Three self-contained but related lectures

- Lecture I. Trade Agreements as Incomplete Contracts
- Lecture II. Trade Disputes and Settlement
- Lecture III. Trade Agreements and Offshoring
Many puzzling features of real-world trade agreements

...Design of rules
 - mix of rigidity and discretion (GATT/WTO: tariff bindings, escape clause, domestic policies, national treatment)

...Settlement of disputes
 - role of court (GATT/WTO: interpretive, gap-filling, modification)

...Prominence of renegotiation
 - against backdrop of property and liability rules (GATT/WTO: quantitative restrictions, domestic subsidies)

Hard to square with complete contracts perspective
Can design and operation of trade agreements be understood from *incomplete contracts* perspective?

Trade agreements are obviously incomplete contracts
- WTO agreement fills 24,000 pages and is still far from anything resembling a complete contract

Focus on
- rules (Horn, Maggi and Staiger, 2010)
- disputes (Maggi and Staiger, 2011)
- renegotiation (Maggi and Staiger, 2012)
Real-world trade agreements display an interesting combination of *rigidity* and *discretion*.

Consider the GATT/WTO:
- trade instruments bound; domestic instruments largely left to discretion, but must satisfy National Treatment, and now (WTO) regulation of subsidies
- bindings rigid, but with “escape clauses” (e.g. GATT Article XIX)
- bindings stipulate ceilings, so governments have downward discretion

Why?

An incomplete contracts perspective can account for these features.
Sources of Incompleteness

- A number of possible sources of contract incompleteness
- Focus on two features of fundamental importance to trade negotiators
- Wide array of trade-relevant policies
 - border instruments but also internal/domestic instruments
 - controlling opportunism requires *comprehensive policy coverage*
- Uncertainty about future economic/political conditions
 - calls for agreements that are *highly contingent*
- Trade-law literature emphasizes contracting implications of costs associated with these features
Approach

- Introduce *contracting costs* explicitly into economic analysis of trade agreements
- Study their implications for the structure of the optimal (incomplete) agreement
- Show that contracting costs can help explain some of the core features of the GATT/WTO
Partial-equilibrium analysis

Two countries, H and F, two non-numeraire goods, 1 and 2

H a natural importer of good 1/exporter of good 2

Sectors 1 and 2 are mirror-image, so focus on sector 1

Illustrate main points with linear demand/supply case

Demand: \(D(p) = \alpha - \beta p; \) \(D^*(p^*) = \alpha^* - \beta^* p^* \)

Supply: \(X(q) = \lambda q; \) \(X^*(q^*) = \lambda^* q^* \)

H chooses tariff \(\tau \), separate consumption taxes on domestic and foreign products \((t_h \text{ and } t_f) \), production subsidy \((s) \)

F does not intervene in this sector
The Model

- Arbitrage \(\implies q^* = p^*; \ p^* = p - \tau - t_f; \ q = p - t_h + s \)
- The price relationships more compactly:

\[
p = p^* + T; \quad q = p^* + T + S
\]

where \(T \equiv \tau + t_f \) and \(S \equiv s - t_h \)

- Market clearing \(\implies p = p(T, S); \ q = q(T, S); \ p^* = q^* = p^*(T, S) \)
- Importing country H experiences a negative consumption externality equal to \(-\gamma D\) with \(\gamma > 0\)
- Governments maximize welfare, so (with focus on sector 1):

\[
W = CS + PS + T \cdot M - S \cdot X - \gamma D
\]
\[
W^* = CS^* + PS^*
\]
Efficient and Nash Policies

- Globally efficient policies maximize $W^G \equiv W + W^*$, yielding
 \[T^{\text{eff}} = \gamma; \quad S^{\text{eff}} = -\gamma \]

- Nash equilibrium policies:
 \[T^{\text{NE}} = \gamma + \frac{p^*}{\eta^*} \]
 \[S^{\text{NE}} = -\gamma \]

- Note: $T^{\text{NE}} > T^{\text{eff}}$, $S^{\text{NE}} = S^{\text{eff}}$
- Nash trade taxes inefficiently high: ToT manipulation
- Nash domestic instruments set at efficient levels
Uncertainty

To simplify, focus on one-dimensional uncertainty

Consider two possible sources of uncertainty

- consumption externality (γ)
- import demand level (α)

Timing:

1. The agreement is drafted
2. Uncertainty is resolved
3. Policies are chosen subject to the constraints set by the agreement
Focus on *instrument-based* (not *outcome-based*) agreements

Key idea: more detailed agreements are more costly (similar to Battigalli and Maggi, 2002)

- \(c_p \): cost of including a *policy* variable \((\tau, t_f, s, t_h)\)
- \(c_s \): cost of including a *state* variable \((\gamma, \alpha)\)

Cost of writing an agreement: \(C = c_s \cdot n_s + c_p \cdot n_p \), with \(n_s \) (\(n_p \)) the number of state (policy) variables in the agreement.

Let \(\Omega \equiv EW^G(\cdot) \) denote expected gross-of-contracting-costs global welfare.

An *optimal agreement* maximizes expected net global welfare, \(\omega \equiv \Omega - C \)
To state first result, recall: $T = \tau + t_f; S = s - t_h$. Hence T and S the relevant policy variables, with cost $2c$ for each.

Proposition 1: An agreement that constrains the effective subsidy S (even in a state-contingent way) while leaving the import tax T to discretion cannot improve over the Nash equilibrium, and therefore cannot be an optimal agreement.

- Broad intuition: contracting over S alone is useless because inefficiency in the NE concerns T, not S.
- In world of costless contracting, Proposition 1 irrelevant, but gains relevance when contracting costly.
 - if contracting costs lead to incomplete policy coverage, focus of contract will be on import taxes, not domestic instruments.
uncertainty about the consumption externality

- Assume γ uncertain

- Note: $\{FB\}$ agreement is $\{T = \gamma; S = -\gamma\}$, which costs $4c_p + c_s$
 - if c_p and c_s small enough, $\{FB\}$ optimal
 - if large enough, empty agreement (NE payoffs) optimal
 - What happens between these two extremes?

- Two ways to save on contracting costs relative to $\{FB\}$
 - agreement can be rigid (i.e. non-contingent)
 - and/or it can leave some policies to discretion

- For now consider only agreements that impose separate equality constraints on T and S (e.g. $(T = \gamma)$ or $(S = 10)$)
Uncertainty about the Consumption Externality

By Proposition 1, can focus on three kinds of agreement (aside from $\{FB\}$ and $\{\emptyset\}$)

- $\{T, S\}$ (rigidity)
- $\{T(\gamma)\}$ (discretion)
- $\{T\}$ (both rigidity and discretion)

Basic trade-off:

- rigid agreement prevents ToT manipulation, but Pigouvian intervention only “on average”
- discretion creates scope for manipulating ToT, but achieves state-contingency “for free”

Two basic questions

- When is it optimal to leave S out of the contract (discretion)?
- When is it optimal to leave γ out of the contract (rigidity)?
Benefits of excluding S from the contract
- saves $2c_p$
- achieves state-contingency in S “for free” (a benefit if contract is rigid)

Costs of excluding S from the contract
- comes in form of S distortions to manipulate ToT
- higher when S a good substitute for T for ToT manipulation
- higher when monopoly power in trade higher
- higher when import volume higher

Possible explanation for GATT/WTO evolution toward regulation of domestic instruments: rising trade volume

Possible explanation for why WTO exempts developing country members from many domestic instrument commitments
Rigidity

- Large uncertainty in γ makes it less likely that optimal agreement is rigid: unsurprising result
- But surprising result when consider uncertainty in trade volume (α)
- Suppose γ now fixed at $\bar{\gamma}$ and α uncertain
- $\{FB\}$ agreement is rigid/non-contingent: $\{T = \bar{\gamma}; S = -\bar{\gamma}\}$
- Can focus on two kinds of agreements: $\{T(\alpha)\}$ and $\{T\}$
 - $\{T(\alpha)\}$ can be optimal as a way to manage incentives to distort S
 - novel interpretation of escape clause (import volume effect)
- If uncertainty over α grows large enough, optimum can switch from $\{T(\alpha)\}$ to $\{T = \bar{\gamma}; S = -\bar{\gamma}\}$
- \implies Surprising result: large uncertainty in α can make it more likely that optimal agreement is rigid
- \implies More broadly, source of uncertainty matters for tradeoff between rigidity and discretion in optimal agreement
Return to world of uncertain γ and consider rationale for NT clause

Extend feasible set of agreements by allowing for an NT clause, that is a constraint $t_h = t_f$, costing $2c_p$

An \textit{NT-based} agreement includes the NT clause

- the price relationships are now: $p = p^* + \tau + t$; $q = p^* + \tau + s$
- recall for non-NT: $p = p^* + T$; $q = p^* + T + S$

$\{NT, \tau, s\}$ costs less than $\{FB\}$ and ties down producer price wedge $q - p^*$, leaves consumer price wedge $p - p^*$ to discretion

- not possible with non-NT agreements

NT-based agreement optimal if low substitutability between t and τ

- gets close to first best ($\{t^{eff} = \gamma, \tau^{eff} = 0, s^{eff} = 0\}$) by achieving state-contingency “for free” via discretion over internal taxes
Summary

A first step in the analysis of trade agreements as *endogenously* incomplete contracts

Provides a novel explanation for:

- the emphasis on border instruments in real world trade agreements
- “escape clauses” in response to surging import demand
- the National Treatment provision in GATT/WTO
- the emphasis on weak bindings (see paper)

Possible directions for future research:

- consider *outcome-based* agreements
- consider export-sector policies
- consider a multi-country setting to examine the potential appeal of the MFN rule and exceptions for FTAs/CUs
- consider a commitment role for trade agreements
- consider the potential appeal of a dispute settlement body, as a mechanism to “complete” the incomplete contract
- more explicit modeling of contract costs
Most models of trade agreements treat disputes as synonymous with enforcement.

