Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework†

Timur Islamoglu, Ken-ichi Otake, Peng Li, Cassandra T. Buru, Aaron W. Peters, Isil Akpinar, Sergio J. Garibaya and Omar K. Farha*ab

In the last two decades, an ever growing interest in metal–organic frameworks (MOFs) have brought about the establishment of accurate structure–property relationships. Primarily suffering from missing linker and/or node defects, Zr6-based MOFs can have polymorphs, structures with the identical linker and node but different connectivity, which can create multiple phases in a sample that complicates the characterization. Here, we report the synthesis of phase-pure NU-1000, a mesoporous Zr6-based MOF that typically contains a significant secondary phase within the individual crystallites. Large biomolecules and smaller inorganic molecules have been installed in NU-1000 as probes to verify the near elimination of the microporous secondary-phase. Obtaining structurally homogeneous MOFs will assist the design of new materials with distinct structural features.

Introduction

In the last two decades, an ever growing interest in metal–organic frameworks (MOFs), crystalline materials capable of achieving permanent porosity composed of metal ions/clusters spaced with organic linkers, has led to the realization of thousands of MOFs with unique properties.1 Among the reported MOFs, hexanuclear zirconium-based MOFs possess high chemical and thermal stability, making them extremely popular candidates for multiple applications ranging from gas storage to catalysis.2,3 Since the discovery of the first Zr6 cluster-based-MOF, UiO-66,4 many Zr6-based MOFs with larger pore dimensions and geometries have been designed.5,6 Reticular chemistry7 allows control over the connectivity (i.e. the number of ligands coordinated to each Zr6 cluster) of the inorganic nodes ranging from 12-, 10-, 8-, or 6-connected, resulting in a variety of topologies including, but not limited to csq,8,9 scu,10–12 f tw,13–15 spn,16 reo17 and fcu.4 While structural irregularities or defects in these MOFs often indicate missing linkers and/or nodes, inhomogeneity is also possible if multiple phases can be constructed from identical secondary building units (SBUs, i.e. ligands and metal clusters).18–20 These phases are called polymorphs, and the resulting MOFs differ in crystal packing arrangements and/or conformations.2,17 For example, the combination of a tetrapodal porphyrin linker and a Zr6 cluster gives rise to at least six unique MOFs.12,15,21 The different connectivity of the various topologies manifests in distinctive physical (i.e. pore/aperture size/shape, morphology of crystal) and chemical (i.e. different number of reactive –OH sites) properties. Having multiple topologies in one sample significantly complicates the characterization and computational modelling of a material, where only phase-pure structures typically are considered. Therefore, to establish strong structure–property relationships, the studied MOFs should be close to phase-pure. Although using an excess amount of a monodentate modulator during the synthesis often suffices for isolating many phase-pure Zr-MOFs,22–27 some systems require more effort to avoid polymorphs.

NU-1000, a Zr6-based MOF composed of Zr6(μ3-OH)4(μ3-O)4(OH)4(OH2)4 nodes and tetratopic pyrene-based linkers [TBAPy4+, 1,3,6,8-tetakis(p-benzoate)pyrene] with csq topology, possesses mesoporous 31 Å hexagonal channels and microporous 12 Å triangular channels with orthogonal 10 × 8 Å windows connecting the channels (Fig. 1A).8,28 Due to its high surface area, chemical and thermal stability, hierarchical pore structure and relative ease of scalability, NU-1000 has been heavily investigated for potential applications including catalysis and support materials on which to install additional functionality.29–38 Phase purity in NU-1000 pertains not to the bulk samples, but also to individual crystallites. In a typical synthesis of NU-1000 with benzoic acid as a modulator, NU-901 structural motifs are present in the
middle of the crystallites.\(^8\) NU-901 (Fig. 1B) is a polymorph which crystallizes in the scu net and has higher density compared to the csq net NU-1000 (0.704 vs. 0.486 g cm\(^{-3}\)).\(^39\) Single crystal X-ray diffraction (XRD) analysis revealed extra electron density with approximately 25% occupancy located in the center of the mesoporous channels of NU-1000.\(^8\) Coupled with computational models, this density is attributed to the NU-901 phase. Note, care must be taken to not eliminate the possibility of secondary phases in single crystal X-ray diffraction data by assuming the presence of solvent and using SQUEEZE to remove this electron density. Further evidence of this secondary phase can be seen in scanning electron microscopy (SEM) images (Fig. 2A), where the center of the hexagonal rod-shaped crystal appears “rough”. Interestingly, the rest of the crystals shows six smooth rectangular facets forming the hexagonal rods, implying that secondary phase primarily exists in the center of the crystal where seeding is thought to occur. Several other experiments also confirm the presence of a microporous regime in the center of the crystallites.\(^40,41\)

