Precursor and Oxygen Dependence of the Unidirectional, Seeded Growth of CdSe Nanorods

Jonathan D. Doll, Bin Hu, and Fotios Papadimitrakopoulos

ABSTRACT: It was recently shown that, by controlling the O₂ concentration, the seeded-growth of CdSe nanocrystals (NC) can be manipulated to proceed either unidirectionally (from the (0001) facet) or three-dimensionally. In this contribution, we investigate two new Se precursors (i.e., SeO₂ and NaHSe) and compare them with Se obtained from etching of smaller NC seeds. Under anaerobic conditions, both precursors led to successful three-dimensional (3D) NC growth. At high O₂ concentrations, the seeded growth of rods was enhanced by the NaHSe precursor, while impeded by the use of SeO₂. Mechanistic studies showed that the reduction of SeO₂ to Se²⁻ produces an excessive amount of O₂. This leads to rod fragmentation due to etching as well as the production of deep traps that quench their luminescence. These new precursors, along with a heightened understanding of oxygen’s role, expand the synthetic repertoire of the redox-assisted, seeded-growth of CdSe and better position this low temperature (125 °C) methodology toward realizing advanced NC heterostructures.

KEYWORDS: quantum rods, unidirectional, seeded growth, nanocrystals, oxygen

INTRODUCTION

Semiconducting nanocrystals (NCs) have attracted significant attention because of their broad absorbance and narrow emission, as well as their resistance toward photobleaching. This has led to their incorporation in various device configurations, including biosensors, photodetectors, photovoltaics, and LEDs. One of the most intriguing properties of semiconducting NCs is their strong quantum confinement, allowing their band gap to vary over a broad energy range (i.e., from UV to NIR) based on composition and diameter. Consequently, there has been an intense research focus on devising synthetic methods that produce NCs that have both monodisperse size and shape distributions.

Most NC synthetic methods involve a one-pot, hot injection approach, in which the NC precursors are injected into a high-temperature (150–300 °C) mixture of surfactants and coordinating solvents. For such growth, both the nature of the precursors and the coordinating ligands that stabilize the NC suspension determines the morphology of the resulting NCs. In some cases, such coordination agents can be the actual solvent (i.e., 3-amino-1-propanol (APOL)) in which synthesis takes place. Consequently, the main factor controlling the morphology stems from differences in the surface chemistry of the distinct NC facets and their interactions with the coordinating ligands and various passivating agents (i.e., oxygen). Strong interactions between the NC facet and the coordinating ligand typically lead to slower growth-rates from those facets. More recent synthetic approaches involve the use of a QD seed from which new NC morphologies are realized. This class of regrowth is useful for its potential to realize heterojunctions, with important applications for nanostructured devices.

Most types of seeded growth of CdSe involve dispersing QD seeds in a hot (>200 °C) surfactant mixture, followed by the fast addition of growth precursors. Although such a method is effective, there is often polydispersity in the rod diameter, which can lead to varying properties. Another type of seeded growth is the so-called “oriented attachment” mechanism, where QD seeds align along their natural c-axis dipole and fuse to form nanowires (NWs). This method produces high aspect ratio NWs at the expense of challenging length-control.

Recently, our group has pioneered a new approach to seeded growth that exploits the redox chemistry of selenium within 9:1 3-amino-1-propanol (APOL)/water mixtures. At 125 to 135 °C, and in the presence of oxygen, CdSe QDs were shown to grow asymmetrically along their c-axis. Such seeded...
growth is based on the availability of Cd\(^{2+}\) and Se\(^{2-}\) precursors originating from the addition of CdCl\(_2\) and a redox-assisted Ostwald ripening process, respectively (vide infra).\(^{14,15}\) More importantly, 1-D and 3-D growth are controlled by the amount of dissolved O\(_2\) in the growth medium. At high oxygen concentrations, the nonpolar CdSe facets (i.e., (10\(\bar{1}\)0), (01\(\bar{1}\)0), and (11\(\bar{2}\)0)), as well as one of the polar facets (i.e., (000\(\bar{1}\)) become passivated, which results in the unidirectional growth along the 0001 direction.\(^{15}\) When oxygen is removed, 3-D growth occurs due to the absence of a passivating oxide layer.\(^{15}\)

A potential drawback of redox-assisted growth is that the Se-source is produced from the oxidative etching of the smaller QDs in the seed sample, which leads to growth saturation.\(^{15}\) The addition of an external Se source could potentially lead to a more controllable growth, albeit the choice of Se precursor needs to be carefully considered along the narrow design space of the APOL/water growth medium.