But in a typical WTO dispute, DSB rarely called on to enforce an unambiguous obligation under the agreement:

- disagreements over what was signed on to: *Interpretation*
- instances where legal text of the agreement is silent: *Gap-filling*
- DSB might even grant exceptions to rigid obligations: *Modification*

Typical role played by DSB amounts to “completing” various dimensions of an incomplete contract.

Evaluate potential role of DSB in completing an incomplete contract.

Highlight interaction between design of contract and design of DSB.
Building on Battigalli and Maggi (2002), two forms of contractual incompleteness: *rigidity* and *discretion*

Introduce a third form of contractual incompleteness: *vagueness*

The three possible (non-enforcement) roles of the DSB

- can *interpret* aspects of the contract that are left *vague*
- can *fill gaps* where the contract is silent and therefore leaves governments with *discretion*
- can grant exceptions and thereby *modify* aspects of the contract that are *rigid*

Or, the DSB can serve none of these functions and simply enforce contractual obligations that are unambiguous

What is the combination of contract form and DSB role that maximizes the ex-ante joint payoff of the governments, i.e., the optimal *institution*?
The Model

- A single industry; importing government chooses $T \in \{FT, P\}$ to maximize $\omega(T; s)$, where $s \equiv (s_1, s_2, \ldots, s_N)$ is a state vector.

- The exporting government is passive in this industry; its payoff is $\omega^*(T; s)$.

- Each state variable represents a binary event, such as “there is/is not an import surge” or “the domestic industry does/does not shut down.”

- Importing government’s gain from protection: $\gamma(s) \equiv \omega(P; s) - \omega(FT; s) > 0$ for all s.

- Exporting government’s loss from protection: $\gamma^*(s) \equiv \omega^*(FT; s) - \omega^*(P; s) > 0$ for all s.

- Joint (positive or negative) gain from protection: $\Gamma(s) \equiv \gamma(s) - \gamma^*(s)$; $\Gamma(s) < 0$ for $s \in \sigma^{FT}$ and $\Gamma(s) > 0$ for $s \in \sigma^P$.
State variables s_i are verifiable, but too costly to describe in a contract.

Consider the following possible contracts:

- **Rigid (R) contract**: $T = FT$ for all s
- **Discretionary (D) contract**: P allowed for all s. (Same as no contract)
- **Vague (V) contract**: P is allowed if and only if v (where v is a vague sentence such as “there is substantial injury to the domestic industry”)

The truth function of v is the following:

$$
\left\{ \begin{array}{ll}
 \text{True} & \text{if } s \in T \\
 \text{False} & \text{if } s \in F \\
 \text{Undefined} & \text{otherwise}
\end{array} \right.
$$

Sentence v is

where T (F) a set of “extreme” states where v clearly true (false).

Assume $T \subseteq \sigma^P$ and $F \subseteq \sigma^{FT}$ and truth function of v is common knowledge to govs and DSB.
The DSB

- DSB operates within mandate (if no applicable mandate, not invoked)
- Enforcement role of DSB kept in background
- If the DSB invoked to settle a dispute, the exporter (complainant) incurs cost c^* and the importer (defendant) incurs cost c
- If invoked, DSB observes s and a noisy (unbiased) signal of $\Gamma(s)$, and it issues a ruling, T^{DSB}
 - attempts to complete contract as govs would have, by choosing T^{DSB} to maximize the expected joint payoff of govs given the signal
 - ruling automatically enforced
- DSB recommends the wrong policy with probability $q(s)$
 - let $q(s) \equiv qk(s)$ where $k(s) \in [0, \frac{1}{2}]$ for all s and $q \in [0, 1]$
The contract can be silent (D), rigid (R) or vague (V).

The DSB can be given an “activist” mandate to

- **fill gaps** (g) where the contract is silent and therefore leaves governments with *discretion*
- grant exceptions and thereby *modify* (m) aspects of the contract that are *rigid*
- *interpret* (i) aspects of the contract that are left *vague*

Or, the DSB can be given a “non-activist” mandate (n) to simply enforce contractual obligations that are unambiguous.

<table>
<thead>
<tr>
<th>Contract DSB Role</th>
<th>Silent</th>
<th>Rigid</th>
<th>Vague</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-activist</td>
<td>D_n</td>
<td>R_n</td>
<td>V_n</td>
</tr>
<tr>
<td>Activist</td>
<td>D_g: DSB fills gaps</td>
<td>R_m: DSB allows exceptions</td>
<td>V_i: DSB interprets</td>
</tr>
</tbody>
</table>
Timing

Stage 0 The institution is designed
Stage 1 The state of the world s is realized
Stage 2 The importer gov chooses policy $T \in \{FT, P\}$
Stage 3 The exporter gov decides whether to file with the DSB
Stage 4 If invoked, the DSB issues a ruling $T^{DSB} \in \{FT, P\}$
Stage 5 Payoffs are realized
Analysis
Disputes with an Activist DSB

- Exporter gov files a complaint iff $T = P$ and

$$\Pr(\text{DSB ruling is } FT \mid s) \cdot \gamma^*(s) > c^*$$ \hspace{1cm} (F)

- Importer gov chooses $T = P$ if either (F) fails, or if (F) holds but

$$\Pr(\text{DSB ruling is } P \mid s) \cdot \gamma(s) > c$$

- Focus on small filing costs:

$$\frac{1}{2} \gamma^*(s) > c^* \text{ and } \frac{1}{2} \gamma(s) > c \text{ for all } s$$
Disputes with an Activist DSB

- Consider the D_g institution

- In states $s \in \sigma^{FT}$: if $q_k(s) < \frac{c}{\gamma(s)}$ then $T = FT$ and DSB not invoked; if instead $q_k(s) > \frac{c}{\gamma(s)}$ then $T = P$ and DSB invoked

- In states $s \in \sigma^P$: if $q_k(s) < \frac{c^*}{\gamma^*(s)}$ then $T = P$ and DSB not invoked; if instead $q_k(s) > \frac{c^*}{\gamma^*(s)}$ then $T = P$ and DSB invoked

- Notice: equilibrium motives that trigger DSB filing are inefficient from an ex-ante perspective
 - off-equilibrium impacts of activist DSB are efficiency-enhancing

- Notice: two kinds of disputes
 - importer opportunistically exploits incompleteness of contract, tries to “get away with protection”
 - exporter opportunistically exploits incompleteness of contract, tries to “get away with forcing free trade”
Proposition 1 There exist critical levels q_1 and q_2 (with $0 < q_1 \leq q_2 \leq 1$) such that: for $q < q_1$ the optimal institution is D_g; for $q_1 < q < q_2$ the optimal institution is V_i; and for $q > q_2$ the optimal institution is either V_n or R_n.

- Leave governments with greater discretion and provide DSB with mandate to reign in that discretion the better the DSB information
- If q sufficiently small, the first-best outcome achieved even though
 - the contract is highly incomplete
 - the use of DSB is costly
 - DSB rulings are imperfect
 - but DSB must be given activist mandate
- No “modification” role for the DSB in the optimal institution
- Non-monotonic relationship between frequency of equilibrium disputes and performance of optimal institution relative to first best
A Pro-Trade Bias in the DSB?

- Empirically, an apparent “pro-trade bias” in DSB rulings
 - both under the GATT (82%) and the WTO (88%) complainants have mostly won their cases

- What can account for this?

- Consider the direction of the selection bias in DSB rulings (and assume away other sources of bias)

- When c^* is high relative to c, DSB rulings exhibit a “pro-trade bias”
 (i.e. the DSB ruling is FT with prob $> 1/2$)
 - because then disputes mostly triggered by importer trying to get away with protection

- But notice: in this case the equilibrium policies exhibit an “anti-trade bias”
 (i.e. the equilibrium policy is P with prob $> 1/2$)

- Fig 1
Always dispute

No-Bias Locus

Typical dispute: Home trying to get away with Protection.

Typical dispute: Foreign trying to force Free Trade.

