribution G that puts all mass on EX also satisfies conditions

(3.1) and (3.3), and hence is optimal by Theorem 1. Corollary 1 applies not only when u is concave, but

more generally when −u has a supporting hyperplane at EX.

Corollary 2. If u is convex, then full revelation (always revealing X) is a solution to problem (2.1).

In this case we can take p ≡ u and G ≡ F for which conditions (3.1) – (3.3) hold trivially.

Supporting prices are also easy to find in persuasion problems where the Receiver chooses one of two

actions. This has been solved using other methods (Gentzkow and Kamenica, 2015; Ivanov, 2015). For

comparison, in Appendix A.4 we solve the two-action problem by constructing a piece-wise linear price

function and applying Theorem 1.

In all previous examples the optimal G takes a simple form, and it is straightforward to use Theorem

1 to verify optimality. We now prove that conditions (3.1) – (3.3) impose tight joint restrictions on (G, p)

which greatly reduces the set of candidate solutions and supporting prices.

Proposition 2. Suppose that F has full support and no mass points. Let p be a convex and continuous

function that satisfies conditions (3.1)–(3.3) for some distribution G. Then, for any interval [a, b] ⊆ [0, 1]:

(i) if p is strictly convex on [a, b], then p(x) = u(x) and G(x) = F (x), for all x ∈ [a, b]; or,

(ii) if p is affine on [a, b], and [a, b] is a maximal interval on which p is affine, then G(a) = F (a),

G(b) = F (b),
´ b
a
t dG(t) =

´ b
a
t dF (t), and p(c) = u(c) for at least one c ∈ [a, b].

Furthermore, if u is regular, then there exists a coarsest partition 0 = x0 < x1 < ... < xn+1 = 1 of [0, 1]

such that on each [xi, xi+1] either (i) or (ii) holds.

Proof. See Appendix A.5.

The key property of the supporting price function can be understood in the context of the Persuasion

Economy. In regions where the price function is strictly convex, the firm cannot engage in any non-trivial

production as this would yield losses (given convexity of prices and the technological constraints). Thus

dF = dG (so that dZ = 0) in these regions which corresponds to full disclosure of the state. Non-trivial

production can only take place in intervals where the price function is affine. On such intervals, the

production of the firm is only constrained by the mean-preserving spread and no-free-disposal conditions.

Figures 1 and 2 show an example u and F along with (G, p) that satisfy (3.1)–(3.3), and the structural

properties given in Proposition 2.

Proposition 2 implies that it is enough to verify the mean-spread condition (3.3) separately for every

maximal interval in which p is affine (the condition holds automatically conditional on realizations in

intervals where p is strictly convex). Moreover, whenever p(x) > u(x) for all x ∈ [a, b], then p is piece-wise

affine with at most one kink in [a, b]. Indeed, such [a, b] can intersect at most two consecutive intervals

[xi, xi+1], [xi+1, xi+2] because in every interval of the partition, p and u coincide at at least one point.

The conditions listed above often restrict the set of possible prices to a small class. Because the convex

price function p can only coincide with u when u is convex, and p is piece-wise affine with at most one
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x0 x1 y1 x2

p(x)

u(x)

x

Figure 1: Utility u(·) and prices p(·).

x0 x1 y1 x2

0

1

F(x)

G(x)

x

Figure 2: Prior CDF F (·) and CDF of posterior
means G(·).

kink between regions where u ≡ p, for relatively simple u, the set of potential price functions can be

parameterized by a low-dimensional parameter. For any p in that set, points where u ≡ p determine

the support of G, and the supporting price function can be found by solving for the parameter which

yields condition (3.3). We further aid the search for the solution in Section 5 where we provide sufficient

conditions for when a monotone partitional signal is optimal. In Section 6, we illustrate the method by

applying it to two persuasion problems.

5 Monotone partitional signals

Persuasion mechanisms that are seen in practice often only use monotone partitional signals: pooling, if

present, is only between adjacent types. For example, many schools only release coarse information on

student performance (Ostrovsky and Schwarz, 2010). Bond credit ratings also have a coarse structure

(where very fine categories can be interpreted as full disclosure). These signal structures also appear in

other models of communication: Crawford and Sobel (1982) show that all equilibria in their model feature

monotone partitional signals. In Section 9 we review papers that give sufficient conditions for monotone

partitional signals in related models of Bayesian persuasion.

Definition. A distribution of posterior means G is induced by a monotone partitional signal if there exists

a finite partition of [0, 1] into intervals {[xi, xi+1]}ki=1 such that for each i, either (i) G ≡ F in [xi, xi+1]

(full revelation), or (ii) G puts all mass in [xi, xi+1] on E[X|X ∈ [xi, xi+1]] (pooling).

We prove that the following definition gives a sufficient and necessary condition on the objective

function under which a monotone partitional signal is optimal regardless of the underlying prior distribution

over states.

Definition 2. A function u is affine-closed if there do not exist 0 < x < y < 1 and an affine function q

such that:

1. u(x) = q(x) and u(y) = q(y);

2. q(z) ≥ u(z) for all z ∈ [x, y];

3. q(z) > u(z) for all z ∈ {w} ∪ (x− ε, x) ∪ (y, y + ε) for some ε > 0 and some w ∈ (x, y).
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To provide some intuition for the above definition, note first that adding an affine function to u does

not change the optimal solution to our problem. Roughly speaking, an affine-closed function is defined by

the property that u+ q has at most one local interior maximum for any affine function q. When this is not

the case, that is, u+q has two (or more) interior “peaks”, we can find an affine function q′ tangent to these

peaks that would satisfy properties 1-3. Importantly, an affine-closed function can have local (one-sided)

maxima at the endpoints. This intuition is precise when u itself is not affine in any interval. The definition

is, however, more permissive when u is locally affine and can therefore have an interval of local maxima.

Convex and concave functions are always affine-closed. More complex examples of affine-closed func-

tions are shown in Figures 3 and 4. In both cases there does not exist an affine function q with properties

1-3 listed in Definition 2. The affine function q1 in Figure 3 does not satisfy property 1 because points of

support must be interior (not 0 or 1). The affine function q2 that supports u at x and y does not satisfy

property 3, because there does not exist w ∈ (x, y) such that q2(w) > u(w). Finally, the function in Figure

4 is affine-closed because the affine function q3 cannot simultaneously satisfy properties 2 and 3, regardless

of how we choose the support points x and y.

0 x y 1

q
2

q
1

Figure 3: An affine-closed function (solid black
line) and affine functions q1 and q2 (dotted lines)

0 1

q
3

Figure 4: An affine-closed function (solid black line)
and an affine function q3 (dotted line)

Theorem 3. Let u be regular. If u is affine-closed, then for any continuous and full-support prior F

there exists an optimal solution G for problem (2.1) which is induced by a monotone partitional signal.

Conversely, if u is not affine-closed, then there exists a (continuous) prior F such that no optimal G can

be induced by a monotone partitional signal.

Proof. See Appendix A.6.

In the proof, we use Theorem 2 to generate a solution G and a corresponding multiplier p. Starting

from G, we construct a modified distribution of posteriors which is induced by a monotone partitional

signal. Using Proposition 2 and the affine-closure property, we show that the multiplier p still supports

the modified distribution, thus proving its optimality by Theorem 1. To prove the converse, we use the

violation of affine-closure to construct a distribution F such that the optimal signal cannot have a monotone

partitional structure.

The importance of the affine-closure assumption can be understood using Figure 5. Consider the non-

affine-closed function (black solid line). Suppose that F is the uniform distribution on [0, 1]. If h ≤ 1
4 in

Figure 5, then by Theorem 1, the optimal posterior distribution of means has two atoms at the two peaks
1
2±h of the objective function (the multiplier p is a horizontal line tangent at the two peaks). Except for the
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2
! h 1

2
+ h

1

2

Figure 5: A non-affine-closed function (solid black line) and an affine-closed function (dotted blue line).

non-generic case h = 1
4 , this distribution of posterior means cannot be induced by a monotone partitional

signal. Consider instead the affine-closed function in Figure 5 (blue dotted line) as the objective. Although

the same signal remains optimal, we can now modify it to obtain a monotone partition: We construct a

signal which pools all realizations into one posterior mean 1
2 , and achieves the same payoff as the mixture

between points 1
2 − h and 1

2 + h. The affine closure property implies that the objective function coincides

with the (locally affine) price function at the pooled mean 1
2 , allowing an optimal G to put an atom at 1

2 ,

in line with condition (3.1).

Continuity of F is needed for the first half of the theorem. Consider the extreme case where F puts

all mass on two points. Then, there are only two distinct distributions G that are induced by monotone

partitions: G = F (full revelation) and G = δE[X] (pooling at the prior mean). It is easy to construct

(affine-closed) u for which neither of these is optimal.9

The affine-closure property is distinct from the notion of a concave closure (as Figures 3 and 4 illustrate).

Nevertheless, one can ask if there exists a well-defined notion of an affine closure û of the function u with

the property that it produces the same value of the persuasion problem as u but the optimal signal is

monotone partitional. The price function p from Theorem 1 satisfies all properties required of û: it is

affine-closed (because it is convex), and it yields the same value of the optimal persuasion problem as u

(this follows from convexity of p and conditions (3.1) - (3.2)). The caveat is that p depends on the prior

F . It is not possible to define affine closure û so that û is affine-closed and yields the same value of the

persuasion problem as u for every F .

One natural example where the affine-closure assumption may not hold is when the Sender has state-

independent preferences, and the Receiver chooses one of n ≥ 3 actions. As noted in Gentzkow and

Kamenica (2015), the optimal signal structure may fail to be monotone partitional in this case. Our

method yields a complete characterization of cases when the existence of a monotone partitional signal is

guaranteed. When the three actions are ordered, as in Figure 6, u is not affine-closed. By Theorem 3,

there exists a prior distribution for which no monotone partitional signal is optimal. On the other hand,

when the actions are not ordered (both when the central action is the worst, as in Figure 7, and when it

9However, for the case of discrete distributions, one can derive a version of Theorem 3 under a more permissive definition
of a monotone partition that permits “splitting” of an atom into two adjacent signals.
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Figure 6: A non-affine-closed function Figure 7: An affine-closed function

is the best), u is affine-closed and hence there always exists an optimal monotone partitional signal.

6 Applications

In this section, we show that the methods developed in the paper can be successfully applied to solve

persuasion problems with large action and state spaces. Concurrent work by the first author (Duffie,

Dworczak, and Zhu, 2017) uses our results in a model studying optimal pre-trade transparency of financial

over-the-counter markets. Dealers trade with customers who are uninformed about the common cost of

providing an asset, and hence face uncertainty over the prices quoted by dealers. Because of costly search

for the best price, entry by customers is limited. A social planner decides how much information about the

common cost to reveal prior to trading. The distribution of the cost is continuous, resulting in a continuum

of states. Our Theorem 1 is used to solve for the social planner’s optimal information revelation scheme.

Below, we provide two additional applications of our methods.

6.1 Motivating through strategic disclosure

A principal wants to motivate an agent to exert costly effort in order to complete a project.10 The project,

if completed successfully, has value X to the principal. We assume that the agent receives a fraction

β ∈ (0, 1) of the value of the project. The agent chooses effort level e ∈ [0, ē], with ē ≤ 1, where e

is interpreted as probability that the project will be successfully completed. Choosing effort level e has

disutility c(e) = eα, where α > 1.11

The value X is distributed according to a continuous full-support distribution F on [x, x̄]. The principal

observes the realization x of X, but the agent does not. The principal commits to a disclosure scheme

that maximizes her expected profits.

Given the belief of the agent that the expected value of the project is y, the chosen level of effort is

equal to

e?(y) = min

{(
βy

α

) 1
α−1

, ē

}
.

10A similar application (with binary state space) is studied in Section 6.2 of Kamenica and Gentzkow (2009).
11All the results in this section continue to hold under the assumption that (c′)−1(e) · e is convex, without any particular

choice of functional form.
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Figure 8: Motivating through strategic disclosure

Let ȳ = (α/β)ēα−1 be the smallest expected value of the project such that e?(ȳ) = ē, i.e. the agent exerts

maximal effort. To make the analysis interesting, we assume that x < ȳ < x̄.

The principal’s utility function is u(y) = (1− β)e?(y)y. It is easy to check that u is strictly convex on

[x, ȳ], and affine on [ȳ, x̄]. The shape of the function u(·) is depicted in Figure 8.

Proposition 3. If EX ≥ ȳ, it is optimal to reveal no information. Otherwise, let x? be defined by

E [X|X ≥ x?] = ȳ. Then, it is optimal to disclose x whenever x < x?, and to reveal only that x ≥ x? if

x ≥ x?.

Proof. In the first case, by Corollary 1, it is optimal not to reveal anything.

In the second case, consider the price function

p(x) =

u(x) if x < x?

u(x?) + ∆(x− x?) if x ≥ x?
, where ∆ ≡ u(ȳ)− u(x?)

ȳ − x?
.

Function p is convex. We then define the cdf G of posterior means as

G(x) =

F (x) if x < x?

F (x?) + 1{x≥ȳ}(1− F (x?)) if x ≥ x?
.

That is, G coincides with F up to x?, and then puts an atom at ȳ = E [X|X ≥ x?] . Condition (3.1) holds

because u and p coincide for x ≤ x? and x = ȳ. Condition (3.2) is satisfied because p is affine whenever

F 6= G, and the conditional means of F and G are equal in that region. By the way we defined G, F is a

mean-preserving spread of G, which verifies condition (3.3). By Theorem 1, G is optimal.

Proposition 3 has the following economic interpretation. If the agent believes the value of the project

to be high enough ex-ante (EX ≥ ȳ), he exerts maximal effort, so it is optimal for the principal to release

13



no additional information. In the opposite case EX < ȳ, the principal uses an “upper censorship” rule.

She discloses the exact value of the project for low realizations but garbles the signal for high realizations

by only informing the agent that the project deserves maximum effort.

6.2 Investment recommendation

A risk-averse investor chooses how to divide her wealth w between a risk-free asset and a single risky asset,

on which she can take a short or a long position. (A similar analysis is possible if only one of the two

positions is available.) The amount invested in the risky asset either doubles in value or is entirely lost.

To take any non-zero position in the risky asset, the investor must pay a fixed cost c > 0. The investor

has prior belief 1
2 that a long position will double her investment.