In this contribution, we investigate two new Se precursors (i.e., SeO\(_2\) and NaHSe) that do not rely on the oxidative etching of the smaller NCs. Furthermore, we elucidate the interplay of oxygen concentration on the redox-assisted seeded-growth mechanism and show that the aforementioned precursors behave differently depending on the oxygen concentration. Unlike NaHSe that contains the Se precursor in its proper oxidation state (Se\(^{2-}\)) for growth, the SeO\(_2\) precursor requires a reduction step that also produces oxygen. This SeO\(_2\)-generated oxygen, if not taken into account, accelerates etching and competes with seeded growth, leading to rod fragmentation and deep trap formation. These two precursors expand the synthetic repertoire of the redox-assisted seeded-growth mechanism and provide the necessary tools and understanding for subsequent use of this method for low-temperature growth of various NC heterostructures.\(^{15}\)

EXPERIMENTAL SECTION

Chemicals

Trietylphosphine (TOP, 90%), trietylphosphine oxide (TOPO, 90%), and 3-amino-1-propanol (APOL, 99%, water content <0.4%), SeH\(_2\) (99.999%), CdO (99.99+%), n-octylamine (≥99%), SeO\(_2\) (99.999%), NaBH\(_4\) (98%), and CdCl\(_2\) (99.99%) were purchased from Aldrich and used without further purification. Hexasulfosphoric (HPA) was purchased from Alfa Aesar and was used without further purification.

Synthesis of CdSe Seeds

CdSe QDs were synthesized at high temperatures using a CdO precursor, as reported elsewhere (ref 27). Briefly, a mixture of TOPO (4 g), HPA (0.25 g), and CdO (50 mg) were degassed in a three-neck flask equipped with a condenser, a thermometer, and a rubber septum and heated under vacuum at 160 °C for 30 min until a clear solution was formed. The reaction vessel was purged with nitrogen, and the temperature was increased to 300 °C. Subsequently, a solution of Se (50 mg) in TOP (3.0 mL) was quickly injected into the reaction vessel while the heating mantle was removed. This causes the temperature of the reaction mixture to rapidly drop to ~250 °C and show a characteristic color change that is indicative of CdSe nanocrystal formation. Subsequently, the heating was restored to a temperature between 260 and 300 °C in order to grow CdSe QDs of the desired size. The reaction was stopped by decreasing the temperature and exposure to air.

Seeded Growth of CdSe Using SeO\(_2\) Precursor

CdSe nanocrystals were purified by precipitation with methanol, followed by centrifugation and decantation of the supernatant. APOL (2 mL) was added to the precipitated CdSe nanocrystals and heated at 70 °C for 1 h until a clear solution was formed. Acetone was added to precipitate the APOL-capped QDs and remove the TOP, TOPO, and HPA. Following centrifugation and decantation, the QDs were redispersed in APOL (1 mL) to form a stock solution of CdSe NCs.