Pro-trade bias in DSB rulings,
Anti-trade bias in policy outcome

Pro-trade bias in DSB rulings,
Anti-trade bias in policy outcome

Figure 1
Precedent Setting

Should DSB rulings set legal precedent for future rulings?

- govs create the contract ("civil law") and provide DSB with a mandate
- DSB can help complete the contract within its mandate through precedent-setting rulings ("common law")

Consider a two-period version of the static model developed above

- in a prior Period 0, the institution is created
- Period 1 and Period 2 then proceed as in the static model

The state s is iid across the two periods

Discount factor: $\delta \geq 0$ (since the "future" is collapsed into Period 2, δ may be arbitrarily large)

If rulings set precedent, a Period-1 ruling for the realized state s' will apply also in Period 2 if the realized state is again s'
Consider the D_g institution

For $s \in \sigma^{FT}$:
- if $q_k(s) < \frac{c}{(1+\delta p(s))\gamma(s)}$ then $T_1 = FT$, DSB not invoked in Period 1
- if $q_k(s) > \frac{c}{(1+\delta p(s))\gamma(s)}$ then $T_1 = P$, DSB invoked in Period 1

For $s \in \sigma^P$:
- if $q_k(s) < \frac{c^*}{(1+\delta p(s))\gamma^*(s)}$ then $T_1 = P$, DSB not invoked in Period 1
- if $q_k(s) > \frac{c^*}{(1+\delta p(s))\gamma^*(s)}$ then $T_1 = P$, DSB invoked in Period 1

Trade-off: precedent induces more filings (bad); saves on duplicative filing costs in states where filing would occur anyway (good)
Precedent Setting

Let $k(s) = \frac{1}{2}$ for all s, so DSB signal goes from perfect to uninformative as q goes from 0 to 1.

Proposition 3: Consider a given activist DSB role (g or i). As q increases from 0, first the introduction of precedent has no effect, then it becomes strictly undesirable, and finally it is strictly desirable as q approaches 1.

Intuition:
- when DSB sufficiently well-informed, little chance of equilibrium filing absent precedent, so little expected savings of duplicative filing costs
- when sufficiently poorly informed, DSB invoked in most every state, so little chance that precedent will induce additional filings

Proposition 4: There exists an intermediate range of q such that, for a given activist DSB role (g or i), it is optimal to give the DSB precedent-setting authority if δ is sufficiently low, while it is preferable not to do so if δ is sufficiently high.

Intuition: high δ magnifies additional filing that comes with precedent...
Design of contract and design of DSB modeled as components of an over-arching institutional design problem

A contract that has gaps or is vague, and a gap-filling/interpretive DSB, is optimal if quality of DSB information sufficiently high

A contract that is vague or rigid, and a non-activist DSB, is optimal if quality of DSB information sufficiently low

A non-monotonic relationship between observed frequency of DSB disputes and performance of optimal institution

Selection effects can explain “pro-trade bias” in WTO DSB rulings if dispute costs are high for complainant relative to defendant

but same conditions imply an “anti-trade bias” in policy outcomes

Giving the DSB precedent-setting authority is sub-optimal unless:

the DSB is poorly informed/govs care little about the future

Extensions: more sophisticated DSB; enforcement; other legal systems
When govs make international commitments, what is the optimal structure for their contract?

In answering this question, important to allow for renegotiation, especially given its empirical relevance in GATT/WTO

- contract does not directly determine policy outcome
- but w/ transaction costs it does so indirectly by shaping disagreement point for ex-post negotiations: hence, efficiency consequences

Existing models of trade agreements abstract from renegotiation

Study optimal design of trade agreements in presence of renegotiation

Focus on a distinguishing transaction cost of trade-agreement setting:

- gov-to-gov compensation takes form of “self-help”/tariff retaliation
- transfers entail DWL
Property Rules v. Liability Rules

- Broadly speaking, commitments can take one of two possible contractual forms
- One type of contract assigns *rights*, e.g., right to protect assigned to importer or right of free trade to exporter
 - rights can be transferred between govs only through voluntary transaction – a renegotiation
 - in effect, assigns *ownership* of rights concerning trade policy: a *property rule* in the legal literature
- The second type of contract presents importer with option to practice free trade, or to protect and pay *damages*
 - assigns entitlement of free trade to exporter, and while voluntary renegotiation can always occur
 - importer can also remove this entitlement unilaterally by paying damages (“efficient breach”): a *liability rule* in the legal literature
- A vast law-and-economics literature on this issue in domestic setting. Initiate formal analysis in context of international trade agreements
Considerable research more generally on optimal design of contracts in presence of renegotiation

We follow broad approach of this literature:
- non-verifiable information, contract designed ex-ante, can be renegotiated ex post through Nash bargaining

But two departures:
- gov-to-gov transfers involve DWL, so utility is non-transferable
- focus on binary policy choice; do this for tractability; but captures many trade-related policies that are discrete in practice
The Model

- A single industry; importing/Home gov chooses a binary policy $T \in \{FT, P\}$
- b a pos/neg transfer from Home to Foreign; $c(b)$ the DWL associated with b (borne by Home); $c(0) = 0$, $c(b) > 0$ for $b \neq 0$, smoothly convex; $b + c(b)$ increasing in b
- Home gov’s payoff is $\omega(T, b) = v(T) - b - c(b)$
- Foreign gov is passive in this industry; its payoff is $\omega^*(T, b) = v^*(T) + b$
- Joint payoff of the two govs: $\Omega(T, b) = v(T) + v^*(T) - c(b)$
- Home gov’s gain from protection: $\gamma \equiv v(P) - v(FT) > 0$
- Foreign gov’s loss from protection: $\gamma^* \equiv v^*(FT) - v^*(P) > 0$
- Joint (positive or negative) gain from protection: $\Gamma \equiv \gamma - \gamma^*$
The Model

- “First best” outcome (joint surplus maximizing): if \(\Gamma > 0 \), \(T = P \) and \(b = 0 \); if \(\Gamma < 0 \), \(T = FT \) and \(b = 0 \)
- \(\Gamma \) is uncertain ex-ante. Both govs observe \(\Gamma \) ex-post, but \(\Gamma \) is not verifiable by the DSB, so govs cannot write a complete contingent contract
- Assume \(\gamma^* \) is ex-ante known to all (so all uncertainty in \(\Gamma \) comes from \(\gamma \)), and \(\gamma \) is not verifiable
 - this is the best possible scenario for the “efficient breach” argument
- Assume \(\gamma^* \) is in the interior of the support of \(\gamma \), so the first-best is \(P \) in some states (\(\gamma > \gamma^* \)) and \(FT \) in others (\(\gamma < \gamma^* \))
- Density \(h(\gamma) \) defined over \(\gamma \in [0, \infty) \); let \(\underline{\gamma} = \inf \{ \gamma : h(\gamma) > 0 \} \) and \(\bar{\gamma} = \sup \{ \gamma : h(\gamma) > 0 \} \)
- Look for contract that maximizes ex-ante joint surplus
The Contracting Options

- Two types of contracts
- Property rule: assigns right of \(FT \) to exporter ("prohibitive" property rule) or right of \(P \) to importer ("discretionary" property rule)
- Liability rule: a menu contract giving Home a choice between (i) \(FT \) and (ii) \(P \) and payment \(b^D \) to Foreign
 - consider possibility of transfer also associated with \(FT \) (see paper)
- At formal level focus on family of liability contracts and optimize \(b^D \):
 - prohibitive property rule outcome-equiv to liability with \(b^D \) set prohibitively high
 - discretionary property rule outcome-equiv to liability rule at other extreme with \(b^D = 0 \)
- Note: \(b^D \) can be interpreted as payment specified under explicit escape clause, or remedy for contract breach
Timing of the Game

0. Governments write the contract
1. γ is realized and observed by the governments
2. Governments can renegotiate the terms of the contract (b and T)

Assume symmetric bargaining power (see paper for asymmetric case); abstract from enforcement issues
Analysis

- Given a contract specifying b^D, when does renegotiation occur, and in what direction?

- For any b^D, contract provides *threat point* for any renegotiation.

- Threat point gives importer option to choose between $(T = FT, b = 0)$ and $(T = P, b = b^D)$
 - Importer indifferent between options when $\gamma = b^D + c(b^D) \equiv S(b^D)$
 - For $\gamma < S(b^D)$ threat point is $(T = FT, b = 0)$
 - For $\gamma > S(b^D)$ threat point is $(T = P, b = b^D)$

- Fig 1
Figure 1
Consider first $\gamma < S(b^D)$ where threat point is $(T = FT, b = 0)$.

Renegotiation from $(T = FT, b = 0)$ to $(T = P, b = b^e)$ requires:
- $\gamma > S(b^e)$ (for the importer) and $b^e > \gamma^*$ (for the exporter).

Renegotiation toward P iff $S(\gamma^*) < \gamma < S(b^D)$. Region P_R in Fig 1.

Note: never strictly optimal to set $b^D > \gamma^*$; Fig 1
- Implies in equilibrium contract never renegotiated towards P.