The investor consults a financial analyst, who has access to additional information about the payoff of

the risky asset. Specifically, she knows the probability X that a long position will double the investment.

(With probability 1 − X a short position will double the investment.) X is distributed according to F

which is symmetric around the mean E[X] = 1
2 and admits a strictly positive density on [0, 1]. The analyst

commits to a persuasion mechanism in order to influence the belief of the agent about the payoff of the

risky asset. If the posterior belief is too close to the prior, because of the fixed cost the agent will optimally

invest zero. The closer to 0 or 1 the belief, the more the agent is willing to invest.

We consider two different shapes of the analyst’s utility u. In the first (Figure 9), as posterior belief

approaches 0 and 1, the function is concave, meaning there are diminishing returns from inducing polarized

beliefs. In the second (Figure 10), the function u is convex near 0 and 1. In both cases u is flat near 1
2 ,

where there is no investment. We provide a microfoundation of these shapes in Appendix A.7 assuming

that the investor has CRRA preferences and the analyst’s utility is proportional to the amount invested.

The shape of u depends on the measure of relative risk aversion, with u becoming more convex as risk

aversion increases. The linear boundary case is attained when the investor has log-utility. Similar shapes

can also arise because of non-linearities in the analyst’s fee structure.

In Proposition 4 we solve the analyst’s persuasion problem under the assumption that

x0 > E
[
X

∣∣∣∣X ≤ 1

2

]
(6.1)

so that the analyst is, on average, sufficiently informed to always induce positive investment in the risky

asset, when information is pooled in two signals (high and low). By symmetry of F and u, this implies

1− x0 < E[X|X ≥ 1
2 ].

Proposition 4. In the concave case (Figure 9, with u formally defined in Appendix A.7), it is optimal

to reveal whether x < 1
2 or x > 1

2 . In the convex case (Figure 10, with u formally defined in Appendix

A.7), there exist a? < b? such that it is optimal to disclose x whenever x ≤ a? or x ≥ 1− a?, and to pool

realizations (i) x ∈ (a?, b?) at x0 = E[X|a? < X < b?]; (ii) x ∈ (1−b?, 1−a?) at 1−x0; (iii) x ∈ [b?, 1−b?]
at 1

2 .

Proof. See Appendix A.7.

Proposition 4 can be interpreted as follows. If the agent is not highly risk averse (with the CRRA

microfoundation, if the agent is less risk averse than log-utility; see Appendix A.7 for details), the analyst
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Figure 10: Portfolio recommendation: convex case

issues a binary recommendation “buy” or “sell”, and the investor always invests a positive amount of wealth

in the position recommended by the analyst. If the agent is more risk averse, the recommendation of the

analyst has a finer structure. If the analyst thinks the asset will go up (or down) with high probability,

she provides full information about the assessed probability. If she is less confident, she issues a “weak

recommendation” to either buy or sell. And if the realized x is close to the prior belief 1
2 , she does not

recommend any of the positions (“hold”). In this last case, the agent refrains from investing.
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7 Extensions

7.1 Competition in persuasion

In this subsection, we show that our methods extend to a setting where there are multiple Senders that

have access to the same information. We adopt the competition in persuasion model of Gentzkow and

Kamenica (2016) specialized to our setting. Formally, there are N Senders, and each Sender i maximizes

the expectation of some function ui(x), where x is the mean of the posterior distribution (given the

information revealed by all Senders). Senders choose the distributions of signals simultaneously, and can

send arbitrarily correlated signals. We study Nash equilibria of this game.

By the results of Gentzkow and Kamenica (2016), a distribution H over posterior means is an equi-

librium distribution of joint information revealed by all Senders if and only if it is unimprovable – no

Sender i wants to reveal more information given H. This result allows us to provide a characterization

of all equilibrium distributions under a mild regularity condition. We say that v : [0, 1] → R is a convex

translation of u : [0, 1]→ R if v − u is convex.

Theorem 4. If there exist: a cumulative distribution function H, a function ûi that is a convex translation

of ui, and a convex function pi : [0, 1]→ R, pi ≥ ûi, for each i ∈ N , such that

supp(H) ⊆ {x ∈ [0, 1] : ûi(x) = pi(x)} , ∀i ∈ N, (7.1)

ˆ 1

0

pi(x)dH(x) =

ˆ 1

0

pi(x)dF (x), ∀i ∈ N, and (7.2)

F is a mean-preserving spread of H, (7.3)

then H is an equilibrium distribution of posterior means.

Conversely, if each ui is continuous and regular, then for any equilibrium distribution H, there exist

convex pi, and convex translations ûi of ui, for each i ∈ N , such that conditions (7.1) – (7.3) hold.

We sketch the proof in Appendix A.8. Theorem 4 gives a number of straightforward corollaries. First,

full disclosure is always an equilibrium: there always exists a convex translation of utility function ûi for

each Sender i that is convex (we can then take pi = ûi), given the assumption that each ui is regular and

continuous. Second, if all utility functions are concave, then all distributions are equilibrium distributions

– indeed, if ui is concave, then ûi ≡ 0 is a convex translation of ui, and we can take pi ≡ 0. Third, the set

of equilibrium distributions shrinks when the utility of any Sender undergoes a convex translation – this

reduces the set of convex translations of utility functions that can support a given candidate equilibrium

distribution H. Fourth, Theorem 4 leads to an economically-meaningful algorithm for generating the set

of equilibrium distributions: (1) For all i ∈ N , solve the individual optimization problem for all Senders

that are more risk-loving (in the order induced by convex translations) than Sender i, and denote the set

of obtained solutions by Hi; (2) The set of equilibrium distributions is exactly the intersection
⋂
i∈N Hi.

We can use Theorem 4 to solve a multi-Sender version of the application in Section 6.1. Suppose that

there are N ≥ 2 Senders that observe X and compete to persuade the agent. We assume that utility ui

of each Sender i is: (1) strictly convex on [0, ci] for some ci ∈ (0, 1); (2) affine on [ci, 1]; (3) continuous,

regular, and not globally convex. That is, each ui takes the shape analogous to the shape of u in Figure 8,
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but the locations ci of the kink may be different across Senders. Without loss of generality, we can order

the Senders so that c1 ≥ c2 ≥ . . . ≥ cN . To limit the number of cases, assume that the prior mean satisfies

EF [X] < cN .

Proposition 5. H is an equilibrium distribution if and only if H is feasible, fully reveals the state below

some a ≤ c1, and has no mass on (a, c1). In particular, the least informative equilibrium is the distribution

that would be optimal for Sender 1 if she were the only Sender.

Proof. See Appendix A.9.

7.2 Multidimensional persuasion

Many of the tools developed so far (the existence guarantee of Theorem 2; the characterization of prices

of Proposition 2) rely on the properties of mean-preserving spreads that hold only in the univariate case.

However, the logic of Theorem 1 extends immediately to the multivariate setting where the Sender’s utility

only depends on the vector of posterior means.

The state of nature is now the realization of a random vector X with distribution F over the unit

hypercube Q := [0, 1]k, for some fixed k ≥ 2. Mean-preserving spreads generalize to the convex order

among distributions: G ≤cx F if and only if, for all convex v,
´
vdG ≤

´
vdF . Unlike the mean-preserving

spread relation, there is no convenient characterization of the convex order in dimensions 2 or greater. To

verify that it holds for some G, one can use a suitable version of Strassen’s theorem (e.g. Theorem 3.4.2(a)

in Müller and Stoyan, 2002): If G is the distribution of a random variable Y that satisfies Y = E[X|Y ],

then G ≤cx F .

Theorem 1b. If G is a distribution on Q, p : Q → R is convex with p(x) ≥ u(x), ∀x ∈ Q, and (G, p)

satisfy

supp(G) ⊆ {x ∈ Q : u(x) = p(x)}, (7.4)ˆ
Q

p(x)dF (x) =

ˆ
Q

p(x)dG(x), (7.5)

F ≥cx G, (7.6)

then G is optimal for the Sender’s problem max
G :G≤cxF

ˆ
Q

u(x)dG(x).

The proof is identical to that of Theorem 1 and thus omitted. We apply Theorem 1b to a two-

dimensional persuasion problem next.

The Sender wants to persuade the Receiver to take action on two dimensions, labeled 1 and 2. Receiver’s

payoff (v1, v2) from taking actions 1 and 2, respectively, is observed by the Sender but not the Receiver.

We assume that actions are costly for the agent, so that the agent will take action j if and only if its

expected utility vj is at least β, for some fixed β ∈ (0, 1).

The Sender has state-independent preferences and on both dimensions prefers the Receiver to take

action. The Sender’s utility is 0 if the agent takes neither action; 1 if the agent takes one action; and 2 +α

if the agent takes both actions. The parameter of interest is the degree of complementarity α. If α > 0,

actions are complements from the point of view of the Sender; if α ∈ (−1, 0), they are substitutes.12

12The case in which it is the Receiver who has complementary or substitutable preferences can also be studied in this
framework, by fixing the Sender’s utility levels and instead varying the region where both actions are chosen by the Receiver.
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Figure 11: Solution of the multidimensional persuasion problem for complements (left panels) and substi-
tutes (right panels). The top row shows u (fine mesh, in background) and p (coarse mesh, in foreground).
The bottom row shows the pooling regions, which actions they induce, and how the centers of mass of
the regions that induce some action lie on the threshold β. The pooling regions correspond to the affine
regions of p. Other parameters: β = 0.8, F = bivariate uniform.

We make the following assumptions, both for technical reasons and to isolate the most interesting case,

in which β is relatively high (and thus persuasion is difficult). First, assume that (v1, v2) is distributed

according to a symmetric distribution F with a density f which is strictly positive and bounded on [0, 1]2.

Second, assume that for all the following regions, the x component of their center of mass according to

F is less than or equal to β: (1) {(x, y) : x ≥ y, x + y ≤ s}, for all s ≤ 2β; (2) {(x, y) : x + y ≥ β};
(3) {(x, y) : x + y ≥ β, x ≤ β, y ≤ β} ∪ {(x, y) : x + y ≥ 2β}. For any fixed F , for large enough β the

assumption is satisfied. If F is the bivariate uniform distribution, the assumptions hold if β ≥ 2/3.

Proposition 6. For all α > −1, there exist a price function p and a distribution G that satisfy the

conditions of Theorem 1b. The function p is the pointwise maximum of four affine functions; the optimal

G is obtained by pooling realizations of X in each of the regions on which p is affine.
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Proof. See Appendix A.10.

The Sender faces a non-trivial trade-off between increasing the probability of inducing both actions

versus the probability of inducing at least one action. Only in the limit as α → ∞ does the Sender

maximize the probability of inducing both actions (which is achieved by pooling all states (x, y) with

x+ y ≥ v, for an appropriately chosen v).

8 Prices in the general Bayesian persuasion problem

In this section, we provide an analog of Theorem 1 in the general Bayesian persuasion problem (Kamenica

and Gentzkow, 2011), where the Sender’s utility depends on the distribution of posterior beliefs, and

not necessarily on posterior means only. We then illustrate the connection between the concavification

approach and our approach based on prices. We conclude by solving an example that, to the best of our

knowledge, cannot be solved with previous methods.

Let Θ be a compact metric space, and suppose that the Sender’s utility V : ∆(Θ) → R is upper

semi-continuous. Let µ0 ∈ ∆(Θ) be the prior distribution. The general Bayesian persuasion problem is

max
τ∈∆(∆(Θ))

ˆ
∆(Θ)

V (µ)dτ(µ) (8.1)

subject to the Bayes-plausibility constraint

ˆ
∆(Θ)

µdτ(µ) = µ0. (8.2)

Before stating the result, we introduce a class of functions that we call “outer-convex.”

Definition 3. A function P : ∆(Θ)→ R is outer-convex if, for any µ ∈ ∆(Θ),

P (µ) ≤
ˆ

Θ

P (δθ)dµ(θ),

where δθ is a measure that puts all mass on {θ} (Dirac delta).

Outer-convexity relaxes convexity by only requiring the relevant inequality to hold for convex combina-

tions supported on extreme points of the domain. When the domain is ∆(Θ), extreme points are exactly

Dirac deltas, and the definition of outer-convexity has a natural interpretation in the Bayesian persuasion

framework: Outer-convexity of V is equivalent to optimality of full disclosure for any prior.

Theorem 5. Suppose that there exists τ? ∈ ∆(∆(Θ)) and a measurable outer-convex function P : ∆(Θ)→
R, such that P ≥ V , and

supp(τ?) ⊆ {µ ∈ ∆(Θ) : V (µ) = P (µ)}, (8.3)ˆ
∆(Θ)

P (µ)dτ?(µ) =

ˆ
Θ

P (δθ)dµ0(θ), (8.4)

ˆ
∆(Θ)

µτ?(µ) = µ0, (8.5)
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Then, τ? is a solution to problem (8.1) – (8.2).

Proof. Identical to the proof of Theorem 1 (omitted).

Theorem 5 is analogous to Theorem 1 except that the outer-convex price functional P is defined on

beliefs rather than on posterior means – this is natural given that in the general Bayesian persuasion

problem the preferences of the Sender depend on the entire belief profile.

In the competitive equilibrium interpretation, the consumer is endowed with the prior µ0 whose market

value under prices P is given by
´

Θ
P (δθ)dµ0(θ). The consumer purchases posterior beliefs µ at prices

P (µ) to maximize her quasi-linear utility – condition (8.3) can be equivalently written as supp(τ?) ⊆
argmaxµ∈∆(Θ){V (µ)−P (µ)}. The firm’s problem requires a modification in the general model. While the

mean-preserving spread condition encodes the idea that the firm can “merge” states into posterior means,

the Bayes-plausibility condition (8.2) by itself allows for both “merging” and “splitting” of posterior beliefs.

Thus, the production possibility set of the firm must now include the Bayes-plausibility constraint but also

a condition that only Dirac deltas can be used as inputs in the production process. With this modification,

outer-convexity of prices is necessary for existence of a Walrasian equilibrium (when prices fail to be outer-

convex at µ, the firm can make infinite profits by producing (and selling) infinite amounts of µ from its

decomposition into Dirac deltas). Moreover, the firm breaks even (condition 8.4) and the markets clear

(condition 8.5).