Aliquots of the stock CdSe seeds were diluted in APOL such that the OD at the first absorption maximum was 4.0. Solutions (1 M) of CdCl\(_2\) and SeO\(_2\) were added such that the final Cd and Se concentrations were 10 μM in order to provide a Cd- and Se-source for growth, respectively. Water was then added to bring the final APOL/water ratio to 9:1 v/v, which was found to be important for growth.\(^{14,15,17,18}\) Four samples were prepared as follows: the first was left open to the atmosphere, giving it a steady-state oxygen concentration; the second was sealed under atmospheric conditions, making the oxygen concentration equivalent to that present in the ampule; the third and fourth had three and five freeze–pump–thaw (FPT) cycles, respectively, prior to being sealed under vacuum. These four samples were then annealed for 4 days at 125 °C. Subsequently, APOL was removed and the CdSe nanocrystals were surface exchanged back to TOPO/TOP/n-octylamine by mixing the growth solution with a solution of TOPO/TOP/n-octylamine (10/20/70 wt %). This was followed by precipitation with methanol, centrifugation, and decantation to isolate the pellet of CdSe NCs, which was then redispersed in chloroform to form a clear solution, on which UV/vis, photoluminescence (PL), and high resolution transmission electron microscopy (HRTEM) characterization was carried out.

Kinetic Study of CdSe-Seeded Growth Using the SeO\(_2\) Precursor

CdSe solutions on 9:1 APOL/H\(_2\)O were prepared as described. The first sample was left open to air, while the remaining solution was made and divided into 1 mL aliquots, exposed to 3 FPT cycles each and sealed into ampules of ca. 4 mL in volume, which contained 1 mL of reaction mixture. Samples were annealed at 125 °C and 1 mL aliquots were removed every 24 h for a total of 96 h. Samples were redispersed in chloroform and characterized by HRTEM analysis.

Seeded Growth of CdSe Rods Using NaHSe Precursor

Elemental Se (1.0 mmol) was added to Milli-Q water (2 mL) and chilled in an ice bath. While chilled, NaBH\(_4\) (2.0 mmol) was slowly added to the mixture and the flask was sealed with a septum and vented with a needle to allow H\(_2\) gas to escape. After several hours, the dark elemental Se has been converted to water-soluble NaHSe, along with the formation of a white borate precipitate.\(^{28−30}\) The white precipitate was then centrifuged out, and the aqueous NaHSe (0.5 M) solution was used without further purification. The aqueous Se precursor solution was added to the CdSe seed suspension in a 9:1 (v/v) APOL/H\(_2\)O mixture having 10 μM CdCl\(_2\), so that the final concentration of Se was 10 μM. In the case where no Se precursor was used, the solutions similar to those reported in ref 27 were performed. All samples were grown at 125 °C for 4 days and transferred to chloroform prior to HRTEM analysis.

Growth of CdSe NCs under Elevated Oxygen Concentrations

CdSe QDs were dispersed in 9:1 APOL/H\(_2\)O as described. CdCl\(_2\) was added to yield a 10 μM final concentration in the reaction mixture. One sample was allowed to grow in air, and the other sample was bubbled with oxygen for the duration of the growth period. Growth was carried out at 125 °C for 24 h. Aliquots were removed from the two samples after 1, 3, 6, 12, and 24 h and redispersed in chloroform using the method that was described earlier. These samples were characterized using UV/vis absorption, PL spectroscopy, and HRTEM.

Determination of Oxygen Concentration in 9:1 v/v APOL/H\(_2\)O Mixtures

All oxygen measurements were made using a Mettler- Toledo O\(_2\) 4100 oxygen sensor. The standing concentration of oxygen in APOL/H\(_2\)O was determined by degassing a sealed beaker containing water (50 mL) by bubbling N\(_2\) gas under moderate stirring. When the concentration of oxygen reached a minimum value, the N\(_2\) purge line was removed from the water and APOL/H\(_2\)O (1 mL) was quickly injected. The oxygen concentration was monitored until the value became constant. This was repeated three times. Samples 3 and 4 of APOL/H\(_2\)O (1 mL) were degassed for three and five freeze–pump–thaw cycles, respectively, and sealed into glass ampules. Correspondingly, the glass ampule was placed into a sealed beaker containing H\(_2\)O (50 mL) and bubbled with N\(_2\) gas under moderate stirring. When the concentration of oxygen reached a...
minimum, the N2 purge line was removed, the ampule was broken, and
the oxygen concentration was measured.