Consider next $\gamma > S(b^D)$ where threat point is $(T = P, b = b^D)$.

Renegotiation from $(T = P, b = b^D)$ to $(T = FT, b = b^e)$ requires:
- $S(b^D) - S(b^e) > \gamma$ (for importer) and $\gamma^* > b^D - b^e$ (for exporter).

Renegotiation toward FT iff $\gamma < S(b^D) - S(b^D - \gamma^*) \equiv R(b^D)$. Region FT_R in Fig 1.
Summary of findings on pattern and direction of renegotiation:

Proposition 1: (i) If $b^D < \gamma^*$, the contract is renegotiated for $\gamma \in (S(b^D), R(b^D))$, and the governments agree on FT and the exporter compensates the importer. (ii) If $b^D > \gamma^*$, the contract is renegotiated for $\gamma \in (S(\gamma^*), S(b^D))$, and the governments agree on P and the importer compensates the exporter; however, setting $b^D > \gamma^*$ is weakly dominated, and this kind of renegotiation does not happen in equilibrium.

Note what is ruled out if damages set optimally: importer’s threat point is FT, but govs agree to a policy P and level of damages to exporter less than contractually specified level b^D.

Note that renegotiation can occur in equilibrium only for intermediate values of γ, not “extreme” states of world.
Next, what “allocations” $\hat{\gamma}$ can be implemented, and what level of b^D implements a given $\hat{\gamma}$?

Renegotiation limits implementable range of $\hat{\gamma}$ (Lemma 1):

- if no cost of transfers, only $\hat{\gamma} = \gamma^*$ implementable (Coase)
- w/ costly transfers, any $\hat{\gamma} \in [R(0), S(\gamma^*)]$ is implementable (Fig 1)
- still, renegotiation beneficial for ex-ante joint surplus

And from Fig 1, level of b^D that implements a given $\hat{\gamma}$ is $b^D(\hat{\gamma}) = R^{-1}(\hat{\gamma})$

Finally, how does b^e change with b^D? $\frac{\partial|b^e|}{\partial b^D} < 0$

- Intuitively, increasing b^D strengthens the bargaining position of the exporter and hence decreases b^e in absolute size (Lemma 2)

Now ready to study optimal level of b^D:

- Property rules ($b^D = 0$, or $b^D \geq \bar{b}^{prohib}$ where \bar{b}^{prohib} determined by $S(\bar{b}^{prohib}) = \bar{\gamma}$); vs. liability rules ($b^D \in (0, \bar{b}^{prohib})$)
Small uncertainty:

- Property rule not renegotiated, hence no equilibrium transfers; Fig 2
- A liability rule can make policy contingent on γ, but benefit small when uncertainty small, cost not small; Fig 2

Hence property rule optimal for small uncertainty: $b^D = 0$ if $E\gamma > \gamma^*$ and $b^D \geq \overline{b}^{prohib}$ if $E\gamma < \gamma^*$

Large uncertainty: suppose $\gamma < R(0)$ and $\gamma^* > S(\gamma^*)$; back to Fig 1

- $\overline{b}^{prohib} > \gamma^*$, so $b^D \geq \overline{b}^{prohib}$ cannot be optimal by Prop 1; Fig 1

What about $b^D = 0$?

- For $\gamma > R(0)$, contract not renegotiated, outcome is $(P, b = 0)$, increasing b^D slightly from zero entails second-order loss
- But for all $\gamma < R(0)$, contract renegotiated when $b^D = 0$, exporter pays sizable b^e, and hence with $\frac{\partial |b^e|}{\partial b^D} < 0$, increasing b^D slightly from zero gives first-order benefit. Fig 1

Liability rule optimal for large uncertainty
Figure 2
The Optimal Agreement with Renegotiation

Proposition 2: (i) If the support of γ is sufficiently small, a property rule is optimal (specifically, the optimum is $b^D = 0$ if $E\gamma > \gamma^*$ and $b^D \geq \bar{b}^{prohib}$ if $E\gamma < \gamma^*$). (ii) If the support of γ is sufficiently large (on both sides of γ^*), the optimum is a liability rule, and in particular the optimal b^D satisfies $0 < b^D < \gamma^* < \bar{b}^{prohib}$.

- Opt. liability rule never makes injured party “whole,” i.e., $b^D < \gamma^*$
 - Intuition: compensation inefficient, so use it sparingly; a feature consistent with GATT *reciprocity* norm
- Empirical prediction if uncertainty primarily about political-economy shocks: liability rules for issue areas where political-economy shocks more intense; property rules where political-economy less important
 - GATT/WTO: tarrification channeled political pressures from QRs to tariffs; exporters less politically active than import-competing sectors
 - \Rightarrow export subsidies/QRs prohibited by property rule; tariffs and production subsidies regulated through liability rules
Renegotiation under the Optimal Agreement

- A prediction that derives from underlying pattern of equilibrium renegotiation:
 - Prohibitive property rule ($b^D \geq \bar{b}^{prohib}$) implies threat point of FT for all γ in support, and Prop 1 says no renegotiation from FT to P
 - Discretionary property rule ($b^D = 0$) renegotiated only for $\gamma < R(0)$, but if $\gamma < R(0)$ then liability rule optimal by Prop 2

Proposition 3: When a property rule is optimal, it is never renegotiated, and therefore entails no equilibrium transfers.

- Note: frequency of renegotiation/compensation in GATT/WTO has diminished through time; GATT/WTO has evolved towards system of property rules through time; Prop 3 links these observations
 - Evolution of GATT/WTO towards property rules may account for decline in frequency of renegotiation/compensation over time
Summary

- Argued that renegotiation and inefficient gov-to-gov transfers figure prominently in the GATT/WTO and other trade agreements.

- Derived predictions concerning the optimal form of the agreement, the conditions under which the agreement will be renegotiated in equilibrium, and the form that such renegotiation will take.

- Forged a link between the theory of trade agreements and the law-and-economics theory of optimal legal rules.

- Extensions: harm not perfectly verifiable, DSB can observe noisy signal (ongoing work); private information; continuous policies.

- Finally, in a multi-country setting, all propositions extend. But new question: How does expansion of membership affect tradeoff between liability/property rules?
 - if more members increases bargaining frictions, then property rules favored by expanding membership (see paper).
 - could help explain evolution of legal rules in GATT/WTO.
Many features of real-world trade agreements are hard to square with complete contracts perspective.

- Design of rules
 - mix of rigidity and discretion (GATT/WTO: tariff bindings, escape clause, domestic policies, national treatment)

- Settlement of disputes
 - role of court (GATT/WTO: interpretive, gap-filling, modification)

- Prominence of renegotiation
 - against backdrop of property and liability rules (GATT/WTO: quantitative restrictions, domestic subsidies)

Incomplete contracts perspective provides a promising approach.
We study the optimal design of trade agreements in a world where govs are subject to imperfectly verifiable political/economic shocks.

The model highlights role of transaction costs, renegotiation “in the shadow of the law,” and renegotiation “after the court has spoken.”

A key transaction cost sets trade agreements apart from domestic contracting setting: gov-to-gov compensation typically achieved through “self-help,” raising one’s own tariffs.

- The EU says it has obeyed WTO rulings by eliminating the harmful effect of government loans to Airbus, but Washington disagrees and is threatening up to $10 billion in sanctions. (NYTimes 9/24/2012)
- Entails a deadweight loss.
Optimal contract can take different forms, including “property rule” with/without “exceptions,” “liability rule” with/without “exceptions”

- Property rule: commitment treated like a property right. Liability rule: buyout possible under contractually specified damage payment
- If ex-ante uncertainty small or DSB can gather precise information, the optimum tends to be a property rule, possibly with exceptions
- When ex-ante uncertainty large and DSB information imprecise, the optimum tends to be a liability rule, possibly with exceptions

The model generates rich set of possibilities for outcomes of trade disputes

- Govs may reach “early settlement” or trigger DSB ruling; and in latter case ruling can be implemented or lead to post-ruling settlement
- Each of these possible on the equilibrium path
A novel feature of our approach: jointly determine optimal contract form and trade dispute outcomes, and generate testable predictions on how trade dispute outcomes should correlate with form of contract

- If optimum a liability rule, then both early and post-ruling settlement possible on equilibrium path. But if optimum a property rule, can be neither early nor post-ruling settlement on equilibrium path.
- If DSB accuracy increases, then holding the contract fixed, rate of early settlement should rise, but if contract evolves to property rule settlement rate should fall.