When the function V is (outer-)convex, the supporting prices are given by P (µ) = V (µ). P is (outer)

convex, P ≥ V , and the three conditions of Theorem 5 follow immediately with τ? corresponding to

full disclosure. When the function V is concave, let Φµ0(µ) be the (affine) function whose graph is the

supporting hyperplane of V at µ0. With P (µ) = Φµ0(µ), P ≥ V , and conditions (8.3) – (8.5) hold trivially

when τ?(µ0) = 1, i.e., τ? corresponds to no disclosure. Finally, suppose that the preferences of the Sender

depend only on the posterior mean, V (µ) = u(Eµ(θ)), and let (G, p) satisfy conditions (3.1) – (3.3). Then,

take P (µ) = p(Eµ(θ)). Conditions (8.3) – (8.5) with τ? corresponding to G follow from the corresponding

conditions of Theorem 1.

Theorem 5 allows us to draw a connection between our approach and the concavification approach of

Kamenica and Gentzkow (2011).

Claim 1. Suppose that P ? is the outer-convex price functional satisfying the conditions of Theorem 5

(under the prior µ0 and with some optimal distribution τ?). Then

co(V )(µ0) = min

{ˆ
Θ

P (δθ)dµ0(θ)|P : ∆(Θ)→ R, P is outer-convex, P ≥ V
}
. (8.6)

Moreover, the minimum is attained at P = P ?:

co(V )(µ0) =

ˆ
Θ

P ?(δθ)dµ0(θ). (8.7)

Proof. See Appendix A.11.

Claim 1 shows the dual relationship between the concave closure of V (which is the value function

for the problem (8.1) – (8.2)) and the (outer-)convex price functional P from Theorem 5. The value of

the persuasion problem is equal to the value of the endowment at the equilibrium prices. Equation (8.7)
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can be interpreted in the following way. If V is replaced with its concave closure co(V ) (which is point-

wise greater) as the objective function of the Sender, it is optimal to reveal nothing and the value of the

persuasion problem stays the same. Analogously, if V is replaced with P ? (which is point-wise greater)

as the objective function of the Sender, it is optimal to reveal everything and the value of the persuasion

problem stays the same.13 In this sense, P ? can be seen as a (prior-dependent) “convex closure” of V .

Theorem 5 can be used to solve problems in which the designer’s objective function depends on more

than one moment of the posterior distribution. We solve one such example next.

8.1 Example

We consider an extension of the example from Section 6.1. There, we assumed that the agent had utility

which was linear in money. However, it is natural to study a case when the agent’s utility exhibits

decreasing marginal returns. Formally, in the setting of Section 6.1, suppose that the agent evaluates

monetary payoffs βx according to a concave utility function uA(βx), where x is the realization of the value

of the project X, and β is the share received by the agent. To simplify calculations, we assume that the

cost of effort is quadratic, so that the problem of the agent becomes

max
e∈[0,ē]

{
eEuA(βX)− e2

}
.

The optimal effort level is thus a function of y = EuA(βX):

e?(y) = min
{
ē,
y

2

}
.

This means that the utility of the risk-neutral Sender will now depend on two moments of the posterior

distribution: its mean and its expected utility for the agent. Formally, the principal maximizes

V (µ) = (1− β)e? (EµuA(βX))EµX,

and the objective function depends on the posterior distribution µ through y = EµuA(βX) and x = EµX.
Let v(x, y) = (1− β)e? (y)x.

Let F be a cdf of a full-support distribution of X on [x, x̄], and, to limit the number of cases to

consider, suppose that e? (EFuA(βX)) < ē (the agent take less than full effort under the prior), and that

e? (uA(βx̄)) = ē (the agent takes full effort under the most optimistic belief about X).

Proposition 7. Suppose that uA(x)x is convex. Let x? be the lowest x such that the prior belief truncated

at x induces full effort: EF [uA(βX)|X ≥ x?] = 2ē. Then, it is optimal to disclose x whenever x < x?,

and to reveal only that x ≥ x? if x ≥ x?.

Proof. See Appendix A.12.

The optimal persuasion scheme from Proposition 7 is the same as that from Proposition 3 except

that x? is defined with respect to the concave utility function uA of the agent. While the solution is

intuitive, proving its optimality is challenging. We do so by applying Theorem 5. Because the objective

13The last claim follows from conditions (8.3) - (8.4).
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Figure 12: The objective function v(x, y) (left panel) and the objective function with the supporting prices
p(x, y) (right panel)

function depends on two moments of the posterior belief, it is natural to conjecture that so does the

price function. We construct a two-dimensional function p(x, y) that majorizes v(x, y), and show that

P (µ) = p(EµX, Eµ uA(βX)) together with the disclosure policy described in Proposition 7 satisfy the

conditions of Theorem 5. The assumption that uA(x)x is convex allows us to prove that V restricted

to the region where interior effort is optimal for the agent is outer-convex, an analog of convexity of the

one-dimensional objective function u(x) for x ≤ ȳ in Figure 8. Figure 12 depicts the objective function and

the supporting prices in the two-dimensional space (x, y) = (EµX, Eµ uA(βX)). The objective function

has a non-differentiable edge described by the equation y = ȳ ≡ 2ē corresponding to the level of utility

that is just enough to induce full effort. The price function p is defined as a point-wise maximum of v and

a hyperplane “tangent” to the graph of v along this non-differentiable edge.

The above example suggests that, more generally, if the objective function is measurable with respect

to a set of moments of the posterior distribution, so is the corresponding price functional. We leave this

direction for future research.

9 Related literature

The model of Bayesian persuasion where the Sender’s preferences only depend on the posterior mean has

received some attention in the literature. Along with their analysis of the general model, Kamenica and

Gentzkow (2011) apply the concavification approach to the same setting as ours. The concavification of

the value function over posterior means reveals whether the Sender benefits from persuasion, but does not

explicitly characterize the value of the problem or the optimal signal. In contrast, our approach directly

establishes the structure of the optimal signal. Gentzkow and Kamenica (2015) focus on the same setting

as ours and characterize the set of feasible distributions over posterior means using a graphical method.

Their method is then used to solve simple persuasion problems in which the Receiver chooses between two

or three actions, and hence the Sender’s preferences over posterior means are a step function. In contrast,

our techniques apply to an almost arbitrary objective function of the Sender, and in particular allow for

a continuum of both states and actions.
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Kolotilin (2017) is the first to introduce ideas from linear programming to persuasion problems. He

provides a strong duality theorem for a model of persuasion in which the Receiver is privately informed

and chooses between two actions.14 He also studies a case of his model that is mathematically equivalent

to our setting.15 Our Theorems 1 and 2 bear similarity to the strong duality result of Kolotilin but are

different across two important dimensions. First, due to a different representation of the mean-preserving

spread constraint, the Lagrange multiplier derived by Kolotilin is two-dimensional. Our price function

supporting the optimal solution is one-dimensional.16 Together with the tight characterization of prices

provided in Section 4, this makes our method significantly easier to apply. Second, the price function

permits the interpretation of the persuasion problem as a Walrasian equilibrium.

Other papers have found sufficient conditions for monotone partitional signals in related models. In

the general setting of Kamenica and Gentzkow (2011), Mensch (2017) gives a sufficient condition based

on supermodularity of the Sender’s and Receiver’s preferences over action and state. Our condition is not

comparable to his, since we take a reduced-form approach where (Sender’s) preference is over posterior

means directly. Ivanov (2015) studies a setting in which the preferences of the Sender depend not only

on the posterior mean but also on the order of posterior means induced by a signal. Such a setting

captures communication problems more general than Bayesian persuasion. Ivanov provides a sufficient

condition for optimality of a monotone partitional signal in his setting. However, that condition becomes

trivial when projected to our setting – it says that the objective function is convex. Finally, in a setting

analogous to ours, Kolotilin (2017) provides a characterization of interval revelation schemes. Because

interval revelation schemes, as defined by Kolotilin, belong to the class of monotone partitional signals, his

condition is sufficient. We give a condition that is both necessary and sufficient under milder regularity

conditions on u.

Daskalakis, Deckelbaum, and Tzamos (2017) study the problem of finding a profit-maximizing mecha-

nism for a multi-product monopolist. Their primal problem involves optimizing over convex functions, and

they show that a suitable dual formulation obtains using mean-preserving spreads; our setting is mirrored,

with mean-preserving spreads in the primal and convex functions in the dual. The approach we use to

prove strong duality (Theorem 2) is however very different: Daskalakis et al. use methods from optimal

transport, whereas we use results from infinite-dimensional linear programming. As Daskalakis et al. note,

it is often difficult to establish existence of interior points in the feasible set, which is necessary for strong

duality; we bypass this difficulty by studying the limit of a sequence of perturbed problems where the in-

terior is non-empty. It is an interesting open question whether optimal transport methods can be applied

to persuasion problems.
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A Proofs and additional material

A.1 Proof of Theorem 117

Let (G, p) satisfy conditions (3.1)–(3.3). To show that G is a solution to the Sender’s problem, it is enough

to show that
´ 1

0
u(x)dG(x) ≥

´ 1

0
u(x)dH(x), for any H such that F is a mean-preserving spread of H.

By (3.1), and the fact that p ≥ u,

ˆ 1

0

(u(x)− p(x))dG(x) ≥
ˆ 1

0

(u(x)− p(x))dH(x).

Rearranging,

ˆ 1

0

u(x)dG(x)−
ˆ 1

0

u(x)dH(x) ≥
ˆ 1

0

p(x)dG(x)−
ˆ 1

0

p(x)dH(x)

(1)
=

ˆ 1

0

p(x)dF (x)−
ˆ 1

0

p(x)dH(x)

(2)

≥
ˆ 1

0

p(x)dF (x)−
ˆ 1

0

p(x)dF (x) = 0

where equality (1) follows from (3.2) and inequality (2) holds because −p(x) is concave, and F is a mean-

preserving spread of H, by assumption. Therefore
´ 1

0
u(x)dG(x) ≥

´ 1

0
u(x)dH(x).

A.2 Proof of Theorem 2

We prove the theorem in three steps. In the first step, we make the additional assumption that u is

continuous, and study a perturbed problem. The perturbation allows us to show that a generalized Slater

condition holds, which results in existence of the appropriate Lagrange multiplier. In the second step,

we show that the solution to the perturbed problem provides the correct approximation of the solution

to the unperturbed problem. By taking the limit, we obtain the statement of Theorem 2 for the special

case of a continuous u. In the third step, we relax the assumption that u is continuous, again using an

approximation approach. We relegate some technical lemmas to Appendix A.13.

We make two preliminary observations. First, a solution to the Sender’s problem always exists because

the objective function is upper semi-continuous, and the set of feasible points is compact in the weak?

topology. Second, to show that a supporting price function p exists for all optimal solutions, it is enough

to prove that it exists for one solution. This is because if p supports solution G, then is also supports

any other solution G′. To see this, consider H = G′ in the proof of Theorem 1. If G′ is optimal, then all

inequalities must hold as equalities, and thus (G′, p) satisfy conditions (3.1) – (3.2). Condition (3.3) holds

because G′ is feasible.

Step 1. In the first step, we use the proof technique developed by Dentcheva and Ruszczynski (2003).

Dentcheva and Ruszczynski provide a duality theory for optimization problems with stochastic dominance

constraints. They study a case where the constraint takes the form of second-order stochastic dominance.

17We thank Shota Ichihashi for showing us this direct proof. Our previous proof employed duality techniques from the
literature on optimization with stochastic dominance constraints, which we use in the proof of Theorem 2.
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Our constraint additionally incorporates equality of unconditional means, resulting in a mean-preserving

spread condition.

Assume that u is continuous. Consider the following perturbed problem, where the mean-preserving

spread condition is only imposed on the interval [ε, 1− ε], instead of on [0, 1].

max
G∈∆([0, 1])

ˆ 1

0

u(x)dG(x) (A.1)

s.t.

ˆ x

0

F (t)dt ≥
ˆ x

0

G(t)dt for allx ∈ [ε, 1− ε], (A.2)

ˆ 1

x

G(t)dt ≥
ˆ 1

x

F (t)dt for allx ∈ [ε, 1− ε]. (A.3)

Conditions (A.2) and (A.3) enforced on the entire interval [0, 1] would be jointly equivalent to F being a

mean-preserving spread of G. Note that although the perturbed problem (A.1) only requires the mean-

preserving spread condition on [ε, 1− ε], all distributions are defined on [0, 1]. We take ε > 0 small enough

so that ε < E[F ] < 1− ε.
Let Cε := C([ε, 1− ε]) denote the space of continuous functions on [ε, 1− ε]. Define Kε as the cone of

continuous non-negative functions on [ε, 1− ε], that is,

Kε := {g ∈ Cε : g(x) ≥ 0, ∀x ∈ [ε, 1− ε]}.

Let Φ : ∆([0, 1])→ Cε × Cε be defined by

(Φ(G))i(x) =


´ x

0
F (t)dt−

´ x
0
G(t)dt if i = 1,´ 1

x
G(t)dt−

´ 1

x
F (t)dt if i = 2,

for any x ∈ [ε, 1− ε]. Conditions (A.2) and (A.3) are now equivalent to Φ(G) ∈ Kε ×Kε.

The operator Φ is concave with respect to the product cone Kε × Kε. By the Riesz representation

theorem, the space dual to Cε is the space rca([ε, 1−ε]) of regular countably additive measures on [ε, 1−ε]
having finite variation. We define a Lagrangian Λ : ∆([0, 1])× rca([ε, 1− ε])× rca([ε, 1− ε])→ R,

Λ(G, µ1, µ2) =

ˆ 1

0

u(x)dG(x) +

ˆ 1−ε

ε

(Φ(G))1(x)dµ1(x) +

ˆ 1−ε

ε

(Φ(G))2(x)dµ2(x).

We now show that the generalized Slater condition holds for the problem (A.1). By Bonnans and Shapiro

(2000) (Proposition 2.106), it is enough to show that there exists G̃ ∈ ∆([0, 1]) such that

Φ(G̃) ∈ int(Kε ×Kε). (A.4)

That is, we have to find a distribution (cdf) G̃ supported on [0, 1] such that Φ(G̃) is a Cartesian product

of two functions that are both in Kε, and are bounded away from zero on [ε, 1− ε]. Let G̃(x) = 1{x≥E[F ]}.