Nanocrystal Characterization. UV/vis absorption measurements
were made using a Varian Cary 5000. Photoluminescence (PL)
measurements were collected using a Jobin-Yvon Spex Fluorolog 3-
211 spectrophotometer. The dimensions and size distribution of CdSe
NCs were measured using transmission electron microscopy (TEM)
and high-resolution transmission electron microscopy (HRTEM)
using a Tecnai T12 TEM operating at 120 kV and a JEOL 2010
FasTEM operating at 200 kV, respectively. The HRTEM was
equipped with a high-resolution objective lens pole-piece (spherical
aberration coefficient Cs=0.5 mm) providing a point-to-point
resolution of {\textless}0.19 nm in phase contrast images. HRTEM specimens
were prepared by depositing a dilute solution of chloroform dispersed
TOPO/TOP/\textit{n}-octylamine capped NCs onto an ultrathin (<10 nm)
amorphous carbon film supported on a mesh copper grid.

RESULTS AND DISCUSSION

The first step for both the redox-assisted etching (85 °C) and
seeded-growth (125 °C) of CdSe NCs in 9:1 APOL/H2O is the
surface oxidation of the seed QD by dissolved oxygen via eq 1.17,18,31

\[
\text{CdSe} + \frac{3}{2} \text{O}_2 \rightarrow \text{CdSeO}_3
\]

(1)

Oxygen adsorption is followed by the faceted etching of
the surface oxides via reactions 2, 3, and 4.

\[
\text{SeO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SeO}_3
\]

(2)

\[
\text{H}_2\text{SeO}_3 + 2\text{HO(CH}_2\text{)}_3\text{NH}_2 \rightarrow [\text{HO(CH}_2\text{)}_3\text{NH}_3]^+\text{SeO}_2^2
\]

(3)

\[
\text{CdO} + 2\text{HO(CH}_2\text{)}_3\text{NH}_2 + [\text{HO(CH}_2\text{)}_3\text{NH}_3]^+\text{SeO}_2^2 \rightarrow [\text{Cd}[\text{HO(CH}_2\text{)}_3\text{NH}_3]^+\text{SeO}_2^2 + \text{H}_2\text{O}
\]

(4)

Equation 2, which details the conversion of surface \text{SeO}_2 to
acidic \text{H}_2\text{SeO}_3 occurs rapidly in aqueous solution. This is
quickly followed by the neutralization of the acidic \text{H}_2\text{SeO}_3
surface functionalities by basic APOL solution (eq 3), resulting in
an accelerated dissolution of the Se-sites on the NC surface.
Through complexion with APOL, the CdO sites will also etch
(albeit more slowly) from the surface of the NC (eq 4), a
process that can be slowed via the addition of a Cd-source such
as \text{CdCl}_2.17 At low temperatures (85 °C), eqs 1–4 result in the
faceted etching of CdSe NCs to produce QDs with a Cd-rich
surface.17

When the temperature is raised to 125 °C, two new
reactions, accounting for the reduction of \text{Se}^{4+} to \text{Se}^{2+},
take place. Reaction 5 shows the reduction of \text{H}_2\text{SeO}_3 to \text{Se}^{0},
which is accompanied by the release of water and \text{O}_2. Figure S1
in the Supporting Information illustrates that \text{O}_2 generation is
proportional to the amount of \text{SeO}_2 precursor and annealing
duration. In the presence of amine, \text{Se}^{0} disproportionation,
which has been reported by four groups37–39,14 takes place to
yield \text{Se}^{2+}, \text{SeO}_2^{2-}, and the release of six protons (reaction 6),
the latter of which are quickly neutralized in the basic APOL
solution, which provides the driving force for reactions 5 and 6.
This is in agreement with the results of Figure S1 (inset) in the Supporting Information, where \text{O}_2 generation increases for smaller amounts of \text{SeO}_2, via a lesser APOL/H_2O
neutralization by the acidic \text{SeO}_2. The combination of these
two reactions provides the \text{Se}^{2+} source needed for NC growth.