We examine these predictions in light of data on the outcomes of actual trade disputes in the GATT/WTO

- GATT evolved from system of liability rules toward system of property rules with creation of WTO (Jackson 1997, Pauwelyn 2008).
- Settlement rates first rose and then fell over GATT/WTO era; claims that would ultimately become property rules were relatively more likely to settle in GATT era, less likely to settle in WTO era.
- Our model can account for these broad empirical patterns.
The basic model

- A single industry; importing gov (H) chooses policy $T \in \{FT, P\}$; exporting gov (F) is passive in this industry.
- Gov-to-gov transfers are costly: b a pos/neg transfer from H to F; $c(b)$ the associated DWL (borne by H).
 - For tractability, assume $c(b) = c \cdot |b|$, with $c \in (0, 1)$.
- Importer’s payoff is $\omega = v(T) - b - c(b)$.
- Exporter’s payoff is $\omega^* = v^*(T) + b$.
- Joint payoff of the two govs: $\Omega = v(T) + v^*(T) - c(b)$.
- Importing gov’s gain from protection: $\gamma \equiv v(P) - v(FT) \geq 0$.
- Exporting gov’s loss from protection: $\gamma^* \equiv v^*(FT) - v^*(P) \geq 0$.
- Joint (positive or negative) gain from protection: $\Gamma \equiv \gamma - \gamma^*$.
The basic model

- “First best” outcome (joint surplus maximizing): if $\Gamma > 0$ then $T = P$ and $b = 0$, if $\Gamma < 0$ then $T = FT$ and $b = 0$
- Γ uncertain ex-ante. Both govs observe Γ ex-post, but Γ not verifiable by DSB, so govs cannot write complete contingent contract
- γ^* is ex-ante known to all, so all uncertainty in Γ comes from γ, and in interior of the support of γ, so first-best is P in some states ($\gamma > \gamma^*$) and FT in others ($\gamma < \gamma^*$)
- γ is not verifiable, but DSB can observe a noisy signal γ^{dsb} (DSB investigation)
- Assume the joint density of (γ, γ^{dsb}) is log-supermodular
- Look for contract that maximizes ex-ante expected joint surplus
Contracts and renegotiation

- Focus on menu contracts that allow H to choose between (i) setting FT and (ii) setting P and compensating F with $b^C \geq 0$ (damages).

- If DSB observes no signal (as in Maggi and Staiger, 2012) then b^C is fixed. But here contract can specify $b^C(\gamma^{dsb})$.
 - Interpretation: DSB is instructed, if invoked, to announce “ruling” $b^C(\gamma^{dsb})$ evaluated at realized signal (which constitutes disagreement point for post-ruling negotiation).

- We allow renegotiation of the contract and of the DSB ruling (if reached). Assume:
 - Govs have symmetric bargaining powers
 - Bargaining outcomes are enforceable
Timing of events

0 Govs write contract \(b^C(\gamma^{dsb}) \)

1 \(\gamma \) is realized and observed by govs

2 Govs Nash bargain over policy \(T \) and transfer \(b \)

3 If negotiation fails: DSB steps in, observes \(\gamma^{dsb} \) and issues ruling \(b^C(\gamma^{dsb}) \)

4 If DSB ruling issued: govs Nash bargain over \(T \) and \(b \) with disagreement point given by DSB ruling

Note possible dispute resolution:

— “early settlement”
— DSB invoked, ruling implemented (either \(FT \), \(or P \) and \(b^C(\gamma^{dsb}) \))
— DSB invoked, post-ruling settlement
Optimal contract

- Let $\tilde{\Omega}(b^C, \gamma)$ denote the joint gov payoff in stage-4 subgame.
- Expected joint payoff assoc with b^C as viewed by DSB in stage 4, where γ unknown but conditional on observed γ^{dsb}:

$$E_{\gamma|\gamma^{dsb}}[\tilde{\Omega}(b^C, \gamma)|\gamma^{dsb}] = \int \tilde{\Omega}(b^C, \gamma) h(\gamma|\gamma^{dsb}) d\gamma.$$

- The derivation of the optimal contract is simplified by the following:

Lemma 1: With $c(b) = c \cdot |b|$, the ex-ante optimal $b^C(\gamma^{dsb})$ maximizes $E_{\gamma|\gamma^{dsb}}[\tilde{\Omega}(b^C, \gamma)|\gamma^{dsb}]$.

- Thus we need not go through backward induction to derive the optimal contract: can focus directly on stage-4 subgame.
Let $\bar{b}_{\text{prohib}}(\gamma^{dsb})$ be min b^C s.t. H prefers FT for all $\gamma \in [\gamma(\gamma^{dsb}), \bar{\gamma}(\gamma^{dsb})]$

We say: b^C is prohibitive given signal γ^{dsb} if $b^C \geq \bar{b}_{\text{prohib}}(\gamma^{dsb})$

With this definition and supermodularity of the signal technology:

Proposition 1: (i) There exist $(\gamma_1^{dsb}, \gamma_2^{dsb})$ with $\gamma^{dsb} \leq \gamma_1^{dsb} \leq \gamma_2^{dsb} \leq \bar{\gamma}^{dsb}$ s.t. the optimal b^C is prohibitive for $\gamma^{dsb} \in (\gamma^{dsb}, \gamma_1^{dsb})$, decreasing for $\gamma^{dsb} \in (\gamma_1^{dsb}, \gamma_2^{dsb})$ and zero for $\gamma^{dsb} \in (\gamma_2^{dsb}, \bar{\gamma}^{dsb})$. (ii) The optimal b^C is (weakly) increasing in γ^*.

Interpret prohibitive b^C as property rule, $b^C \in (0, \bar{b}_{\text{prohib}}(\gamma^{dsb}))$ as liability rule, $b^C = 0$ as “escape”

Some interesting possibilities: Figure 2
Figure 2: possible types of contract
Under what conditions do we obtain each type of contract?

If DSB signal precise or ex-ante uncertainty about γ small, property rule optimal. Otherwise, liability rule optimal

Proposition 2: If the support of $\gamma|\gamma^{dsb}$ is sufficiently small for all γ^{dsb}, then the optimum is a property rule (with possible escape):

$\gamma_1^{dsb} = \gamma_2^{dsb}$

Proposition 3: If $\gamma|\gamma^{dsb}$ has full support for all γ^{dsb}, then the optimum is a liability rule (with possible escape):

$\gamma^{dsb} = \gamma_1^{dsb} < \gamma_2^{dsb}$

Basic argument: If support of $\gamma|\gamma^{dsb}$ small, a property rule not renegotiated for any γ, hence non-contingent policy but induces zero transfers;

a liability rule may achieve state-contingent policy, but associated benefit small because support of γ small, while cost not small because requires non-negligible transfer

\implies Cross-issue and time-series predictions about optimal rules
Now consider disputes and their resolution under optimal contract

To keep results sharp, add more structure. Assume:

- $\gamma_{dsb} = \gamma + \varepsilon$, where ε is independent of γ
- Support of ε symmetric around zero, $[-\bar{\varepsilon}, \bar{\varepsilon}]$, and $E(\varepsilon) = 0$
- DSB signal not too inaccurate ($\bar{\varepsilon}$ not too large)

Define “No dispute” outcome: stage-2 agreement with $b = 0$
When is there post-ruling settlement?

- Suppose a DSB ruling has been triggered. When is it implemented, and when is it renegotiated?

- When does renegotiation occur for a given b^C?
 - Threat point (DSB ruling) gives H option to choose between $(T = FT, b = 0)$ and $(T = P, b = b^C)$
 - H indifferent between options when $\gamma = (1 + c) \cdot b^C \equiv S(b^C)$
 - For $\gamma < S(b^C)$ threat point is $(T = FT, b = 0)$; for $\gamma > S(b^C)$ threat point is $(T = P, b = b^C)$. Figure 1

- Consider first $\gamma < S(b^C)$ where threat point is $(T = FT, b = 0)$
 - Renegotiation from $(T = FT, b = 0)$ to $(T = P, b = b^e)$ requires: $\gamma > S(b^e)$ (for the importer) and $b^e > \gamma^*$ (for the exporter)
 - Renegotiation toward P iff $S(\gamma^*) < \gamma < S(b^C)$. Region P_R in Fig 1
When is there post-ruling settlement?

- Note:
 - Never strictly optimal to set $b^C > \gamma^*$
 - DSB ruling never renegotiated towards P in equilibrium

- Consider next $\gamma > S(b^C)$ where threat point is $(T = P, b = b^C)$
 - Renegotiation from $(T = P, b = b^C)$ to $(T = FT, b = b^e)$ requires $S(b^C) - S(b^e) > \gamma$ (for importer) and $\gamma^* > b^C - b^e$ (for exporter)
 - Renegotiation toward FT iff $\gamma < S(b^C) - S(b^C - \gamma^*) \equiv R(b^C)$. Region FT_R in Figure 1

- Note, renegotiation can occur in equilibrium only for intermediate values of γ, not “extreme” states of world
Proposition 4: In equilibrium, if the DSB ruling is reached, then: (i) if \(b^C (\gamma^{dsp}) = 0 \) or \(b^C (\gamma^{dsb}) \geq \bar{b}^{prohib} (\gamma^{dsb}) \), the ruling will be implemented; (ii) if \(0 < b^C (\gamma^{dsb}) < \bar{b}^{prohib} (\gamma^{dsb}) \), the ruling will be renegotiated for an intermediate range of \(\gamma \).