The function (Φ(G̃))i(x), for i = 1, 2, is equal to 0 at x = 0 and x = 1. Since 0 and 1 are in the support

of F , (Φ(G̃))i(x) is strictly positive in the interior of [0, 1]. Therefore, using the structure of G̃, it must be

bounded away from zero on [ε, 1− ε]. Thus, the generalized Slater condition holds.
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By Bonnans and Shapiro (2000) (Theorem 3.4), we conclude that if G is a solution to the problem

(A.1) (we have already argued that a solution exists), then there exist non-negative measures µ?1, µ
?
2 ∈

rca([ε, 1− ε]) such that

Λ(G, µ?1, µ
?
2) = max

Ĝ∈∆([0, 1])
Λ(Ĝ, µ?1, µ

?
2), (A.5)

and ˆ 1−ε

ε

(Φ(G))i(x)dµ?i (x) = 0, i = 1, 2. (A.6)

Using an argument analogous to the one used by Dentcheva and Ruszczynski (2003), we can associate

with each measure µ?i a function p?i : [0, 1]→ R,

p?1(x) =


´ 1−ε
x

µ?1([τ, 1− ε])dτ, x < 1− ε

0, x ≥ 1− ε,

p?2(x) =

0, x < ε´ x
ε
µ?2([ε, τ ])dτ, x ≥ ε,

where each µ?i is extended to [0, 1] by putting zero mass beyond the interval [ε, 1− ε]. By the properties

of µ?i , the function p?1 is non-increasing and convex, and p?2 is non-decreasing and convex.

We have (by changing the order of integration)

ˆ 1−ε

ε

(ˆ x

0

G(t)dt

)
dµ?1(x) =

ˆ 1

0

(ˆ 1−ε

ε

1{t≤x}dµ
?
1(x)

)
G(t)dt =

ˆ 1

0

µ?1([t, 1− ε])G(t)dt.

Using the definition of p?i , we can write

ˆ 1−ε

ε

(ˆ x

0

G(t)dt

)
dµ?1(x) = −

ˆ 1

0

G(t)dp?1(t).

Similarly, we have ˆ 1−ε

ε

(ˆ 1

x

G(t)dt

)
dµ?2(x) =

ˆ 1

0

G(t)dp?2(t).

Using integration by parts, we get

ˆ 1

0

G(t)dp?i (t) = p?i (1)−
ˆ 1

0

p?i (x)dG(x).

Therefore, the complementary-slackness condition (A.6) becomes

ˆ 1

0

p?i (x)dG(x) =

ˆ 1

0

p?i (x)dF (x), i = 1, 2.

Finally, define p(x) = p?1(x) + p?2(x). Then, p(x) is convex, and obviously satisfies

ˆ 1

0

p(x)dG(x) =

ˆ 1

0

p(x)dF (x). (A.7)
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Finally, condition (A.5) implies that

G ∈ argmaxG

{ˆ 1

0

u(x)dG(x)−
ˆ 1

0

p(x)dG(x)

}
. (A.8)

We can always add a constant to p without changing any of it properties. Because of property (A.8), we

can normalize p so that condition (3.1) holds. That is, p ≥ u and

supp(G) ⊆ {x ∈ [0, 1] : u(x) = p(x)}. (A.9)

Therefore, for the perturbed problem, we have shown that there exists a convex p : [0, 1] → R such that

conditions (A.7) and (A.9) both hold.

Step 2. In this step, we show that we can take the limit of the perturbed problems from Step 1, and obtain

a solution to the original (unperturbed) problem (still maintaining the assumption that u is continuous).

Consider a sequence of problems (A.1) - (A.3) defined by taking ε = 1/n for n = 1, 2, . . .. We obtain a

sequence (Gn, pn) of pairs satisfying conditions (A.7), (A.9), as well as (A.2) and (A.3).

We will first show a simplified version of the proof using the following assumption.

Assumption 1. The sequence of functions (pn) converges uniformly on [0, 1] to some convex function p.

In Appendix A.13, we present a full version of the proof without Assumption 1. This adds technical

complications because the sequence pn can potentially explode near the endpoints of the interval [0, 1].

In Appendix A.13, we show that we can still establish the result by appropriately modifying the functions

pn, and using the special structure of the problem.

Under Assumption 1, we have a well defined limit p of the sequence pn. The sequence (Gn), seen

as a sequence of probability measures, lives in a compact set (in the weak? topology). Because the

space of measures is metrizable, compactness is equivalent to sequential compactness, and thus we can

choose a converging subsequence. Without loss of generality, Gn converges in the weak? topology to some

distribution G ∈ ∆([0, 1]).

We have thus defined the limiting pair (G, p). We want to prove that (G, p) satisfies conditions

(3.1)–(3.3) on [0, 1].

First, as n → ∞, conditions (A.2) and (A.3) imply that F is a mean-preserving spread of G on the

entire interval [0, 1]. This establishes condition (3.3).

Second, we note that18

supp(G) ⊆ lim sup
n
{supp(Gn)}.

Given that condition (A.9) holds for each n, and because pn converges to p,

lim sup
n
{supp(Gn)} ⊆ lim sup

n
{x ∈ [0, 1] : u(x) = pn(x)} ⊆ {x ∈ [0, 1] : u(x) = p(x)}.

18The lim sup of a sequence of sets An is defined as

lim sup
n

An = {x : ∃(xn)n s.t. xn ∈ An, ∀n, and xn → x}.
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We conclude that

supp(G) ⊆ {x ∈ [0, 1] : u(x) = p(x)}, (A.10)

establishing condition (3.1).

Third, we will show that (3.2) holds. We will argue that
´ 1

0
pn(x)dGn(x)→

´ 1

0
p(x)dG(x). To see this,

note that ˆ 1

0

pndGn −
ˆ 1

0

pdG =

ˆ 1

0

(pn − p)dGn −
ˆ 1

0

p(dG− dGn).

The second integral converges to zero by definition of convergence of Gn to G in the weak? topology. For

the first integral, we have ˆ 1

0

(pn − p)dGn ≤ sup
x∈[0, 1]

{|pn(x)− p(x)|}

which converges to zero because pn converges to p uniformly on [0, 1], by Assumption 1. Similarly, we

have

lim
n

ˆ 1

0

pndF =

ˆ 1

0

pdF.

Combining these two results with condition (A.7), we get

ˆ 1

0

p(x)dF (x) =

ˆ 1

0

p(x)dG(x),

which is what we wanted to prove.

This finishes the proof of Step 2, i.e., we have shown that for a continuous u conditions (3.1) - (3.3)

hold with (G, p). By Theorem 1, G is the optimal solution.

Step 3. We now prove Theorem 2 without the additional assumption that u is continuous. As stated in

the regularity assumption (Definition 1), u has finitely many one-sided jump discontinuities at y1, ..., yk ∈
(0, 1).

First, we construct a continuous approximation of u. Fix ε > 0. We only modify the function u in an

ε-neighborhood of each yi. For small enough ε, these neighborhoods are disjoint. Take any i = 1, ..., k,

and suppose without loss of generality that limy↑yi u(y) < u(yi) = limy↓yi u(y). We denote by ūε the

continuous function constructed by replacing u in each such neighborhood [yi − ε, yi]
19 with an affine

majorant described above.

Because ūε is a continuous function with a bounded slope, by Steps 1 and 2, there exists an optimal

distribution Gε and a Lagrange multiplier pε such that (Gε, pε) satisfies conditions (3.1)–(3.3).20

Lemma 1. The sequence pε constructed by taking ε = 1/n and n→∞ has a subsequence that converges

to some convex continuous p uniformly on [0, 1].

Proof. See Appendix A.13.

The lemma gives us a limit p of the sequence pε. By the same argument as in the first step of the proof,

a subsequence of solutions Gε as ε→ 0 also converges to some distribution G ∈ ∆([0, 1]).

19Or [yi, yi + ε] if the function u “jumps down”, that is, its value is locally lower to the right of yi.
20Note that we only need ūε to have a bounded slope for a fixed ε. We do not claim that the slope is bounded uniformly

in ε.
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The last step of the proof is to show that (G, p) satisfy conditions (3.1)–(3.3). This is immediate by the

same arguments as used in the first step of the proof, and the fact that u and ūε coincide on the support

of Gε for small enough ε.21

A.3 Proof of Proposition 1

To prove the first part, let G be an optimal solution to problem (2.1), and let p be the supporting price

function (whose existence follows from Theorem 2). Let p? be the solution to (3.7). We have

0
(1)

≥
ˆ 1

0

(u(x)− p?(x))dG(x)
(2)
=

ˆ 1

0

p(x)dG(x)−
ˆ 1

0

p?(x)dG(x) (A.11)

(3)
=

ˆ 1

0

p(x)dF (x)−
ˆ 1

0

p?(x)dG(x)
(4)

≥
ˆ 1

0

p(x)dF (x)−
ˆ 1

0

p?(x)dF (x)
(5)

≥ 0, (A.12)

where (1) follows from the fact that p? ≥ u, (2) and (3) follow from the fact that (G, p) satisfy conditions

(3.1) - (3.3), (4) follows from convexity of p? and the fact that F is a MPS of G, and (5) follows from the

fact that p? solves (3.7). The above sequence of inequalities must be satisfied with equality which yields

immediately that p? is a supporting price function for G.

To prove the converse part, it is enough to use the same sequence of inequalities: If (G, p) satisfy (3.1)

- (3.3), then all inequalities except for (5) hold for any feasible function q = p?. We get that

ˆ 1

0

p(x)dF (x)−
ˆ 1

0

q(x)dF (x) ≤ 0

for any feasible q, and thus p solves (3.7).

A.4 Receiver has two actions

A simple example where our methods can be applied is when the Receiver chooses one of two actions.

Suppose that the Receiver takes the Sender-preferred action if and only if her posterior mean is greater

than or equal to x0 (so that indifferences are broken in Sender’s favor). We normalize Sender’s utility

to 0 and 1 for the two actions. This example can be solved by other methods (see both Gentzkow and

Kamenica, 2015 and Ivanov, 2015).

Proposition 8. Assume that F has no atoms. Let u be the non-decreasing step function

u(x) =

0 if 0 ≤ x < x0

1 if x0 ≤ x ≤ 1
.

If EX ≥ x0, then the optimal mechanism reveals nothing. If EX < x0, then the optimal mechanism reveals

whether x is below or above x?, where x? satisfies E[X|X ≥ x?] = x0.

Proof. If EX ≥ x0, the objective function u is superdifferentiable at EX, so by Corollary 1, it is optimal

to reveal nothing.

21Formally, this follows from the fact that pε have a uniformly bounded slope, as shown in the proof of Lemma 1.
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Figure 13: Two-action case

Now assume EX < x0. Let x? be defined by E[X|X ≥ x?] = x0. Consider the piece-wise affine p given

by

p(x) =

0 0 ≤ x < x?

x− x∗

x0 − x∗
x? ≤ x ≤ 1

,

and the cdf G given by

G(x) =


0 0 ≤ x < E[X|X < x?]

F (x?) E[X|X < x?] ≤ x < x0

1 x0 ≤ x ≤ 1

.

The function p is convex by construction. Condition (3.1) holds because u and p coincide for x ≤ x? and

x = x0. Condition (3.2) is satisfied because p is piece-wise affine, and the conditional means of F and G

are equal in both regions, by construction. By the way we defined G, F is a mean-preserving spread of G,

which verifies condition (3.3). Thus, by Theorem 1, G is optimal.

A.5 Proof of Proposition 2

Lemma 2. If (G, p) satisfy conditions (3.2), (3.3), and p is convex and continuous, then

ˆ 1

0

(ˆ x

0

F (t)dt−
ˆ x

0

G(t)dt

)
dp′(x) = 0, (A.13)

interpreted as a Riemann-Stieltjes integral with respect to the measure induced by the non-decreasing func-

tion p′.

Proof. Because p is convex, it is absolutely continuous in the interior of the domain, and continuous at
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the endpoints by assumption. We can use integration by parts for the Riemann-Stieltjes integral:

ˆ 1

0

p(x)dG(x) = [p(x)G(x)]
1
0 −
ˆ 1

0

G(x)dp(x) = p(1)−
ˆ 1

0

p′(x)G(x)dx,

where the second equality uses the fact that dp(x) = p′(x)dx by absolute continuity of p. Next, we have

ˆ 1

0

p′(x)G(x)dx =

ˆ 1

0

p′(x)d

(ˆ x

0

G(t)dt

)
,

and we can use integration by parts for the Riemann-Stieltjes integral again to obtain

ˆ 1

0

p′(x)G(x)dx =

[
p′(x)

(ˆ x

0

G(t)dt

)]1

0

−
ˆ 1

0

(ˆ x

0

G(t)dt

)
dp′(x)

= p′(1)

(ˆ 1

0

G(t)dt

)
−
ˆ 1

0

(ˆ x

0

G(t)dt

)
dp′(x).

Because G was arbitrary, the same transformations are true for G = F , and hence condition (3.2) is

equivalent to

p′(1)

(ˆ 1

0

G(t)dt

)
−
ˆ 1

0

(ˆ x

0

G(t)dt

)
dp′(x) = p′(1)

(ˆ 1

0

F (t)dt

)
−
ˆ 1

0

(ˆ x

0

F (t)dt

)
dp′(x).

By condition (3.3), F and G have the same mean, and thus

p′(1)

(ˆ 1

0

G(t)dt

)
= p′(1)

(ˆ 1

0

F (t)dt

)
which ends the proof.

By condition (3.3), F is a mean-preserving spread of G which implies that G second-order stochastically

dominates F . Thus, ˆ x

0

F (t)dt ≥
ˆ x

0

G(t)dt, ∀x ∈ [0, 1]. (A.14)

Because p is convex, p′ is non-decreasing, and thus p′ induces a positive measure. Therefore, condition

(A.13) is satisfied if and only if
´ x

0
F (t)dt =

´ x
0
G(t)dt for p′-almost all x ∈ [0, 1]. That is, the equality has

to hold on every set that has positive measure under p′, in particular for each x at which there is a jump

in p′, and for every interval on which p is strictly convex. We conclude that:

1.
´ x

0
F (t)dt =

´ x
0
G(t)dt in every interval [a, b] ⊂ [0, 1] in which p is strictly convex;

2. p is affine in every interval [a, b] ⊂ [0, 1] such that
´ t

0
F (x)dx >

´ t
0
G(x)dx for all t ∈ [a, b];

3.
´ x

0
F (t)dt =

´ x
0
G(t)dt for each x at which p has a jump in the first derivative.