Both NU-1000 and NU-901 are 8-connected, so the polymorphism arises from the relative alignment of the \(C_2\) axes along the nodes (Fig. 1. Left). Nodes in the MOF with csq topology, NU-1000, are angled 120° to each other whereas in NU-901 with scu topology they are parallel. The alignment of the nodes is dictated by the conformation of adjacent benzoate groups on the TBAPy\(^4\)\(^-\) linkers (Fig. 1. Right). Truhlar and coworkers recently calculated that introducing bulky groups (i.e. \(CF_3\) or tert-butyl) to the TBAPy\(^4\)\(^-\) at the 2- and 7-carbon positions (the carbon atom between two benzoate groups) stabilizes the rotamer present in NU-1000 and precludes the formation of NU-901 phase.\(^42\) While this method could result in phase-pure csq net topology, the linker synthesis would be much more challenging than TBAPy\(^4\)\(^-\) synthesis. As an alternative, Penn and coworkers employed biphenyl-4-carboxylic acid as the modulator instead of benzoic acid to induce a larger steric effect around the node that prevented the formation of microporous NU-901.\(^39\) However, the lengthy modulator can be problematic when applying this method to other systems with channels larger than that of NU-1000. For example, the isoreticular expansion of NU-1000 to NU-1003 enlarges the
Since TFA is much stronger acid (pK_a = 0.3) than benzoic acid (pK_a = 4.2). This suggests that the vast majority of the TFA will be ionized while the majority of benzoic acid will be non-ionized at the reaction conditions (pH = 1.35). Additionally, Lewis acidity of the Zr_6 node would be increased when TFA is coordinated to the node instead of benzoic acid, which translates into stronger ionic Zr–carboxylate bond. The resulting alteration of the coordination equilibrium during the crystal growth process yields nearly phase-pure NU-1000 crystals.

**Results and discussion**

SEM images of NU-1000 crystals synthesized using previously reported method yields crystals with “rough” surfaces in the center (Fig. 2A) while MOF crystals synthesized using TFA as co-modulator (referred as NU-1000-TFA) display hexagonal rods with six undisturbed rectangular facets throughout the crystals (Fig. 2), suggesting the absence of the NU-901 phase. While the crystal morphology of MOFs can yield information regarding the inner-structure of the material, further evidence is required to confirm a MOF’s phase-purity. The N_2 isotherm of NU-1000-TFA exhibits a larger mesoporous step, which translates to larger total pore volume compared to NU-1000 (Fig. 3, Table 1). Brunauer–Emmett–Teller (BET) theory calculations reveal that NU-1000-TFA, NU-1000, and NU-901 have similar surface areas (Table 1). Since NU-901 is a microporous MOF with a similar BET surface area compared to NU-1000, the elimination of NU-901 phase should have a pronounced effect on total pore volume but not on the specific surface area. Additionally, the percent of micropore volume in the samples was reduced from 43 to 34% in NU-1000 to NU-1000-TFA (Table 1), which is consistent with the elimination of the NU-901 phase.

**Table 1** Surface area, micropore and total pore volume of MOFs

<table>
<thead>
<tr>
<th>MOF</th>
<th>BET surface area (m² g⁻¹)</th>
<th>Micro/total pore volume (cm³ g⁻¹)</th>
<th>Micropore volume (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NU-1000</td>
<td>2230</td>
<td>0.544/1.259</td>
<td>43</td>
</tr>
<tr>
<td>NU-1000-TFA</td>
<td>2180</td>
<td>0.466/1.369</td>
<td>34</td>
</tr>
<tr>
<td>NU-901</td>
<td>2100</td>
<td>0.677/0.780</td>
<td>87&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup> Less than 100% micropore volume in NU-901 can be attributed to the defects in the crystal.