Intuition comes from Figure 1: (i) if support of \(\gamma \) is very small the optimum is a property rule, and neither \(b^C = 0 \) nor \(b^C \geq \bar{b}^{prohib} \) is renegotiated; (ii) if support of \(\gamma \) is very large, \(b^C \in (0, \bar{b}^{prohib}) \) is renegotiated for intermediate levels of \(\gamma \).

Note: can happen that ruling is renegotiated even if \(\gamma^{dsb} \) close to \(\gamma \). So non-implemented DSB rulings not necessarily an indication that DSB ruling “got it wrong”.

Note: If there is an evolution in a rule from a liability (or mixed) rule to a property rule, then we should observe a fall in the probability of post-ruling settlement.
Remark 1: If the accuracy of DSB rulings increases, then the impact on the probability of post-ruling settlement is as follows:

- (i) in the “long run,” if the contract switches from a liability (or mixed) rule to a property rule, there will be a drop in the probability of post-ruling settlement; and
- (ii) in the “short run” with the contract held fixed, the probability of post-ruling settlement may either rise or fall.
When is there early settlement?

- At stage 2, govs bargain given the contract $b^C(\gamma^{dsb})$, with disagreement point given by DSB intervention.

- Derive Pareto frontier given γ, and identify expected disagreement point. Figure 3
 - In case of disagreement: DSB ruling, followed by post-ruling bargaining.
 - As b^C changes, outcome of post-ruling bargaining described by red locus in Figure 3.
 - Given distribution of ε, this generates disagreement point $E[D]$.

- If $E[D]$ outside Pareto frontier, DSB ruling triggered.

- If $E[D]$ on Pareto frontier, govs indifferent between triggering DSB ruling and agreeing on certainty-equivalent terms (T, b). Assume indifference broken in favor of latter (Figure 3).
 - If the agreement entails $b \neq 0$, interpret as “early settlement”; otherwise, interpret as “no dispute.”
Figure 3

Stage - 2 bargaining outcome, $\gamma < R(0)$

Stage - 2 bargaining outcome, $R(0) < \gamma < S(\gamma^*)$

Stage - 2 bargaining outcome, $\gamma > S(\gamma^*)$
When is there early settlement?

Proposition 6: (i) If the optimum is a noncontingent property rule, the outcome is always “no dispute.” (ii) If the optimum is a property rule with escape, the outcome is either “no dispute” or “DSB ruling” (with the latter always implemented), but never “early settlement.” (iii) If the optimum is a liability (or mixed) rule, any of the outcomes, including “early settlement,” may occur.

Intuition for (i)+(ii). If optimum is a property rule, uncertainty in $\gamma|\gamma^{dsb}$ must be small, so either

- support of γ small, action is where Pareto frontier is convex, and there cannot be early settlement (Figure 3);
- or DSB signal precise; in which case, if γ extreme (so Pareto frontier linear), govs have no uncertainty about DSB ruling, so no dispute

Note: If there is an evolution in a rule from a liability (or mixed) rule to a property rule, then we should observe a drop in the probability of early settlement.
Remark 2: If the accuracy of DSB rulings increases, then the impact on the probability of early settlement is as follows:

- (i) in the “long run,” if the contract switches from a liability (or mixed) rule to a property rule, there will be a drop in the probability of early settlement; and
- (ii) in the “short run” with the contract held fixed, the probability of early settlement rises (weakly).
What is the nature of settlement?

- **Proposition 7**: (i) Whenever the DSB ruling is renegotiated, the post-ruling settlement must be liberalizing, with the exporter compensating the importer and the importer agreeing to $T = FT$.
(ii) Early settlement can involve either $T = FT$ and the exporter compensating the importer, or $T = P$ and the importer compensating the exporter.

- Intuition for (i): with costly transfers, never optimal to induce renegotiation of ruling in states of the world where the threat point is the contractual obligation itself.

- Intuition for (ii): early settlement is prior to ruling, so either form of settlement possible.
Evidence

- We focus on the following predictions of our model
- Across rules: the rate of early and post-ruling settlement should be lower in disputes over property rules than in disputes over liability (or mixed) rules
- Across time: the rate of early and post-ruling settlement should fall over time for disputes about rules that evolve through time from liability (or mixed) rules to property rules
- Across time: if the accuracy of the DSB increases through time, then holding the contract fixed, the probability of early settlement should rise through time
- Maintained hypothesis (Hudec 1993, Jackson 1997, Pauwelyn 2008): GATT-I a system of liability rules, WTO a system of mostly property rules with a few liability rules, GATT-II a transitional system
Data

- A GATT/WTO dispute begins with request for consultation and claim of breached commitments: GATT-I (109 disputes), GATT-II (133 disputes), WTO (350 disputes)
- WTO-era classification of GATT rules: Table 1
<table>
<thead>
<tr>
<th>CLAIM</th>
<th>WTO-ERA CLASSIFICATION</th>
<th>PROPORTION OF CASES WHERE CLAIM INVOKED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondiscrimination</td>
<td>property</td>
<td>0.29</td>
</tr>
<tr>
<td>Schedule of concessions</td>
<td>property</td>
<td>0.23</td>
</tr>
<tr>
<td>National treatment</td>
<td>property</td>
<td>0.34</td>
</tr>
<tr>
<td>Film provisions</td>
<td>property</td>
<td>0.00</td>
</tr>
<tr>
<td>Transit</td>
<td>property</td>
<td>0.02</td>
</tr>
<tr>
<td>Antidumping/countervailing duty</td>
<td>property</td>
<td>0.61</td>
</tr>
<tr>
<td>Customs valuation</td>
<td>property</td>
<td>0.03</td>
</tr>
<tr>
<td>Fees/formalities</td>
<td>property</td>
<td>0.03</td>
</tr>
<tr>
<td>Marks of Origin</td>
<td>property</td>
<td>0.01</td>
</tr>
<tr>
<td>Administration of trade regulations</td>
<td>property</td>
<td>0.20</td>
</tr>
<tr>
<td>Quantitative restrictions</td>
<td>property</td>
<td>0.26</td>
</tr>
<tr>
<td>Balance of payments</td>
<td>property</td>
<td>0.00</td>
</tr>
<tr>
<td>Nondiscriminatory quotas</td>
<td>property</td>
<td>0.09</td>
</tr>
<tr>
<td>Exchange arrangements</td>
<td>property</td>
<td>0.01</td>
</tr>
<tr>
<td>Domestic subsidies</td>
<td>liability</td>
<td>0.06</td>
</tr>
<tr>
<td>Export subsidies</td>
<td>property</td>
<td>0.13</td>
</tr>
<tr>
<td>State trading</td>
<td>property</td>
<td>0.02</td>
</tr>
<tr>
<td>Government development assistance</td>
<td>property</td>
<td>0.02</td>
</tr>
<tr>
<td>Escape clause</td>
<td>property</td>
<td>0.09</td>
</tr>
<tr>
<td>General exceptions</td>
<td>property</td>
<td>0.01</td>
</tr>
<tr>
<td>Security exceptions</td>
<td>property</td>
<td>0.01</td>
</tr>
<tr>
<td>Violation nullification or impairment</td>
<td>property</td>
<td>0.03</td>
</tr>
<tr>
<td>Nonviolation</td>
<td>liability</td>
<td>0.20</td>
</tr>
<tr>
<td>Free trade agreements/customs unions</td>
<td>property</td>
<td>0.02</td>
</tr>
<tr>
<td>Modification of schedules</td>
<td>liability</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: See Data Appendix for specific GATT/WTO Articles associated with each claim.
Descriptive Findings

- Overall rates of settlement across GATT-I, GATT-II and WTO:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>0.47</td>
<td>0.60</td>
<td>0.55</td>
</tr>
<tr>
<td>Post-Ruling</td>
<td>0.21</td>
<td>0.28</td>
<td>0.12</td>
</tr>
<tr>
<td>Decline from Early to Post-Ruling</td>
<td>0.26</td>
<td>0.32</td>
<td>0.42</td>
</tr>
</tbody>
</table>

- Model can explain non-monotonicity across eras if (a) increase in DSB accuracy the dominant change from GATT-I to GATT-II and (b) broad-based conversion to property rules the dominant change in WTO

- Model can explain decline in early to post-ruling settlement rates as reflecting selection of property rule disputes for DSB rulings (with decline growing over time as importance of property rules grows)

- Mean rates of early settlement for all WTO-era property rule claims (ES_P) and liability rule claims (ES_L) across the GATT-I, GATT-II and WTO eras: Figure 4
Figure 4

Note: Bars represent the claim-weighted average rates of early settlement in a given era for claims that are classified as property (ESₚ) and liability (ESₗ) rules in the WTO era; see text for precise definitions.
Table 3
Table 3: Logit Coefficients