To strengthen the conclusion of points 1 and 3 above, we prove the following lemma.

Lemma 3. If x ∈ (0, 1) is such that
´ x

0
F (t)dt =

´ x
0
G(t)dt, then F (x) = G(x).

Proof. We will prove the contrapositive: if F (x) 6= G(x) for some x ∈ (0, 1), then
´ x

0
F (t)dt 6=

´ x
0
G(t)dt.
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Fix x ∈ (0, 1) and first suppose that F (x) < G(x). Since F and G are right-continuous, there exists

a z > x such that F (t) < G(t) for every t ∈ (x, z). Then, since
´ z

0
F (t)dt ≥

´ z
0
G(t)dt holds by equation

(A.14), we have

ˆ x

0

F (t)dt =

ˆ z

0

F (t)dt−
ˆ z

x

F (t)dt >

ˆ z

0

G(t)dt−
ˆ z

x

G(t)dt =

ˆ x

0

G(t)dt.

If instead F (x) > G(x), since G is nondecreasing and F has full support and no atoms, there exists a

w < x such that F (t) > G(t) for all t ∈ (w, x). Then

ˆ x

0

F (t)dt =

ˆ w

0

F (t)dt+

ˆ x

w

F (t)dt >

ˆ w

0

G(t)dt+

ˆ x

w

G(t)dt =

ˆ x

0

G(t)dt.

By Lemma 3, F (x) = G(x) in every interval in which p is strictly convex, and for every x at which p

has a jump in the first derivative.

Take any maximal interval [a, b] in which p is affine (that is, p is not affine on any other [c, d] which

contains [a, b]). By maximality, we must have F (a) = G(a), F (b) = G(b), and
´ b
a
F (t)dt =

´ b
a
G(t)dt as

we would otherwise violate the observation in the previous paragraph. Moreover, there exists x0 ∈ [a, b]

such that u(x0) = p(x0) because otherwise, by condition (3.1), the function G would be constant on [a, b]

(while F is strictly increasing because the distribution has full support).

Now, take any interval [a, b] where p is strictly convex. Then, F (x) = G(x) for all x ∈ [a, b], and

because F has full support, [a, b] ⊆ supp(G). Because G and p satisfy condition (3.1), we must have

u(x) = p(x) for all x ∈ [a, b].

Suppose that p(x) > u(x) in some interval [a, b]. Because F has full support, the function
´ x

0
F (t)dt

is strictly convex. Because G satisfies condition (3.1), it is not supported in [a, b], and thus
´ x

0
G(t)dt is

affine on [a, b]. Using inequality (A.14), we conclude that
´ x

0
F (t)dt and

´ x
0
G(t)dt coincide at at most one

point in (a, b), call it z?. From condition 2 above, we obtain that p is affine in (a, z?) and (z?, b). Thus,

whenever p(x) > u(x) in some interval, p(x) is piece-wise affine with at most one kink in that interval.

We can now recursively define the partition 0 = x0 < x1 < ... < xn+1 = 1. Given xi, we define

xi+1 = inf{α > xi : p is affine on [xi, α] or p is strictly convex on [xi, α]}.

We first prove that xi+1 > xi and that the partition is finite. By regularity of u, the set {x : p(x) > u(x)}
is a finite union of intervals. In every such interval, as proven above, p is piece-wise affine with at most

one kink. The complement set {x : p(x) = u(x)} is also a finite union of intervals, and u is convex in each

such interval. By regularity, each such interval can be decomposed into a finite union of intervals in which

p is either affine or strictly convex.22 Thus, there are finitely many candidate points for any xi, and thus

such a partition is well defined and finite.

By construction, the partition is the coarsest one such that u is either affine or strictly convex on each

interval of the partition. Because each element of the partition is a maximal interval in which p is either

strictly convex or affine, the properties listed in Proposition 2 follow directly from above observations.

22Proof: suppose it is not possible, i.e. there are infinitely many intervals in which u is alternately affine and strictly
convex. Then, we can define a piece-wise affine and globally convex function v which coincides with u exactly in intervals
where u is affine. This would violate regularity.
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A.6 Proof of Theorem 3

Let u be regular (Definition 1) and affine-closed (Definition 2), and let F be continuous. By Theorem

2, we can find G and p that satisfy conditions (3.1)–(3.3). From G we will build an optimal distribution

of posterior means H which is induced by a monotone partitional signal. By Proposition 2, there are

finitely many intervals [xi, xi+1] in which p is either strictly convex or affine. On each of these intervals

[a, b] = [xi, xi+1] we will verify that

supp(H) ∩ [a, b] ⊆ {x ∈ [a, b] : u(x) = p(x)}, (A.15)

ˆ b

a

p(x)dH(x) =

ˆ b

a

p(x)dF (x), and (A.16)

F |[a,b] is a mean-preserving spread of H|[a,b]. (A.17)

If (A.15), (A.16), and (A.17) hold on each interval, then for (H, p), (3.1), (3.2) and (3.3) hold on [0, 1].

By Theorem 1, this is sufficient to verify optimality of H.

Consider each interval [a, b] = [xi, xi+1] in turn, beginning with [0, x1]. If [a, b] is an interval where

p is strictly convex, set H(x) = G(x) for all x ∈ [a, b]. By Proposition 2, u = p on [a, b], hence (A.15)

is satisfied. Since F = G = H on [a, b], (A.16) and (A.17) are automatically satisfied. The signal which

induces H is full revelation of X on [a, b], which is part of a monotone partitional signal (Definition 5).

If instead p is affine on [a, b], let y = E[X|a ≤ X ≤ b]. By Proposition 2, the mean of G conditional

on [a, b] is equal to y. If u(y) = p(y), modify G by specifying that H puts all mass in the interval [a, b]

on y (pooling in the interval [a, b]). Formally, H(x) = G(a) for x ∈ [a, y) and H(x) = G(b) for x ∈ [y, b].

Condition (A.15) holds because u(y) = p(y). Condition (A.16) holds because p is affine on [a, b] and H and

F have the same conditional mean. Finally, condition (A.17) holds because F |[a,b] is a mean-preserving

spread of G|[a,b], G|[a,b] is a mean-preserving spread of H|[a,b], and the mean-preserving spread relationship

is transitive.

The remaining case is when p is affine on [a, b] and u(y) < p(y). Let A := {x ∈ [a, b] : u(x) = p(x)}.
The support of G restricted to [a, b] is a subset of A, by (3.1). Since u is upper semi-continuous and u ≤ p,
A is a closed subset of [a, b]. Since y 6∈ A by assumption and y is the conditional mean of G on [a, b], the

support of G (hence its superset A) must contain points in [a, y) and in (y, b]. Write A as the disjoint

union A = AL tAR, where AL ⊂ [a, y) and AR ⊂ (y, b] are closed and nonempty.

Next we show that affine-closure implies that at least one of AL and AR is a closed interval that extends

to a or b respectively; that is, either AL = [a, c], or AR = [d, b], or both, for some c, d ∈ (0, 1). Suppose

neither were true. Write the closed set AL as a union of disjoint closed intervals, choose any one of these

intervals that has its left endpoint not equal to a, and define α as its left endpoint. Similarly we can

define β < b as the right endpoint of an interval of AR. By construction, the definition of affine-closure

applies to u and p at α and β: they belong to A, so u(α) = p(α) and u(β) = p(β); p ≥ u at all points

in [a, b]; and p > u in a left-neighborhood and right-neighborhood of α and β respectively. Thus, by

affine-closure, u(x) = p(x) for all α ≤ x ≤ β. In particular this holds for x = y, which contradicts our

previous assumption that u(y) < p(y).

From now on suppose that AL = [a, c] for some c < y; the symmetric case AR = [d, b] follows from the

same argument. We now construct H on the interval [a, b]. Let δ := minAR, and define ω as the smallest
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solution to E[X|ω ≤ X ≤ b] = δ. The solution exists because E[X|ω ≤ X ≤ b], as a function of ω, is

nondecreasing, continuous (F has no mass points), and ranges from y < δ at ω = a to b > δ at ω = b.

Now consider the following monotone partition: [a, ω], (ω, b]. The H that it induces has a mass point

at γ := E[X|a ≤ X ≤ ω] and one at δ. As it is a monotone partition of F , it satisfies (A.17).

Finally, we check that (3.1) holds. The required equality u(δ) = p(δ) holds by construction, so the only

thing left is to check that u(γ) = p(γ). Since AL = [a, c], it is enough to check that γ ≤ c. Suppose instead

that γ > c. We will derive a contradiction by showing that this implies that F is not a mean-preserving

spread of G in the interval [a, b], contradicting Proposition 2.

When γ > c, all mass that G puts to the left of y must be to the left of γ. We show that this

mass is smaller than what H puts: G(γ) < H(γ). If instead G(γ) ≥ H(γ), then G(z) ≥ H(z) for all

z ∈ [a, ω] with the inequality strict for at least some z < γ, since H(a) = G(a) (because H = G at all

endpoints of the convex regions to the left of a, by construction) and both G and H are constant for

z ∈ (γ, ω]. Therefore
´ ω
a
G(z)dz >

´ ω
a
H(z)dz. The right-hand side evaluates to

´ ω
a
H(z)dz = F (ω)(ω −

γ) = ωF (ω) −
´ ω
a
zdF (z) =

´ ω
a
F (z)dz, where the last equality is integration by parts. Putting things

together,
´ ω
a
G(z)dz >

´ ω
a
F (z)dz, which contradicts the assumption that F is a mean-preserving spread

of G.

Next, note that
´ b
ω
H(z)dz = F (ω)(δ − ω) + (b − δ) = bF (b) − ωF (ω) − (1 − F (ω))δ =

´ b
ω
F (z)dz,

where the last equality is again integration by parts. Furthermore, 1 = H(z) ≥ G(z) for z ∈ [δ, b], and

H(z) > G(z) for z ∈ [γ, δ) (because both G and H are constant on [γ, δ) and H(γ) > G(γ)). Therefore´ b
ω
G(z)dz <

´ b
ω
H(z)dz =

´ b
ω
F (z)dz. Since F is a mean-preserving spread of G,

´ ω
a
G(z)dz ≤

´ ω
0
F (z)dz.

But then
´ b

0
G(z)dz =

´ ω
a
G(z)dz +

´ b
ω
G(z)dz <

´ ω
a
F (z)dz +

´ b
ω
F (z)dz =

´ b
a
F (z)dz, contradicting the

assumption that F is a mean-preserving spread of G (which implies
´ b
a
G(z)dz =

´ b
0
F (z)dz).

This concludes the proof that (3.1) holds on [a, b]. Note that H is well-defined, as by construction

H = G on all endpoints of the intervals [a, b]. We conclude that H is optimal, and by construction it is

induced by a monotone partitional signal.

We now prove the converse. If u is not affine-closed, then there exist x, y ∈ (0, 1), x < y, and an affine

function q such that: u(x) = q(x), u(y) = q(y); q(z) ≥ u(z) for all z ∈ (x, y); there exists w ∈ (x, y) such

that q(w) > u(w); and there exists ε > 0 such that q(z) > u(z) for all z ∈ (x− ε, x) ∪ (y, y + ε), where ε

is chosen so that x− ε > 0 and y + ε < 1.

Consider the distribution F that puts weight α > 0 uniformly on [x − ε, x − ε/2] and weight 1 − α
uniformly on [y + ε/2, y + ε], where α is chosen so that E[F ] = w, where q(w) > u(w) holds. That is, let

F have density

f(z) =



0 if z < x− ε
2α
ε if x− ε ≤ z ≤ x− ε

2

0 if x− ε
2 < z < y + ε

2

2(1−α)
ε if y + ε

2 ≤ z ≤ y + ε

0 if z > y + ε

.

Given such a prior F , the Sender cannot do strictly better than choosing a distribution of posterior means

G that has support limited to x and y. To see this, first note that the mean-preserving spread condition

implies that supp G ⊆ [x − ε, y + ε]. Suppose the Sender’s utility were q. Since q is linear, all feasible

distributions of posterior means are optimal; in particular, so is one with support equal to {x, y}. Since
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q ≥ u on [x − ε, y + ε], this gives an upper bound to the utility attainable under u. The upper bound is

attained if and only if all mass is concentrated at points where q(z) = u(z). In particular, the distribution

G(z) =


0 if 0 ≤ z < x

α if x ≤ z < y

1 if y ≤ z ≤ 1

is feasible and attains the upper bound.

To conclude it is enough to show that no monotone partitional signal achieves the upper bound. First

consider the trivial partition that pools all realizations at the prior mean w = E[F ]. By our choice of

α, u(w) < q(w), hence this is not optimal. Next consider monotone partitions with two or more signals.

Since all prior mass is concentrated on [x− ε, x− ε/2] and [y + ε/2, y + ε], at least one of the intervals in

the partition has a conditional posterior mean in [x − ε, x − ε/2] or [y + ε/2, y + ε]. But by construction

u(z) < q(z) on such intervals. Hence the monotone partition is not optimal. We conclude that no monotone

partition is optimal for such a prior F .

A.7 Material for Section 6.2 and proof of Proposition 4

We first present the parametrization of preferences that underlies Figures 9 and 10. Assume that the

investor has CRRA utility v with Arrow-Pratt measure of relative risk aversion η > 0 over final wealth

z; that is, v(z) = z1−η−1
1−η if η 6= 1, and v(z) = ln z if η = 1. Given a posterior belief x > 1

2 that the long

position is profitable (x < 1
2 is symmetric), the investor chooses the level of investment y > 0 in the risky

asset that maximizes xv(w+ y− c) + (1− x)v(w− y− c), or decides not to invest (y = 0) and receives the

outside option v(w). Let y?(x) be the optimal investment as a function of belief x.