In the presence of CdSe NC seeds, the production of NCs with
larger sizes and absorption cross-section indicates seeded-
growth takes place, as opposed to Ostwald ripening (Figure S2a, Supporting Information).14,15 In the absence of seed,
uncontrollable growth takes place that produces CdSe NCs
with various sizes (Figure S2b, Supporting Information).

\[
\text{H}_2\text{SeO}_3 \rightarrow \text{Se}^{0} + \text{H}_2\text{O} + \text{O}_2
\]

(5)

\[
3\text{Se}^{0} + 3\text{H}_2\text{O} \rightarrow 2\text{Se}^{2+} + \text{SeO}_2^{2-} + 6\text{H}^+
\]

(6)

As explained in the Introduction, the presence of oxygen
causes unidirectional growth of CdSe rods from the (0001)
facet due to the selective oxygen passivation (reaction 1) of the
nonpolar \{(10\text{\textbar}10), (01\text{\textbar}10), and (11\text{\textbar}20)\} and polar \{(0001)
facets. If oxygen is removed, growth on all of the facets occurs,
leading to 3-D growth.15 These studies, however, were performed
without the addition of an external Se source, relying on the oxidative etching of smaller NCs (reactions 1–4) to provide the needed \text{Se}^{2+} ions for growth. Such oxidative etching is undesirable for the production of \text{Se}^{2+}, since it alters the concentration of the starting seeds. A more favorable situation is to utilize an external Se-precursor, that by controlling its concentration, the desired growth can be obtained. In accordance with reactions 1–4, the logical choice is to investigate the addition of \text{SeO}_2 as a model precursor for growth (based on the reduction/diproportionation reactions 5 and 6).

Seeded Growth in the Presence of \text{SeO}_2. To test the
effects of adding \text{SeO}_2 on growth, four samples were grown using a seed CdSe QD sample, with an optical density of 4.0 at
the first absorption maximum, in 9:1 (v/v) APOL/H_2O. To
each of the samples, \text{CdCl}_2 and \text{SeO}_2 were added so that their
concentration in the growth medium was 10 μM each. Sample
1 was grown in open air such that a constant O_2 concentration
of 8.1 ppm was maintained over the entire growth period;
sample 2 was sealed in a glass ampule in air with a starting
oxygen concentration of 8.1 ppm, and samples 3 and 4 were
sealed after 3 or 5 freeze–pump–thaw (FPT) cycles prior to
growth, with initial oxygen concentrations of 4.2 ppm and 0.2
ppm, respectively. Here, it is important to stress that the O_2
generated from reaction 5 is significantly less than the initial O_2
concentration. This is because the starting \text{SeO}_2 precursor
concentration is relatively small (ca. 10 μM) and the generated
O_2 is expected to preferentially diffuse toward the vacuously-
sealed overlying space that is ca. 75% of the total ampule
volume. Unless otherwise stated, all samples were grown over 4
days at 125 °C, before surface exchange with TOPO/TOP/
ODA and dispersed in chloroform to render them amenable for
further characterization (HRTEM, UV/vis, and PL
spectroscopy).

Figure 1a illustrates the absorbance and photoluminescence (PL)
spectra as a function of oxygen concentration of both the
seed and resulting NCs after growth. Figure 1b depicts the λ_{max}
and full-width at half-maximum (fwhm) values of the PL
emission that are respectively related to NC size and
polydispersity. Peak deconvolutions were carried out on all
PL spectra and listed in Table S1 in the Supporting Information.
With the exception of sample 1, all other PL spectra can be readily fitted with a single Gaussian-shaped peak,
indicative of sample homogeneity for both the seed and
samples 2–4, albeit a slight broadening of the latter.40 On
the other hand, the PL of sample 1 necessitates a minimum of three Gaussians (shown in dashed lines underneath the main peak in Figure 1a) to achieve an optimum fit.
shows the length, width, aspect ratio, and volume for the initial CdSe seed as well as for samples 1–4. Representative HRTEM images of the various samples, as well as histograms of the length, width, aspect ratio, and volume distributions can be found in Figures S3–S7 of the Supporting Information. As expected, progressive oxygen restriction for samples 2–4 results in a gradual increase in their width, which is also registered by both absorbance and PL red-shifts shown in Figure 1. Length-wise, an increase is registered for samples 2 and 3 and begins to plateau for sample 4. These results are in accordance with the slight decrease of the aspect ratio (length/width) in Figure 2b, while the overall volume (width × length) of the NCs appears to steadily increase. Moreover, the decrease of both the PL fwhm and NC aspect ratio for samples 2–4 suggests that spherical, as opposed to unidirectional, growth is favored as the oxygen concentration is reduced, in accordance with our previous studies.15