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Early Settlement (1)</th>
<th>Early Settlement (2)</th>
<th>Early Settlement (3)</th>
<th>Early Settlement Before Panel Request (4)</th>
<th>Early Settlement Before Panel Request (5)</th>
<th>Early Settlement Before Panel Request (6)</th>
<th>Early Settlement After Panel Request (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanatory variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant</td>
<td>0.5671** 0.4409 0.7187***</td>
<td>-0.2413 -0.2393 0.1690</td>
<td>-0.9391***</td>
<td>0.9411*** 0.4890 0.5815</td>
<td>0.7414*** 0.2281 0.1315</td>
<td>0.9445**</td>
<td></td>
</tr>
<tr>
<td>Developing respondent</td>
<td>0.2206 (0.3348) (0.2680)</td>
<td>(0.2145) (0.3369) (0.2555)</td>
<td>(0.2528) (0.7007) (0.8256)</td>
<td>(0.2440) (0.6946) (0.7693)</td>
<td>(0.3833)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WTO-era property rules:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National treatment</td>
<td>-0.7009*** -0.6081 -0.7399</td>
<td>-0.5562** 0.1277 -1.2572**</td>
<td>-0.2630</td>
<td>0.9445*** -1.2446 -0.4345</td>
<td>-0.4959 -0.5114 -0.3651</td>
<td>-1.1198**</td>
<td></td>
</tr>
<tr>
<td>Antidumping/countervailing duty</td>
<td>0.2656 (0.5193) (0.5031)</td>
<td>0.2660 (0.5537) (0.5647)</td>
<td>0.3968</td>
<td>0.3218 (1.2324) (0.7687)</td>
<td>0.3214 (1.2493) (0.7950)</td>
<td>0.5603</td>
<td></td>
</tr>
<tr>
<td>Admin of trade regts/fees/formalities</td>
<td>-0.6424** 0.4485 -2.0284**</td>
<td>-0.4976* 0.4625 -2.2370**</td>
<td>-0.9513**</td>
<td>-0.8534** 0.7641 -0.9145</td>
<td>-0.699* 0.9080 -0.3352</td>
<td>-0.4439</td>
<td></td>
</tr>
<tr>
<td>Escape clause</td>
<td>0.4134 (0.8656) (1.3375)</td>
<td>0.4227 (0.7760) (1.3498)</td>
<td>0.5054</td>
<td>0.8760** 0.7426</td>
<td>0.9031**</td>
<td>0.7094</td>
<td>0.6019</td>
</tr>
<tr>
<td>Export subsidies</td>
<td>0.4172</td>
<td>-0.0173</td>
<td>0.0949</td>
<td>0.4483</td>
<td>-0.0173</td>
<td>0.0949</td>
<td>0.7876</td>
</tr>
<tr>
<td>WTO-era liability rules:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonviolation</td>
<td>0.2811 -1.7494*** -1.4385**</td>
<td>0.8536** -2.4798*** -1.3102*</td>
<td>0.5054</td>
<td>0.2910 (0.5706) (0.6825)</td>
<td>0.2843 (0.7991) (0.7657)</td>
<td>0.4863</td>
<td></td>
</tr>
<tr>
<td>Domestic subsidies</td>
<td>0.1795 -0.7653 1.9571*</td>
<td>0.0864 -1.0429 2.4679**</td>
<td>-</td>
<td>0.6001 (0.7246) (1.0842)</td>
<td>0.6220 (0.8644) (1.0805)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>350 109 133</td>
<td>350 109 133</td>
<td>206</td>
<td>36.42 (8) 22.06 (7) 22.57 (8)</td>
<td>26.33 (8) 21.95 (7) 28.72 (8)</td>
<td>18.03 (7)</td>
<td></td>
</tr>
<tr>
<td>(\chi^2) (d.f.)</td>
<td>0.0755 0.1464 0.1262</td>
<td>0.0559 0.1557 0.1561</td>
<td>0.0806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1
"-" denotes claim omitted due to lack of use.
Conclusion

What explains the wide variation that is observed in the resolution of trade disputes?

A model of trade agreements with renegotiation and imperfectly verifiable information, which can generate a variety of dispute outcomes in equilibrium.

Governments may reach “early” settlement, they may trigger a DSB ruling and implement it, or they may reach a post-ruling settlement.

Predictions on how the dispute outcome depends on the contracting environment and how it correlates with the optimal contract form.

Initial support for the model’s predictions from data on the outcomes of actual trade disputes in the GATT/WTO.

Caveats. Theory: continuous policies; litigation costs; asymmetries across countries; enforcement. Empirics.
Trade Agreements, the Nature of Price Determination and Offshoring

Pol Antràs and Robert W. Staiger

Harvard & Wisconsin

October 2012
A fundamental question for modern research on commercial policy: What is the purpose of international trade agreements?

Answer has implications for understanding the design and operation of trade agreements that we observe.

Two broad views:
- Internalize international policy externalities
- Help governments make commitment to their own private sectors

International externality view dominates in accounting for observed features and operation of trade agreements.

But what form does the international externality take? And if the form of the externality changes, must trade agreements change to remain successful?
Theme 1: Nature of international price determination a key determinant of the nature of the international externality, can have profound impact on the design of an effective trade agreement.

Theme 2: Rise of offshoring may alter the design of effective trade agreements through its impact on the nature of price determination.

First discuss trade agreements and the nature of price determination (Antràs and Staiger, 2012).

Then through this lens discuss implications for trade agreements of rise in offshoring (Antràs and Staiger, forthcoming).
Terms-of-Trade Theory of Trade Agreements:

- in the Nash equilibrium, tariffs are inefficiently high but domestic policies are internationally efficient
- negotiations over tariffs alone, coupled with a “market access preservation rule,” can bring governments to the efficiency frontier – “shallow” integration

Nature of international price determination is important for these predictions:

- “deep” integration needed when prices are not fully disciplined by market clearing (bilateral bargaining)
Perfectly competitive trade model: Foreign (‘∗’) exports a single good to Home

- Measure $\frac{1}{2}$ of H consumers with demand $D(p)$
- Measure $\frac{1}{2}$ of F consumers with demand $D(p^*)$
- Measure 1 of firms in F with increasing-concave production technology $y^* = F(L^*)$
- Measure Λ of workers in each country paid a wage of 1 (pinned down by outside sector)
H has import tariff \(\tau \), F has both export tax \(\tau^* \) and labor subsidy \(s^* \) (applied only to the export sector), all defined in specific terms.

Governments are social welfare maximizers \((W \text{ and } W^*) \).

Efficient policies maximize world welfare and deliver \(T^e \equiv \tau^e + \tau^{*e} = 0, \ s^{*e} = 0 \). No surprise (no frictions).

Nash policies: FOCs \(\Rightarrow \tau^N = \hat{\rho}^*/\eta^*_E, \ \tau^{*N} = \hat{\rho}/\eta^*_M \) and \(s^{*N} = 0 \) (where all prices and elasticities are evaluated at the Nash policies).

Why isn’t \(s^{*N} \) distorted? \(\tau^* \) is first best for terms of trade manipulation in this setting.
Shallow integration: Suppose H agrees to eliminate its tariff and F agrees to eliminate its tariff and in addition F agrees to a “market access preservation” constraint on its future choices of s^*:

$$\frac{d\tau^*}{ds^*} = -\frac{d\hat{p}/ds^*}{d\hat{p}/d\tau^*}$$

Reflects essential mission of GATT/WTO rules: provide secure property rights over negotiated market access.

Then F solves

$$\frac{dW^*}{ds^*} = \frac{\partial W^*}{\partial s^*} - \frac{\partial W^*}{\partial \tau^*} \frac{d\hat{p}/ds^*}{d\hat{p}/d\tau^*} = 0$$

with W^* evaluated at $\tau = 0$.

Delivers $s^{*R} = 0$ and $\tau^{*R} = 0$. Hence, with $\tau = 0$, efficiency frontier achieved.
Does this result depend on absence of market power?