Assume the analyst’s payoff is proportional to the amount invested. Then (omitting the irrelevant

proportionality constant) u(x) ≡ y?(x) can be shown to be

u(x) =



−(w − c) 1−( 1−x
x )

1
η

1+( 1−x
x )

1
η

if x ≤ x0

0 if x0 < x < 1− x0

(w − c) 1−( 1−x
x )

1
η

1+( 1−x
x )

1
η

if x ≥ 1− x0

where x0 is the threshold belief at which the investor is indifferent between investing or not: v(w) =

x0v(w+ y?(x0)− c) + (1− x0)v(w− y?(x0)− c). If η < 1 (less risk averse than log utility) u(x) is strictly

concave in [0, x0] and [1 − x0, 1]; if η > 1 (more risk averse than log utility) then u(x) is strictly convex

in the same regions. For all η > 0, u is affine-closed. By Theorem 3, there exists a monotone partitional

optimal signal. Since the multiplier p(x) must be convex, hence continuous, p(x) cannot coincide with

u(x) in a neighborhood of the discontinuities x0 and 1− x0. Thus, by Proposition 2, x0 and 1− x0 must

be contained in pooling regions. These insights lead us to consider the multipliers depicted in Figure 9
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and Figure 10. Define w(x) as

w(x) =
(
−1{x≤ 1

2}
+ 1{x> 1

2}

)
(w − c)

1−
(

1−x
x

) 1
η

1 +
(

1−x
x

) 1
η

.

This coincides with u for x ≤ x0 and x ≥ 1− x0. For η < 1, w is strictly concave on
[
0, 1

2

]
and

[
1
2 , 1
]
. For

η > 1, w is (globally) strictly convex.

Proof of Proposition 4. In the concave case (η < 1), define y = E[X|X ≤ 1
2 ] and consider the piece-wise

linear, convex function

p(x) =

u′(y)(x− y) + u(y) if x ≤ 1
2

u′(1− y)(x− (1− y)) + u(1− y) if x > 1
2

By construction, p is tangent to u at y and 1− y, and has a kink at 1
2 . Furthermore, since and u coincide

at y and 1− y, and w is concave, p(x) ≥ w(x) ≥ u(x) for all x ∈ [0, 1] and p(x) > u(x) for x 6∈ {y, 1− y}.
Consider the distribution of posterior means

G(x) =


0 if x < y

1
2 if y ≤ x < 1− y

1 if x ≥ 1− y

that puts atoms of size F
(

1
2

)
= 1

2 on y = E[X|X ≤ 1
2 ] and on 1−y = E[X|X ≥ 1

2 ]. Conditions (3.1)–(3.3)

are satisfied, hence, by Theorem 1, G is optimal.

Now consider the convex case (η > 1). Consider the set of lines passing through (x0, u(x0)) with

slopes m that satisfy u(x0)−u(0)
x0−0 < m < u′(x0). Since u(x) ≤ w(x) and w is strictly convex, each such

line intersects u(x) at two points besides x0: a(m) ∈ (0, x0) and b(m) ∈ (x0,
1
2 ). Functions a(·) and b(·)

are continuous and strictly increasing. Let t(m) = E[X|X ∈ [a(m), b(m)]]. Since F is continuous and

strictly increasing by assumption, t(·) is also continuous and strictly increasing. By assumption (6.1),

t
(
u(x0)−u(0)

x0−0

)
< E

[
X|X ∈

[
0, 1

2

]]
< x0. By construction, t(u′(x0)) = E[X|X ∈ [x0, b(u

′(x0))]] > x0. By

the intermediate value theorem, there exists a (unique) m? such that t(m?) = x0. Define a? := a(m?),

b? := b(m?). Now consider the following p and G:

p(x) =



u(x) if x < a?

m?(x− a?) + u(a?) if a? ≤ x < b?

u(x) if b? ≤ x < 1− b?

−m?(x− (1− a?)) + u(1− a?) if 1− b? ≤ x < 1− a?

u(x) if x ≥ 1− a?

,
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G(x) =



F (x) if x < a?

F (a?) + 1{x≥x0}(F (b?)− F (a?)) if a? ≤ x < b?

F (b?) + 1{x≥ 1
2}(F (1− b?)− F (b?)) if b? ≤ x < 1− b?

F (1− b?) + 1{x≥1−x0}(F (1− a?)− F (1− b?)) if 1− b? ≤ x < 1− a?

F (x) if x ≥ 1− a?

.

G reveals x when x < a? or x ≥ 1 − a?. The remaining intervals [a?, b?], (b?, 1 − b?), and [1 − b?, 1 − a?]
are pooled at x0, 1

2 and 1 − x0, respectively. Conditions (3.1)–(3.3) are satisfied by construction, hence,

by Theorem 1, G is optimal.

A.8 Proof of Theorem 4

Because the proof is similar to the proof of Theorem 1 and Theorem 2, we omit the details and only

highlight the differences.

First, verifying that H is unimprovable amounts to checking that H is a solution to the following

optimization problem, for each Sender i:

max
G

ˆ 1

0

ui(x)dG(x) (A.18)

subject to

F is a mean-preserving spread of G; (A.19)

G is a mean-preserving spread of H, (A.20)

where the second condition reflects the constraint that Sender i can only disclose additional information

but cannot “hide” the information revealed by other Senders. We can write down the analog of Theorem 1

for this problem: If there exist convex functions pi and qi, and a distribution G such that (A.19) – (A.20)

hold, and

supp(G) ⊆ argmaxx∈[0, 1]{ui(x)− pi(x) + qi(x)} (A.21)

ˆ 1

0

pi(x)dG(x) =

ˆ 1

0

pi(x)dF (x), (A.22)

ˆ 1

0

qi(x)dG(x) =

ˆ 1

0

qi(x)dH(x), (A.23)

then G is optimal for the problem (A.18) – (A.20). The additional price function qi and the additional

constraint (A.23) are a consequence of adding the constraint that G is a mean-preserving spread of H. This

result is proven in the same way as Theorem 1. (Condition (A.21) is equivalent to assuming pi(x)−qi(x) ≥
ui(x) and supp(G) ⊆ {x ∈ [0, 1] : ui(x) = pi(x)− qi(x)}.)

With this verification tool, we can write down the conditions under which H is an optimal solution to

the problem (A.18) – (A.20):

supp(H) ⊆ argmaxx∈[0, 1]{ui(x)− pi(x) + qi(x)} (A.24)
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ˆ 1

0

pi(x)dH(x) =

ˆ 1

0

pi(x)dF (x), (A.25)

where condition (A.23) is omitted because it holds vacuously. Because qi only appears in condition (A.24),

we can define ûi = ui + qi which leads to a function that is a convex translation of ui. This proves the

first part of Theorem 4: If for every i the conditions of Theorem 4 hold, we can define qi = ûi − ui,

and conditions (A.24) – (A.25) will hold. Condition (A.24) is equivalent to (7.1) because prices can be

normalized appropriately.

To prove the second part, it is enough to prove existence of convex functions qi and pi such that

conditions (A.21) – (A.23) hold. This can be done analogously as in the proof of Theorem 2, where the

additional function qi is derived in the same way as the function pi from the additional constraint (A.20).

There are two differences in the proof. First, the generalized Slater condition (A.4) is not guaranteed to

hold for the problem in which G is “sandwiched” between H and F in the mean-preserving spread order.

This can be circumvented by studying a slightly different perturbation than in the proof of Theorem 2:

The mean-preserving spread condition is only imposed on [ε, 1− ε] and additionally G is only required to

be a mean-preserving spread of Hε (instead of H) with the property that Hε converges to H in the weak?

topology as ε→ 0, and F is a strict mean-preserving spread of Hε on [ε, 1− ε] in the sense that

ˆ x

0

F (t)dt >

ˆ x

0

Hε(t)dt, ∀x ∈ [ε, 1− ε],

ˆ 1

x

Hε(t)dt >

ˆ 1

x

F (t)dt, ∀x ∈ [ε, 1− ε].

Such an approximation Hε exists because the support of F contains 0 and 1 by assumption. The perturbed

problem satisfies the Slater condition (A.4), and the rest of the proof is fully analogous.

Second, it is not possible to take the final step in the proof of Theorem 2, i.e. extend the conclusion to

discontinuous utility functions. This is because we cannot guarantee that the sequence of prices for the

perturbed problem will have a converging subsequence in this case. The existence of constraint (A.23)

might force the prices for the perturbed problem to have an arbitrarily high slope, and thus the sequence

might diverge. This is not just a problem with the proof. The conclusion of Theorem 4 is false in the case of

discontinuous utility functions. To see this, take an example with two Senders, in which the utility function

u1 of the first Sender is strictly convex, and the utility function u2 of the second Sender has a discontinuity

in the interior of [0, 1]. The unique equilibrium distribution corresponds to full disclosure, so if the result

were true, there would exist a convex translation û2 of u2 such that û2 would coincide with some convex

p2 on [0, 1] (this is necessary to support a fully-revealing solution). But this is impossible because any û2

would still have a discontinuity in the interior of [0, 1], and every convex function is continuous on the

interior of its domain. Therefore, Theorem 4 is only established for the case of regular, continuous utility

functions.
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A.9 Proof of Proposition 5

Lemma 4. Suppose that ûi is a convex translation of ui. If pi is a convex function satisfying all conditions

of Theorem 4 (with some distribution H), then

pi(x) =


ûi(x) x ≤ ai
ûi(ai) + (x− ai)ûi(bi) ai ≤ x ≤ bi
ûi(x) bi ≤ x

,

for some ai ≤ ci ≤ bi.

Proof. Because the prior mean is smaller than ci, ûi has to coincide with pi for at least some points in

[0, ci), by condition (7.1). Because ûi is convex on [0, ci] (because ui is convex), the only possibility is

that ûi coincides with pi on some subinterval [d, ai] of [0, ci] (this follows from the properties proved in

Proposition 2). Moreover, we must have d = 0 as otherwise the mean-preserving spread condition would

be violated on [0, d], again by Proposition 2. By the same reasoning, if ûi coincides with pi anywhere in

the interval (ci, 1], then it has to coincide on a subinterval of the form [bi, 1]. Finally, by Proposition 2

and due to the shape of ûi, the price function has to be affine in the remaining interval [ai, bi] because it

can touch ûi only at ci, if at all.

Lemma 4 restricts the set of distributions that can emerge as optimal for any optimization problem

of Sender i. Because ûi is strictly convex on [0, ai], by Proposition 2, the state is fully revealed in that

interval. In the interval [ai, ci], there can only be an atom in the posterior distribution at ci (if pi touches

ûi at ci). Finally, because ûi may be affine on [ci, 1], the posterior distribution can have mass anywhere

in this interval, as long as the mean-preserving spread condition is satisfied. This leads us to consider the

following class Hi of posterior distributions for Sender i: any H ∈ Hi reveals the state fully on [0, ai]

for some ai ≤ ci, has no mass on (ai, ci), and satisfies EH [X|X ≥ ai] = EF [X|X ≥ ai]. By the above

reasoning, the class Hi contains all candidate distributions that may be unimprovable for Sender i. We

will show that indeed each H ∈ Hi is unimprovable for i.

To this end, given any H ∈ Hi, we will construct a ûi and pi to satisfy conditions (7.1) – (7.3). The

function ûi is constructed by adding a wedge function w(x) = α(x − ci)+ to ui. Consider a pi function

that coincides with ui on [0, ai], and is affine on [ai, 1], tangent to ui at ci. Such a function exists because

ui has bounded slope and is not convex (there is a kink at ci). Then, choose α in the wedge function w

so that ûi = ui + w coincides with pi on [ci, 1]. It is now a routine check that all conditions (7.1) – (7.3)

hold.

In the final step, in order to find the set of equilibrium distributions, we only have to take the intersection

of Hi over i ∈ N . This intersection is equal to H1 because these sets are nested (by assumption, ci is

highest for Sender 1).

Thus, the set of equilibrium distributions contains exactly H such that H is feasible, fully reveals the

state below some a ≤ c1, and has no mass on (a, c1).

The least informative equilibrium H is thus as follows: a is chosen so that the conditional mean of

F conditional on X ≥ a is equal to c1. Then, H reveals the state below a and puts a mass point at c1.

Hence, this is just the individually-optimal persuasion scheme of Sender 1.
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A.10 Proof of Proposition 7.2

Fix α > −1. Consider the price function p(x, y) = max{p12(x, y), p1(x, y), p2(x, y), p∅(x, y)}, where

p12(x, y), p1(x, y), p2(x, y), p∅(x, y) are affine functions that are defined next. Let A12 ⊂ [0, 1]2 be the

region where p(x, y) = p12(x, y), and define A1, A2, and A∅ similarly.

Let p12(x, y) = ax+a′y+a′′. The region A12 will be the set of realizations of X that (pooled together)

induce the agent to take both actions. Thus, it is natural to conjecture that this region will have its center

of mass at (β, β), and that, by symmetry, a = a′. Thus, p12(β, β) = 2aβ+a′′ = 2+α = u(β, β). Therefore

p12(x, y) = a(x+ y) + 2 + α− 2aβ.

Similarly, p1(x, y) is chosen to determine the region A1, the set of realizations of X that induce the

agent to take action 1 only. Since we need p ≥ u and p = u at some point in the region, p1(x, y) must

have the form p1(x, y) = bx+ b′. For p1 = u to hold at the threshold β, p1(β, y) = bβ + b′ = 1. Therefore

p1(x, y) = bx+ 1− bβ. By symmetry, p2(x, y) = by + 1− bβ. Finally, p∅(x, y) ≡ 0.

There are two free parameters: a and b. We now impose the condition that the affine regions of p(x, y)

are such that p = u at their centers of mass.

Let s(a, b) :=

´
A12

xdF (x,y)´
A12

dF (x,y)
be the x component of the center of mass of A12. (By symmetry of F and

A12, s(a, b) is also the y component.) Similarly, define t(a, b) :=

´
A1

xdF (x,y)´
A1

dF (x,y)
to be the x component of the

center of mass of region A1. By symmetry, it is also the y component of the center of mass of A2.

To apply Theorem 1b, we need to find parameters a and b such that s(a, b) = β and t(a, b) = β. It is

in general difficult to write s(a, b) and t(a, b) explicitly, even for simple choices of the joint distribution F .

However, it is sufficient for our purposes to prove that the system of equations admits a solution.

Lemma 5. There exist a∗ and b∗ such that s(a∗, b∗) = β and t(a∗, b∗) = β.

The proof is in Appendix A.13.3; a sketch follows. When the slope b of p1 is very small, the center of

mass of A1 falls below x = β; conversely, when the slope is very large, the center of mass falls above x = β.