In contrast to Se2− originating from seed-etching,15 these results indicate that the addition of SeO2 enhances NC growth at oxygen deficient conditions. This increase is most pronounced for samples 3 and 4, where the addition of 9.7 ppm SeO2 leads to a volume growth of 31% and 134%, with respect to the results from ref 15. Such growth acceleration can be explained by the fact that O2 is in the right side (i.e., products) of eq 5. In accordance to the Le Chatelier’s principle, the speed of SeO2 (H2SeO3) reduction is enhanced by lower O2 concentrations; therefore, more Se2− source is formed, according to eqs 5 and 6, for samples 3 and 4. However, when O2 is abundant, the addition of SeO2 impedes growth (i.e., the volume for samples 1 and 2 decreases by and 60% and 5%, respectively), when compared to the growth with no SeO2 added (from ref 15). This is demonstrated by the increase in NC length to 5.5 nm for sample 1 as opposed to 16 nm when the Se-precursor originated from the etching of NC seeds.15

Seeded Growth for Different Se Precursors. The unexpected results from the SeO2 precursor at high O2 concentration (sample 1) indicates that oxygen-containing reagents can strongly interfere with the unidirectional seeded-growth of CdSe rods. This has forced us to consider alternative, nonoxygenated Se precursors that are compatible with the basic APOL/H2O growth medium. Hydroselenic acid (H2Se) is a possible choice; however, it is weakly acidic in nature (pKa1 = 3.89 and pKa2 = 11.01 at 25 °C), and its toxicity forced us to consider the more basic NaHSe alternative. NaHSe is readily prepared in aqueous solutions by the quantitative reduction of SeO2 to Se2− by carefully adding NaBH4.22 The use of NaHSe precursor is expected to bypass reactions 5 and 6, as the Se-source is already in the proper oxidation state (i.e., Se2−).

Figure 3a shows the UV/vis and PL spectra for samples grown using different Se-precursors in the presence of O2 (open to air). The corresponding experimental and peak-deconvoluted values for the aforementioned spectra as well as the absorbance-normalized PL spectra are shown in Table S2 and Figure S8 in the Supporting Information, respectively. Samples A (Se from seed etching) and C (Se from NaHSe) exhibit a blue-shifted PL (indicative of partial etching) that can be fitted with a single Gaussian peak. On the other hand, NCs grown with the SeO2 precursor (sample B) display the broadest
PL emission and is best fitted with two Gaussian peaks. Comparing the PL fwhm among the three precursors showed that the use of the NaHSe precursor (sample C) resulted in a near identical values to that of the seed. In terms of NC brightness (Figure S8, Supporting Information), it appears that more oxygenated precursors lead to higher PL intensity (sample B > sample A > sample C). This is in accordance with our earlier results and will be the topic of a future publication. Figure 4 illustrates representative TEM and HRTEM images of samples A–C and the initial seed CdSe. Compared to the initial dot-like seed, samples A and C consist of rod-like NCs, whereas sample B contains a mixture of both dots and rods.