Despite the utility of powder X-ray diffraction (PXRD) patterns in determining phase-purity of solids, the diffraction analysis of NU-1000-TFA was complicated because of similar unit cell dimensions of NU-1000 and NU-901, creating overlap of the main diagnostic peaks for these MOFs. Instead, we employed probe molecules to determine if the microporous NU-901 had been eliminated. First, dye (AlexaFluor-647) labeled insulin (insulin647) was installed in NU-1000 and NU-1000-TFA by soaking the MOFs in a protein solution for 1 day. Because of its size (13 Å × 34 Å), insulin easily diffuses through the large channels of NU-1000 while simultaneously requiring much longer incubation times to diffuse through the microporous channels of NU-901. Confocal laser scanning microscopy (CLSM) images revealed a dark spot in the center of the NU-1000 crystals where insulin647 was not able to diffuse, and this inhibited diffusion was attributed to the presence of the microporous NU-901 phase. Contrastingly, a homogeneous distribution of insulin647 was observed throughout NU-1000-TFA (Fig. 4 and S4 and S5†).

The limited diffusion to the center of defective NU-1000 can also be observed when the Keggin-type polyoxometalate (POM), H_3PW_12O_40, an anionic metal oxide cluster composed of W ions bridged by oxygen atoms with ~1 nm diameter, was employed as a probe molecule. Similar to insulin647, the POM’s size encumbers diffusion through the micropores of NU-901. Both NU-1000-TFA and NU-1000 were soaked in a solution of POM for 3 days and then washed thoroughly prior
to energy dispersive X-ray spectroscopy (EDS) analyses. Considering the similar POM loading in both MOFs, the weaker tungsten EDS signal at the center of PW₁₂@NU-1000 crystal suggests lower loading of POM at this location (Fig. 5). On the other hand, PW₁₂@NU-1000-TFA exhibited a more homogenous distribution of tungsten throughout the crystal. Limited diffusion of large probe molecules is not the only technique to support the presence of the microporous secondary phase in the center of the crystal. Installation of molybdenum on the nodes of NU-1000 by atomic layer deposition in MOFs (AIM) results in preferential deposition of molybdenum species in the center of the crystal, as evidenced from the lamda (Λ) shaped Mo EDS line profile (Fig. 6). This is the opposite trend of the observations when larger probes were installed in NU-1000. The molybdenum hexacarbonyl (Mo(CO)₆) precursor is small enough to easily diffuse in the micropores of the NU-901, so preferential exclusion by the secondary-phase should not occur. Since aggregation of precursors under the ALD treatment conditions is stabilized by confinement,⁴⁵ there is preferential growth of molybdenum clusters in the denser microporous region in the center of the crystal. On the other hand, when the secondary-phase is excluded from the center of crystals, uniform distribution of molybdenum species is observed in the case of NU-1000-TFA (Fig. 6).

While the use of probe molecules indirectly proves the prevention of the secondary-phase during the NU-1000-TFA growth, single crystal XRD analysis of large NU-1000-TFA crystals allows for a more quantitative evaluation of phase purity.

Fig. 7 shows the residual electron density maps of NU-1000 and NU-1000-TFA crystals. In NU-1000-TFA, the electron density in the mesopores resulting from the secondary-phase is approximately 6% occupied, dramatically reduced from the 25% occupancy in NU-1000, confirming the improvement in the homogeneity of the crystals.⁸

Given the potential applications of NU-1000 as an atomically ordered heterogeneous catalyst or catalyst support, we have performed a multi-gram synthesis of NU-1000-TFA; the N₂ isotherms, SEM images, and PXRD patterns confirm the purity of the scaled-up batches (Fig. S1–S3†).

Conclusions

In conclusion, using TFA as a co-modulator in NU-1000 synthesis controls the crystal formation and can prevent the formation of NU-901 phase at the early stage of crystallization. We have utilized large biomolecules and inorganic molecules as probes to demonstrate the elimination of secondary-phase formation in NU-1000. Single crystal X-ray diffraction analysis confirmed the significant enhancement in structural homogeneity. We have also demonstrated that the synthesis protocol developed here can be scaled-up easily to obtain multi-gram phase-pure NU-1000, which is crucial for industrial applications. Currently, we are working on understanding the role of TFA as well as exploring the underlying kinetic and thermodynamic mechanism of NU-1000 growth.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

O. K. F. gratefully acknowledges support from Defense Threat Reduction Agency (HDTRA1-18-1-0003) and Army Research Office-STTR (W911SR-17-C-0007). This work made use of the EPIC, Keck-II, and/or SPID facilities of Northwestern University’s NUANCE Center, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.

Notes and references

3 M. Rimoldi, A. J. Howarth, M. R. DeStefano, L. Lin, S. Goswami, P. Li, J. T. Hupp and O. K. Farha, Catalytic