A similar pattern holds for slope a and the center of mass of A12. The centers of mass are continuous

in the slopes. By the Poincaré-Miranda theorem (a multidimensional version of the Intermediate Value

Theorem which is equivalent to Brouwer’s Fixed Point Theorem), we show that there exist slopes a∗ and

b∗ such that s(a∗, b∗) = β and t(a∗, b∗) = β.

The assumptions on β and F (beyond symmetry) are only used to prove the Lemma, and are thus not

necessary assumptions for this approach.

We can now apply Theorem 1b. Let Y be the random variable on [0, 1]2 that is built from X as follows:

for every realization of X, if X ∈ A ∈ {A12, A1, A2, A∅}, then Y is equal to the center of mass of A. (With

probability 1, X belongs to exactly one of the four sets.) Then, by construction, Y = E[X|Y ] holds. Let G

be the distribution of Y . By Theorem 3.4.2(a) in Müller and Stoyan (2002), Y = E[X|Y ] implies G ≤cx F .

Thus, condition (7.6) is satisfied.

By the choice of a∗ and b∗, the centers of mass of A12, A1, A2 are located respectively at (β, β), (β, y)

for some y ∈ (0, β), and (x, β) for some x ∈ (0, β), points at which p = u by construction of p. Lastly,

p ≡ u on A∅, if present. Thus, condition (7.4) is satisfied.

Next, note that

ˆ
A12

p(x, y)dF (x, y) =

ˆ
A12

p12(x, y)dF (x, y) =

ˆ
A12

p12(x, y)dG(x, y)
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because p12 is affine on A12. The argument for the other regions is identical. Putting them together verifies

condition (7.5).

Finally, as the envelope of hyperplanes, p is convex, and p ≥ u by construction. Therefore Theorem 1b

applies, and G is optimal.

A.11 Proof of Claim 1

If τ? is the optimal solution for some prior µ0, and P : ∆(Θ)→ R is outer-convex and P ≥ V , then

ˆ
∆(Θ)

V (µ)dτ?(µ)
(1)

≤
ˆ

∆(Θ)

P (µ)dτ?(µ)
(2)

≤
ˆ

∆(Θ)

ˆ
Θ

P (δθ)dµ(θ)dτ?(µ)

(3)
=

ˆ
Θ

P (δθ)

ˆ
∆(Θ)

µ(θ)dτ?(µ)dθ
(4)
=

ˆ
Θ

P (δθ)dµ0(θ), (A.26)

where (1) follows from V ≤ P , (2) from the fact that P is outer-convex, (3) is by change of the order of

integration, and (4) follows from condition (8.5). On the other hand,

ˆ
∆(Θ)

V (µ)dτ?(µ) =

ˆ
∆(Θ)

P ?(µ)dτ?(µ) =

ˆ
Θ

P ?(δθ)dµ0(θ),

where the first equality follows from condition (8.3) and the second from condition (8.4).

Moreover, co(V )(µ0) =
´

∆(Θ)
V (µ)dτ?(µ) follows from the results of Kamenica and Gentzkow (2011).

A.12 Proof of Proposition 7

In the proof, we normalize ē = 1 to simplify exposition (the proof is identical for a general ē).

First, note that the function v(x, y) has an “edge” of non-differentiability described by the equation

y = ȳ ≡ 2 (using the normalization ē = 1). Let hγ(x, y) denote a family of hyperplanes, parametrized by

γ > 0, that coincide with v(x, y) along y = ȳ:

hγ(x, y) = (1− β) [x+ γ(y − ȳ)] .

When γ > 0, hγ(x, y) lies strictly above v(x, y) for y > ȳ.

Second, we find all points (x, y) with y < ȳ at which v(x, y) and hγ(x, y) coincide. By a simple

calculation, these points are described by the equation x = 2γ. Moreover, v(x, y) ≥ hγ(x, y) when y < ȳ

and x ≤ 2γ, and v(x, y) ≤ hγ(x, y) otherwise.

Third, we construct the price function. Define

pγ(x, y) = max {v(x, y), hγ(x, y)} =

v(x, y) x ≤ 2γ, y ≤ ȳ

hγ(x, y) otherwise
.

Let x? be defined as in the statement of Proposition 7. We choose γ? so that v and hγ intersect exactly

at x = x?, that is, we set γ? = x?/2. Finally, define P (µ) ≡ pγ?(EµX, EµuA(βX)). From now on, we fix

γ = γ? and drop it from all the subscripts.
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Fourth, it is immediate that P (µ) ≥ V (µ) for all µ because p(x, y) ≥ v(x, y) for all (x, y). The

following result is the most technical step in the proof, and hence we relegate its proof to the Technical

Appendix A.13.

Lemma 6. The function P is outer-convex.

Proof. See Appendix A.13.4.

Fifth, we verify conditions (8.3) – (8.5) of Theorem 5 with τ? defined as in Proposition 7. Formally,

τ?
(
F |[x?, x̄]

)
= 1− F (x?),

and

τ?({δx}x∈A) =

ˆ
A

dF (x),

for any measurable A ⊂ [x, x?].

Condition (8.3) follows because along the curve (x, uA(βx)), for x ∈ [x, x?], by definition, p and

v coincide. Moreover, at µ = F |[x?, x̄], we have y = EF |[x?, x̄]
[uA(βX)] = ȳ, by the choice of x?, so

P (µ) = V (µ).

Condition (8.4) follows because on (x, uA(βx)) for x ∈ [x, x?], the posterior τ? and the prior F induce

the same distribution. Hence, it is enough to prove that

ˆ x̄

x?
P (δx)dF (x) = P

(
F |[x?, x̄]

)
(1− F (x?)).

This holds because P is affine on the relevant domain.

Finally, condition (8.5) holds trivially by the choice of τ?.

A.13 Technical Appendix

In this Appendix, we fill the gaps in the proof of Theorem 2, prove Lemma 5 used in the proof of Proposition

6, and prove Lemma 6 used in the proof of Proposition 7.

A.13.1 Step 2 without Assumption 1

For a fixed ε, consider a pair (G, p) from Step 1 of the proof of Theorem 2 from Appendix A.2. We can

assume without loss of generality that p is non-negative.23 We first show how to modify the function p to

ensure that its slope is uniformly bounded (this will be important in the next step of the proof). When

we consider the sequence pn, the slope of pn could diverge to infinity close to the endpoints, upsetting

uniform convergence. We show in the lemma below that we can control the slope by using the properties

of the pair (G, p) established in Step 1.

23The optimization problem is unaffected by adding a constant to the utility function u, so we can assume without loss of
generality that u(x) ≥ 0 for all x ∈ [0, 1], and then non-negativity of p follows from p ≥ u.
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Lemma 7. Consider problem (A.1) - (A.3) for a fixed ε > 0. There exists a convex function q which

satisfies (A.7) and (A.9) and has a slope uniformly bounded by

max

{
c´ x

0
(x− x)dF (x)

,
c´ 1

x̄
(x− x̄)dF (x)

}
,

where c is a constant that does not depend on ε, and

x := inf{x ∈ [0, 1] : u(x) = p(x)},

x̄ := sup{x ∈ [0, 1] : u(x) = p(x)}.

Proof. In the case when either x = 0 or x̄ = 1, there is nothing to prove because the bound is equal to ∞.

We assume otherwise, and focus on showing the bound by c/
´ x

0
(x − x)dF (x) on [0, 1/2] (an analogous

argument establishes the other bound on [1/2, 1]).

Recall that u is assumed continuous, and that by the regularity assumption u has a slope uniformly

bounded by M <∞. This also implies that u is bounded: ‖u‖∞ <∞. Because p is convex, p ≥ u, and p

coincides with u at x and x̄, p inherits the bound M on the slope in the interval [x, x̄].

Next, note that condition (A.9) is not affected by modifying p(x) on [0, x) or (x̄, 1]. Because G puts

no mass on [0, x) ∪ (x̄, 1] by property (A.9), the value of the integral
´ 1

0
p(x)dG(x) is also unaffected.

Therefore, we can replace p on [0, x) by some other function q and preserve conditions (A.7) and (A.9) as

long as ˆ x

0

p(x)dF (x) =

ˆ x

0

q(x)dF (x). (A.27)

Consider a function q that coincides with p on [x, 1], and is affine otherwise: q(x) = p(x) + ∆(x− x), for

some ∆ > 0, for x ∈ [0, x]. Choose ∆ to satisfy equation (A.27). Because p is convex, it is clear that such

∆ has to be larger than the slope of p at x, so q remains convex. Moreover, we have

‖u‖∞ ≥
ˆ 1

0

u(x)dG(x)
(1)
=

ˆ 1

0

p(x)dG(x)
(2)
=

ˆ 1

0

p(x)dF (x)
(3)

≥
ˆ x

0

p(x)dF (x)

(4)
=

ˆ x

0

q(x)dF (x)
(5)

≥ ∆

ˆ x

0

(x− x)dF (x), (A.28)

where (1) follows from (A.9), (2) follows from (A.7), (3) follows from the fact that p is non-negative, and

(4) and (5) from the definition of q. We conclude that

∆ ≤ ‖u‖∞´ x
0

(x− x)dF (x)
.

Therefore, the slope of q is bounded by
max{‖u‖∞, M}´ x

0
(x− x)dF (x)

.

This finishes the proof.24

24We have not verified that such q satisfies q ≥ u on [0, x]. However, this does not pose a problem for the remainder of
the proof because we will only need the bound derived in the lemma to hold for x sufficiently close to 0. If q does not satisfy
q ≥ u, we can always replace x with some smaller x′ > 0, and the rest of the proof remains the same.
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We come back to the proof of Step 2 without Assumption 1. Recall that we have a sequence (Gn, pn)

satisfying (A.2), (A.3), (A.7) and (A.9), with each pn convex. Moreover, by Lemma 7, we can modify the

functions pn so that pn has a slope bounded uniformly by

max

{
c´ xn

0
(xn − x)dF (x)

,
c´ 1

x̄n
(x− x̄n)dF (x)

}
,

where c does not depend on n, and xn and x̄n are defined by Lemma 7:

xn := inf{x ∈ [0, 1] : u(x) = pn(x)},

x̄n := sup{x ∈ [0, 1] : u(x) = pn(x)}.

We can assume without loss (by passing to a subsequence if necessary) that both xn and x̄n converge to

some x and x̄, respectively. If x > 0 and x̄ < 1, then, for sufficiently high n, all pn have a slope uniformly

bounded by

max

 c´ x/2
0

(x/2− x)dF (x)
,

c´ 1

(x̄+1)/2
(x− (x̄+ 1)/2)dF (x)

 ,

using the assumption that 0 and 1 are in the support of F . Consider the opposite case when either (i)

x = 0 or (ii) x̄ = 1. Then, for a sufficiently small δ > 0, all pn have a uniformly bounded slope on [δ, 1−δ],
for sufficiently high n. This is because each pn ≥ u, pn is convex, and thus pn has a slope bounded by the

slope of u (which is bounded by M by the regularity assumption).

We can thus conclude that for every (small enough) δ > 0, pn have a uniformly bounded slope on

[δ, 1 − δ]. Thus, the sequence of functions pn is uniformly bounded on [δ, 1 − δ]. This follows from the

fact that each pn is convex, has a uniformly bounded slope, and the domain [δ, 1 − δ] is compact. A

uniformly bounded sequence of convex functions is Lipshitz continuous with a common Lipshitz constant

L. In particular, the sequence (pn)n is equi-continuous on [δ, 1−δ]. By the Arzela-Ascoli Theorem, pn has

a uniformly converging subsequence on every interval [δ, 1− δ]. Therefore, a subsequence of pn converges

to some continuous convex p on (0, 1), uniformly on each compact subset of (0, 1). We can complete the

definition of p by specifying that p is continuous at 0 and at 1 (the properties of p at any single point do

not play a role).

Just as in Step 2 of the proof from Appendix A.2, we prove that Gn converges in the weak? topology

to some G ∈ ∆([0, 1]), and that the limiting pair (G, p) satisfies conditions (3.1) and (3.3). A separate

argument is needed to show condition (3.2) because now we only have convergence of pn to p uniformly

on every compact subset of (0, 1) but not necessarily on [0, 1].

Define, for each n, the smallest convex function qn that coincides with pn on [xn, x̄n]. Note that on

[xn, x̄n] the slope of pn is bounded by the slope of u (which is bounded by M by assumption), so qn can be

constructed by linearly extending pn beyond [xn, x̄n] with the slope equal to the relevant derivative of pn at

the endpoints xn and x̄n. Obviously, we have pn ≥ qn. By construction, qn has a uniformly bounded slope

on [0, 1] (bounded by M), so by the same argument as above, it has a uniformly convergent subsequence

to some function q. Therefore (indexing the subsequence by n again),
´ 1

0
qn(x)dGn(x) →

´ 1

0
q(x)dG(x).
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To see this, note that

ˆ 1

0

qndGn −
ˆ 1

0

qdG =

ˆ 1

0

(qn − q)dGn −
ˆ 1

0

q(dG− dGn);

The second integral converges to zero by the definition of convergence of Gn to G in the weak? topology.

For the first integral, we have

ˆ 1

0

(qn − q)dGn ≤ sup
x∈[0, 1]

{|qn(x)− q(x)|}

which converges to zero because qn converges to q uniformly on [0, 1].

We have

ˆ 1

0

p(x)dF (x)
(1)

≥
ˆ 1

0

p(x)dG(x)
(2)

≥
ˆ 1

0

q(x)dG(x) = lim
n

ˆ 1

0

qn(x)dGn(x)

(3)
= lim

n

ˆ 1

0

pn(x)dGn(x)
(4)
= lim

n

ˆ 1

0

pn(x)dF (x)
(5)

≥ lim
n

ˆ 1−δ

δ

pn(x)dF (x)

(6)
=

ˆ 1−δ

δ

p(x)dF (x)
(7)

≥
ˆ 1

0

p(x)dF (x)− ε(δ), (A.29)

where (1) follows because p is convex and F is a mean-preserving spread of G, (2) follows because the

inequality pn(x) ≥ qn(x) is preserved in the limit, (3) follows because, by definition, pn and qn coincide on

the support of Gn, (4) follows from (A.7), (5) follows for any δ > 0 from non-negativity of pn, (6) follows

because pn converges to p uniformly on every compact subset of (0, 1), and (7) is true for some ε(δ) which

goes to zero as δ → 0. Because δ (and hence ε(δ)) can be arbitrarily small, we must have:

ˆ 1

0

p(x)dF (x) =

ˆ 1

0

p(x)dG(x),

which is what we wanted to prove. This finishes the proof of Step 2, i.e. we have shown conditions (3.1) -

(3.3) for the case of a continuous u (and hence the optimality of G, by Theorem 1).