To quantify the average NC width, length, aspect ratio, and volume of samples A–C and the CdSe seed, a HRTEM analysis was performed and is shown in Figure 5. Histograms for the width, length aspect ratio and volume distributions can be found in Figures S9–S12 in the Supporting Information. For samples A and B, the results for the average growth in the width, length, aspect ratio, and volume are in accordance with ref 15 and Figure 2, respectively. In the case of sample C (NaHSe precursor), the unidirectional growth of CdSe at high O₂ concentration is not only maintained but also enhanced (i.e., length increases from 4 to 14 nm and aspect ratio from 1.3 to 4.7). This indicates that NaHSe is a suitable replacement for SeO₂ as Se-precursor for rod growth in the presence of O₂. One thing that needs to be taken into account is that the addition of NaHSe causes some etching with regards to the width of the NR (ca. 0.4 nm), which is in agreement with the spectroscopic result of Figure 3. This is believed to originate from a partial etching of the surface oxide that is quickly replaced by the sample O₂ in the growth media (samples open to air).
Time-Dependent Growth as a Function of Oxygen and SeO2 Precursor. One aspect of the seeded growth that remains unclear is the exact mechanism that leads to the disruption of unidirectional growth in the presence of SeO2 and oxygen. For this, we conducted a study of the time-lapsed seeded growth in the absence and presence of SeO2 (Figure 6 and 7, respectively) for two oxygen concentrations. Histograms of the size distributions can be found in Figures S13–16 in the Supporting Information. Open to air and deoxygenated conditions from three freeze–pump–thaw cycles (4.6 ppm O2) were chosen to stimulate 1- and 3-D growth, respectively.

Aliquots were removed every 24 h for a total of 96 h and the width, length, aspect ratio, and volume were measured via HRTEM and plotted as a function of growth time. In the absence of a SeO2 precursor (Figure 6), a rapid increase in both the width and length is witnessed in the first 24 h. This is most likely due to the rapid production of Se precursor from the oxidative etching of small NCs (eq 1–6). After the first 24 h, the growth reaches a plateau in terms of volume (Figure 6d), which remains constant for the remainder of this experiment. This signifies a switch from interparticle to intraparticle ripening. The latter is supported by the decreasing width (Figure 6a) and increasing length and aspect ratio (Figure 6b and c) with a rate proportional to the O2 concentration.

In the case where SeO2 precursor is added (Figure 7), the growth characteristics become strongly dependent on O2 concentration. For low O2 concentration (4.2 ppm), the increase in width, length, and volume indicates a monotonic 3-D growth as supported by the nearly constant aspect ratio. At high O2 concentrations, the growth appears to be arrested after 48 h, as witnessed by the changes incurred in width, length, and volumes of the NCs. This suggests the presence of a competing process that retards rod growth as witnessed in the absence of SeO2 precursor (Figure 6). Upon closer HRTEM investigation of the longest rods in the sample after 96 h incubation with SeO2 precursor at open air, the appearance of notching along the rod becomes evident (see inset in Figure 7b). More images of notched nanorods collected from all samples grown in the presence of air and the SeO2 precursor are shown in Figure S17 of the Supporting Information. This explains the presence of small dots along with rods in Figure 4c, along with the broad PL spectra of samples 1 and B in Figures 1, and 3, respectively, as well as their corresponding peak deconvolutions. On the other hand, no notches were observed for nanorods grown with the NaHSe precursor (shown in Figure 4d).

To further investigate rod fragmentation, the UV/vis absorbance and PL emission spectra of the time-resolved growth study in Figures 6 and 7 were also measured. Figure S18 in the Supporting Information shows the two sets of spectra for NCs grown when oxygen is abundant (i.e., open to air) in the absence and presence of the SeO2 precursor. With no SeO2 added (Figure S18a, Supporting Information), both the absorption and PL spectra follow the expected trends for the NC sizes reported in Figure 6a. This indicates that, despite PL broadening, all samples maintain their excitonic behavior. On the other hand, the addition of the SeO2 precursor (Figure S18b, Supporting Information) causes a severe PL divergence in terms of blue-shifting when contrasted to the absorption edge. This agrees with rod fragmentation and suggests that excitonic luminescence originates from the low diameter NCs, especially after 72 h. Moreover, the emergence of deep trap luminescence after 48 h (marked by asterisks in Figure S18b, Supporting Information), indicates that the resulting NCs contain a large amount of defects.41 This suggests that the excessive release of O2 during SeO2 reduction (eq 5 and Figure 6) causes an increase in the NaHSe precursor (shown in Figure 4d).