A.13.2 Proof of Lemma 1

First, we note that Lemma 2 stated in the proof of Proposition 2 holds even without the additional

assumptions on F made in Proposition 2 (the proof of Lemma 2 does not use these assumptions). Thus,

we can use properties 1 – 3 of (G, p) stated in Appendix A.5 after Lemma 2 even though Proposition 2

itself may not hold without the additional assumptions on F .

We prove that the functions in the sequence pε are uniformly bounded. Suppose not. Then there

exists a subsequence of pε (which we take to be the original sequence to simplify notation) such that

limε→0 ‖pε‖∞ =∞. By the assumption that u has a uniformly bounded slope in the intervals where it is

continuous, the only possibility is that pε has an affine piece whose slope diverges to infinity and which

touches u at one of the points of discontinuity yi. Because there are finitely many points of discontinuity

of u, we can choose a divergent subsequence (which we take to be the sequence itself) in which each pε

touches u with an affine piece at the same discontinuity point yi.
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Using the properties of u and ūε, we claim that for small enough ε the affine piece of pε that touches

u at yi must have the following properties: (i) pε is affine on [δε, 1] for some δε ≤ yi, and is not affine on

any interval that strictly contains [δε, 1], and (ii) pε touches ūε only at yi in the interval [yi, 1], and (iii)

δε → yi as ε→ 0. Note that condition (i) takes the above form because we have assumed that the function

u jumps up at yi (if it jumped down, we would work with the interval [0, δε] instead of [δε, 1]).

We argue why properties (i) - (iii) hold. Properties (i) and (ii) hold because, by the choice of the

sequence pε, the affine piece of pε that touches u at yi has a divergent slope. Because u has a uniformly

bounded slope whenever it is continuous, and only finitely many (interior) discontinuities, for small enough

ε, pε cannot touch ūε to the right of yi. Because 1 belongs to the support of F ,
´ 1

0
F (x)dx =

´ 1

0
G(x)dx,

and condition (3.1) implies that G has no mass to the left of yi, it follows that
´ t

0
F (x)dx >

´ t
0
G(x)dx for

all t > yi. Property 2 of (G, p) stated in Appendix A.5 then implies that pε is affine to the right of yi.

We can define δε ≤ yi by requiring that [δε, 1] is the maximal interval in which pε is affine (no interval on

which pε is affine strictly contains it). Property (iii) then follows from the fact that the slope of the affine

piece of pε on [δε, 1] goes to plus infinity but pε touches ūε at yi.

We are ready to obtain a contradiction. By the properties 1 – 3 of (G, p) stated in Appendix A.5, and

the definition of δε, F is a mean-preserving spread of Gε in the interval [δε, 1]. Because pε does not touch

u to the right of yi, Gε must put all mass on [δε, yi], and hence it has to be that E[X|X ≥ δε] ∈ [δε, yi]. In

the limit as ε→ 0, we obtain E[X|X ≥ yi] = yi which is a contradiction because 1 belongs to the support

of F and yi < 1.

The obtained contradiction implies that pε are uniformly bounded. Because each pε is convex, the family

is equi-continuous, and, as before, we can use the Arzelà-Ascoli theorem to conclude that a subsequence

of pε converges to some convex continuous p.

A.13.3 Proof of Lemma 5

First, we state a multidimensional generalization of the Intermediate Value Theorem (equivalent to Brouwer’s

Fixed Point Theorem).

Theorem (Poincaré–Miranda). Let fi, i = 1, . . . , n, be continuous functions of n variables on [−1, 1]n.

Assume that fi < 0 when xi = −1 and fi > 0 when xi = +1, for all i. Then there exists a point in [−1, 1]n

where all fi are simultaneously 0.

Consider the rectangular region (a, b) ∈ [ 1+α
β ,M ]× [0,M ].25 M � 0 is determined as follows. A1 is a

subset of the set {(x, y) : x ≥ β − δb} (because (x, y) ∈ A1 requires p1(x, y) = bx+ 1− bβ ≥ p∅(x, y) = 0),

where δb can be made arbitrarily small by taking b → ∞. Furthermore, for sufficiently large b, for any

a, A1 contains a region of positive mass where x ≥ β (in particular, it contains the region {(x, y) : x ≥
β + εb, x + y ≤ 2β − εb}, where εb → 0 as b → ∞, because for all (x, y) in that set p1(x, y) → ∞ and

p12(x, y) < 2 + α). Since F is continuous, the mass contained in the region {(x, y) : β − δb ≤ x < β} goes

to 0 as δb → 0. Thus, there exists an Mb such that for all N ≥ Mb, t(a,N) > β, for all a. Next, note

that if a ≥ Mb, A12 contains the square {(x, y) : x ≥ β, y ≥ β}, which has positive mass. Also, A12 is a

subset of the triangle {(x, y) : x+ y ≥ 2β− δa}, where δa can be made arbitrarily small by taking a→∞.

Finally, A12 is symmetric so its center of mass lies on the x = y diagonal. As a → ∞ the mass of the

25When b = 0, regions A1 and A2 merge, since p1 ≡ p2 ≡ 1. This can be ruled out by imposing a small but positive lower
bound on b, but it is more convenient instead to allow b = 0 and separate A1 and A2 along the x = y diagonal.
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region {(x, y) : 2β − δa ≤ x+ y < 2β} goes to 0. Thus, there exists an M ≥Mb such that s(M, b) > β, for

all b ≤M .

First, we check that s and t are defined on [ 1+α
β ,M ]× [0,M ]. It is enough to show that a neighborhood

of (β, β) is contained in A12, and likewise of (β, 0) ∈ A1, respectively; as long as the regions are non-empty,

s and t are well-defined. First, for any a and b, p12(β, β) = 2 + α > 1, while p1(β, β) = p2(β, β) = 1.

Therefore p12(β, β) = p(β, β) and since these are affine planes, some neighborhood of (β, β) is contained

in A12. Second, for any b, p12(β, 0) = 2 + α − aβ. Hence, for all a > 1+α
β , p12(β, 0) ≤ 1 = p1(β, 0) hold.

As before, some neighborhood of (β, 0) is contained in A1 (and, by symmetry, the same holds for (0, β)

and A2). Finally, if a = 1+α
β , A1 may have empty interior; however, as shown in the next paragraph, we

can extend t by continuity.

Next, we check that s and t are continuous in (a, b). We first prove that the integral
´
A12(a,b)

xf(x, y)dxdy

is continuous in (a, b), using continuity along sequences. Let (an, bn) → (a, b). The sequence of indicator

functions 1A12(an,bn) converges pointwise to 1A12(a,b) almost everywhere (with respect to the Lebesgue mea-

sure on [0, 1]2). To see this, note that 1A12(an,bn)(x, y) = 1 if and only if p12(x, y; an, bn) ≥ p1(x, y; an, bn),

p12(x, y; an, bn) ≥ p2(x, y; an, bn), and p12(x, y; an, bn) ≥ p∅(x, y; an, bn) (and is 0 otherwise). For any

(x, y) ∈ [0, 1]2, the inequalities are linear, in particular continuous, in (an, bn). If at least one fails for

(a, b), then it also fails for (an, bn) for sufficiently large n. If they hold strictly for (a, b), then they hold

weakly in the limit of (an, bn). Finally, if all hold at (a, b), at least one with equality, then pointwise

convergence cannot be guaranteed; however, the set of (x, y) where this occurs has measure zero, since

the inequalities are linear in (x, y). Having established pointwise convergence almost everywhere, note

that xf(x, y)1A12(an,bn) is bounded above by max f(x, y), which we assumed to be finite. Then, by the

dominated convergence theorem,

ˆ
A12(an,bn)

xf(x, y)dxdy =

ˆ
[0,1]2

xf(x, y)1A12(an,bn)dxdy →
ˆ

[0,1]2
xf(x, y)1A12(a,b)dxdy

which proves continuity of
´
A12(an,bn)

xf(x, y)dxdy. The argument for
´
A12(a,b)

f(x, y)dxdy is identical.

Therefore s(a, b), the ratio of the two preceding integrals, is continuous as long as the denominator does

not go to 0. This can only occur on the boundary of [ 1+α
β ,M ] × [0,M ], specifically if a = 1+α

β ; since s

is bounded (to [0, 1]), it can be extended by continuity on the boundary. This establishes continuity of s;

the argument for t is identical.

We will now verify that s(a, b) − β and t(a, b) − β satisfy the required inequalities on the sides of the

rectangular region. By rescaling, the Poincaré–Miranda Theorem guarantees the existence of (a∗, b∗) such

that s(a∗, b∗) = β and t(a∗, b∗) = β.

When b = 0, for any a ∈ [ 1+α
β ,M ], A1 is equal to set {(x, y) ∈ [0, 1]2 : x ≥ y, x + y ≤ s}, for some

s < β which depends on a. By assumption (1) then, t(a, 0) < β for all a ∈ [ 1+α
β ,M ].

When a = 1+α
β , there are two cases to consider. When b ≤ 1+α

β (so that p12 ≥ p1 for all x ≥ β), the

set A12 contains {(x, y) : x+ y ≥ β}, and adding points with x+ y < β only lowers its center of mass. By

assumption (2) then, s( 1+α
β , b) < β for b ≤ 1+α

β .

When instead b > 1+α
β , the set A12 can be decomposed into two sets: one with (x, y) that satisfy

x + y ≤ 2β, and one where x + y ≥ 2β. The former set contains {(x, y) : x + y ≥ αβ
1+α , x ≤ β, y ≤ β} ⊆

{(x, y) : x+ y ≥ β, x ≤ β, y ≤ β}. The latter set is contained by {(x, y) : x+ y ≥ 2β}, trivially. Note that

adding points to the former lowers the center of mass, and so does removing points from the latter. Thus,
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by assumption (3), and putting together with the previous paragraph, we conclude that s( 1+α
β , b) < β for

all b ∈ [0,M ].

Finally, by choice of M , s(M, b) > β for all b ∈ [0,M ] and t(a,M) > β for all a ∈ [ 1+α
β ,M ].

We conclude that there exist a∗ and b∗ such that s(a∗, b∗) = β and t(a∗, b∗) = β.

A.13.4 Proof of Lemma 6

Take an arbitrary µ ∈ ∆Θ. To simplify the formulas, with slight abuse of notation, we will write uA(x)

instead of uA(βx). The outer-convexity condition is

ˆ x̄

x

p(x, uA(x))dµ(x) ≥ p(EµX, EµuA(X)).

Using the structure of the function p, we can write the left hand side as

ˆ x̄

x

h(x, uA(x))dµ(x) +

ˆ x?

x

[v(x, uA(x))− h(x, uA(x))] dµ(x).

Because h is affine, we have

ˆ x̄

x

h(x, uA(x))dµ(x) = h(EµX, EµuA(X)),

so it is enough to prove that

ˆ x?

x

[v(x, uA(x))− h(x, uA(x))] dµ(x) ≥ p(EµX, EµuA(X))− h(EµX, EµuA(X)).

In the case EµX ≥ x?, the right hand side is equal to zero, so the inequality holds trivially (the integrand

on the left hand side is non-negative). From now on, we consider the case EµX < x?. Using the fact that

v(x, y)− h(x, y) = (1− β)(y − 2)(x− x?)/2, we can write the inequality as

ˆ x?

x

(uA(x)− 2)(x− x?)dµ(x) ≥ (EµuA(X)− 2)(EµX − x?).

Rewriting EµuA(X) on the right hand side as
´ x?
x
uA(x)dµ(x)+

´ x̄
x?
uA(x)dµ(x), and rearranging, we obtain

ˆ x?

x

uA(x)(x− EµX)dµ(x)− 2

ˆ x?

x

(x− x?)dµ(x) ≥
ˆ x̄

x?
uA(x)(EµX − x?)dµ(x)− 2(EµX − x?).

Simplifying further, we obtain

ˆ x?

x

uA(x)(x− EµX)dµ(x)− 2µ(x?)Eµ[X|X ≤ x?] + 2x?µ(x?) ≥ (x? − EµX)

[
2−
ˆ x̄

x?
uA(x)dµ(x)

]
.

49



The function uA(x)(x−EµX) is convex in x (because uA(x)x is convex, and uA(x) is concave), so we can

use Jensen’s Inequality to conclude that it is sufficient to prove that

µ(x?)uA(Eµ[X|X ≤ x?]) (Eµ[X|X ≤ x?]− EµX)− 2µ(x?)Eµ[X|X ≤ x?] + 2x?µ(x?)

≥ (x? − EµX)

[
2−
ˆ x̄

x?
uA(x)dµ(x)

]
. (A.30)

The left hand side of (A.30) can be written as

µ(x?)2(x? − EµX) + µ(x?) (EµX − Eµ[X|X ≤ x?]) (2− uA(Eµ[X|X ≤ x?]))

Simplifying further, we can rewrite (A.30) as

µ(x?) (EµX − Eµ[X|X ≤ x?]) (2− uA(Eµ[X|X ≤ x?])) ≥ (x?−EµX)(1−µ(x?)) [2− Eµ [uA(X)|X ≥ x?]] .

Next, we use the inequality

uA(Eµ[X|X ≤ x?]) ≤ uA(x?) ≤ Eµ [uA(X)|X ≥ x?]

to notice that it is enough to prove that

µ(x?) (EµX − Eµ[X|X ≤ x?]) ≥ (x? − EµX)(1− µ(x?)).

Simplifying

µ(x?) (x? − Eµ[X|X ≤ x?]) ≥ (x? − EµX).

Finally, we can use the fact that

EµX = µ(x?)Eµ[X|X ≤ x?] + (1− µ(x?))Eµ[X|X ≥ x?]

to rewrite the above inequality (after some simplifications) as

Eµ[X|X ≥ x?] ≥ x?.

The last inequality is obviously true which ends the proof.
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