To test this, CdSe seeds were subjected to similar growth conditions (i.e., 125 °C in 9:1 v/v APOL/H2O) while continuously bubbling with pure O2. Figure 8b illustrates the UV/vis absorbance and PL emission spectra for NCs after O2...
bubbling as compared to the control (seeded growth while open to air; Figure 8a), as a function of growth time. NCs grown in air (Figure 8a) show little change in their UV/vis and PL spectra albeit with broadening due to rod growth, as reported before. On the other hand, growth while bubbling with O$_2$ displays the emergence of deep trap luminescence after 12 h (see broad feature marked with an asterisk in Figure 8b). Additional bubbling completely quenches the excitonic PL, as shown by the PL spectra taken after 24 h. Figure S19 in the Supporting Information illustrates the length and aspect ratio distributions for the initial seed and the samples grown for 24 h while open to air or bubbled with oxygen. These results indicate that excessive amounts of O$_2$ limits one-dimensional growth by reducing the change in length from 7 to 5 nm and aspect ratio from 2.4 to 1.8, respectively (Figure S19, Supporting Information). This verifies that one-dimensional seeded growth can be stunted by excessive O$_2$ concentration and explains the utility of an oxygen free precursor such as NaHSe.

Seeded Growth at Different SeO$_2$ Concentration. Last but not least, a control experiment was carried out to verify that morphology control is not affected by the precursor concentration but rather the O$_2$ concentration in the reaction mixture, as suggested in refs 14 and 15 and the data herein. Figure S20, Supporting Information, illustrates the effect of SeO$_2$ precursor concentration in O$_2$ rich (open to air) and O$_2$ poor (0.2 ppm) conditions. As expected, in O$_2$ poor environment, a monotonic redshift is observed in accordance with 3D seeded-growth to produce larger dots. Similarly, in O$_2$ rich environment, the 1D seeded-growth was retained irrespective of SeO$_2$ concentration. Interestingly, in O$_2$ rich environment, a faster lateral etching rate (producing smaller diameter nanorods) was witnessed at lower SeO$_2$ precursor concentrations. This can be explained by eq 2, in light of the fact that the lateral selenium oxide passivating the sidewalls of NCs or NRs etches faster in an APOL environment with lower SeO$_2$ concentrations. This has been experimentally witnessed in ref 17, where the etching rate of CdSe NCs slows down as the surrounding APOL/H$_2$O mixture is slowly saturated with dissolved SeO$_2$ in the form of APOL salt (i.e., [HO-(CH$_2$)$_3$NH$_3^+$_2]$_2$SeO$_3^{2-}$). Moreover, the similar decrease in the etching rate was observed as the CdCl$_2$ concentration was also increased.7

CONCLUSIONS

In this study, we investigate two Se precursors (i.e., SeO$_2$ and NaHSe) on the redox-assisted seeded-growth of CdSe NCs. Their different redox states and oxygen content has minimal effect when seeded-growth occurs under anaerobic conditions, leading to three-dimensional growth. At elevated O$_2$ concentration, the behavior of these two precursors diverges. While NaHSe follows the expected unidirectional rod-growth due to lateral oxide-surface passivation, SeO$_2$ produces excessive amount of O$_2$ that results in enhanced etching and rod fragmentation. Kinetic studies confirm that the excess O$_2$ produced by the reduction of SeO$_2$ to Se$_2^{2-}$, is responsible for the aforementioned behavior and also leads to the formation of deep traps at the surface of these NCs. These findings enhance our mechanistic understanding of the low-temperature, redox-assisted, seeded-growth of CdSe and open up new possibilities for the realization of complex NC heterostructures.

ASSOCIATED CONTENT

Supporting Information

Histograms of the NC size distributions for all samples and additional HRTEM of notched nanorods. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
E-mail: papadim@mail.ims.uconn.edu.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors would like to acknowledge financial support from AFOSR No. FA9550-09-1-0201, NSF CBET 0828772, NSF CBET 0730365, NSF0828824 and NIH 9R01EB014586-06A1.

REFERENCES

(5) Gar, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462.