A monopoly firm in F; H and F markets segmented
- special form of imperfect competition, but insights are more general

Efficient policies $T^e = 0$, $s^e = 1/\eta^*_D$: No role for tariffs, but F subsidizes labor to ensure that price in each market is equated to marginal cost

Nash policies: FOCs $\Rightarrow \tau^N = -\hat{x} / (d\hat{x}/d\tau) - \hat{p}/\eta_D$, $\tau^*_N = \hat{p}^*/\eta^*_D$ and $s^{*N} = 1/\eta^*_D$ (with all prices/elasticities evaluated at the Nash policies)

Note: $s^{*N} \neq s^e$, but conditional on trade volume s^{*N} (and s^{*R}) is efficient
Shallow integration: Suppose H agrees to eliminate its tariff and F agrees to set its tariff at a level $\bar{\tau}^*$ s.t. $\hat{x}(s^N, 0 + \bar{\tau}^*) = \hat{x}(s^e, T^e)$, and F agrees to constrain its future choices of s^* according to

$$\frac{d\tau^*}{ds^*} = \frac{-d\hat{x}/ds^*}{d\hat{x}/d\tau^*}$$

Then F solves

$$\frac{dW^*}{ds^*} = \frac{\partial W^*}{\partial s^*} - \frac{\partial W^*}{\partial \tau^*} \frac{d\hat{x}/ds^*}{d\hat{x}/d\tau^*} = 0$$

with W^* evaluated at $\tau = 0$

Delivers $s^{*R} = s^e$ and $\tau^{*R} = 0$. Hence, with $\tau = 0$, efficiency frontier again achieved (key: $s^{*R} = s^e$ conditional on efficient trade volume)
Now suppose international prices determined by bilateral bargaining

Measure 1 of consumers each matched with measure 1 of producers; no possibility of rematching (0 outside option of the agents)

- extreme assumption but results generalize to any pricing not fully disciplined by market clearing

Each producer produces an amount of x with the production function $F(L)$ in anticipation of payoff obtained upon matching

Consumer utility $u(x)$, where u is increasing and concave

With cost of producing x sunk at time of matching, consumer and producer Nash bargain over the surplus, with producer capturing share $\alpha \in (0, 1)$
International match: F seller takes her good to H market; tariff costs not sunk at time of bargaining, so ex-post surplus over which parties negotiate is

\[S(L, \tau + \tau^*) \equiv u(F(L)) - (\tau + \tau^*) F(L) \]

Labor \(L \) hired by F selling to H is then determined by maxing

\[\alpha S(L, \tau + \tau^*) - (1 - s^*) L, \text{ which defines } \hat{L}(s^*, \tau + \tau^*) \text{ and trade volume } F(\hat{L}) \]

Local (F) match: tariffs irrelevant to bargaining surplus, so labor hired by F selling to F is \(\hat{L}^*(s^*) \) and production for local sales is \(F(\hat{L}^*) \)
Matching Model

- Efficient policies $T^e = 0$, $s^* = 1 - \alpha$: no role for tariffs, and F labor subsidy resolves the under-investment in L
- Nash policies: $\text{FOCs} \Rightarrow \tau^N + \tau^N > 0$, $s^N > 1 - \alpha$
- Hence, $T^N > T^e$, but now s^N is inefficient even conditional on trade volume
Consider F’s preferred τ^* and s^* to deliver efficient trade volume.

Efficient trade volume is $F(\hat{L}(1 - \alpha, 0))$, so starting from efficient policies changes in τ^* and s^* must satisfy

$$\frac{d\tau^*}{ds^*} = -\frac{d\hat{L} / ds^*}{d\hat{L} / d\tau^*}$$

Then F solves

$$\frac{dW^*}{ds^*} = \frac{\partial W^*}{\partial s^*} - \frac{\partial W^*}{\partial \tau^*} \frac{d\hat{L} / ds^*}{d\hat{L} / d\tau^*} = 0$$

Delivers $s^{*R} > s^{*e}$. Hence, shallow negotiations cannot achieve the efficiency frontier.
Matching Model: Another Interpretation

- “World” /exporter price:

\[\hat{p}_w = \frac{\alpha u(F(\hat{L}))}{F(\hat{L})} + (1 - \alpha) \tau^* - \alpha \tau \]

- But \(\frac{d\hat{L}}{ds^*} > 0 \), so F maintains trade volume with an increase in \(\tau^* \) and \(s^* \) while raising \(\hat{p}_w \) and improving its terms of trade.

- Shallow integration cannot fully eliminate terms-of-trade manipulation when international prices are determined through bargaining.

- But if negotiations impose \(s^* = s^{*e} \) (i.e., “deep” integration), then efficiency frontier is immediately achieved.
According to ToT theory, Nash tariffs inefficiently high but domestic policies internationally efficient, market access/shallow integration approach can achieve efficiency.

But when prices are not fully disciplined by market clearing (bilateral bargaining), deep integration needed.

How much are international prices disciplined by market clearing?

- arguably less and less so with the increase in offshoring (Antrás and Staiger forthcoming)

How sensitive is the performance of the market-access/shallow integration approach to the nature of international price determination?

- some suggestive evidence: rise of deep-integration FTAs (Orefice and Rocha 2011)

Important questions for the architecture of the WTO moving forward
Offshoring and the Role of Trade Agreements

- Offshoring the production of inputs an increasingly dominant feature of the world economy
 - has come to symbolize the current wave of “globalization”

- Now examine the role and design of trade agreements in the presence of offshoring
Intermediate inputs often customized/involves costly search, and hence exhibit lock-in for buyers and sellers.

Contractual safeguards for international transactions difficult to enforce.

Two features of offshoring implied:

- Terms of trade determined by *bilateral bargaining* between foreign suppliers and domestic producers, not disciplined by market clearing considerations.
- Potential for *international hold up*.

Show that second feature can give rise to activist role for trade policy, but first feature has fundamental implications for the role and design of trade agreements.
Main Findings

- The rise in offshoring complicates the task of trade agreements in two ways:
 - mechanism for international cost-shifting is more complex and extends to wider set of policies, so negotiations must extend to wider set of policies as well
 - underlying problem that a trade agreement must address in the presence of offshoring varies with the political preferences of member governments

- Implication of rise in offshoring for design of trade agreements:
 - increasingly difficult for governments to rely on traditional GATT/WTO concepts and rules – such as market access, reciprocity and non-discrimination – to help them solve their trade-related problems

- Some suggestive evidence:
 - signs of greater difficulty liberalizing trade through WTO negotiations in sectors where customized inputs are especially prevalent (Figure 1)
good over which the negotiations occur. Specifically, for a sample of 16 countries that joined the WTO after its creation in 1995, Figure 1 shows that tariff concessions were markedly greater in sectors with low levels of input customization – which we measure, following Nunn (2007), as the share of an industry’s inputs not traded in organized exchanges – than in sectors with high levels of input customization. While only suggestive, the pattern displayed in Figure 1 points to the possibility that countries have more difficulty liberalizing trade through WTO negotiations in sectors where customized inputs are especially prevalent, broadly in line with our message above.

Our paper is related to several literatures. First, as emphasized above, by exploring the role of trade agreements in a model with intermediate input trade and in an environment with relationship-specific investments and incomplete contracting, we complement and extend an established literature on international trade agreements (see Bagwell and Staiger, 2010, for a recent review). In suggesting a novel rationale for trade agreements, our paper also complements the recent papers of Ossa (2011) and Mrazova (2009). Second, by considering endogenous trade policy choices in this

5 Figure 1 is constructed using the same data and methodology as Figure 1 in Bagwell and Staiger (2011) (see that paper for details). Nunn’s (2007) input contractibility measure was merged into the dataset using a concordance available from the BEA website. Nunn (2007) also proposes an alternative measure that treats goods referenced in trade publications as homogenous goods. With that alternative measure, the relationship between tariff concessions and the degree of input customization is less clear-cut.

6 This possibility is reinforced from a different angle by the empirical results of Oreife and Rocha (2011). They find that the importance of trade in parts and components between two countries as a share of their total trade is a significant predictor that the two countries will sign a “deep” preferential agreement containing provisions of a domestic regulatory nature. As we discuss further in the conclusion, such findings suggest that WTO-member governments whose countries have experienced significant increases in offshoring may see preferential agreements as a way to achieve the deep integration and idiosyncratic bargains that WTO commitments in their current form can not adequately provide.
Plan for Remainder of Talk

- Sketch of the Benchmark Model
- Nash Trade Policy
- Trade Agreements: Beyond Market Access
- Benchmark Model with Political Economy
- Trade Agreements: Beyond the Terms of Trade
- Sensitivity
- Final Thoughts & Some Open Questions
Two small countries, H and F, face fixed price at which a final good 1 is available on world markets.

Consumer preferences in country $j \in \{H, F\}$ given by
\[U^j = c_0^j + u \left(c_1^j \right); \quad u' > 0 \text{ and } u'' < 0 \]

Numeraire good 0 is costlessly traded / always consumed in both H and F.

Choose units so (fixed) price of good 1 on world markets is 1; with free trade, price is 1 everywhere.
Setup

• Good 1 produced with customized input x according to concave $y(x)$
• Producers in H must import x from suppliers in F
• Choose units so (fixed) marginal cost of x in F is 1; for now trade in x is free
• Note: production efficiency requires $y'(x^E) = 1$
• Ex-ante contracts ruled out (e.g., unverifiable quality), hence:
 • the price at which each supplier in F sells its inputs to a producer in H is decided ex-post (through bargaining) once investment in x has been made
• All agents have ex-ante zero outside option
• Unit measure of producers in H and suppliers in F randomly matched
stage 1. Match occurs; if both agents stay with the match, producer provides supplier with list of customized input specifications; otherwise both exit and receive zero outside option.

stage 2. Each supplier decides on amount x of customized input to produce.

stage 3. Each producer-supplier pair (Nash) bargains over price of the input, with bargaining weights α and $(1 - \alpha)$ for home producer and foreign supplier, resp.

stage 4. Each producer in H imports x from its partner-supplier; produces the final good with the acquired x; payments agreed in stage 3 are settled.
Consider *stage 3* for producer in *H* and supplier in *F* matched in *stage 1*

<table>
<thead>
<tr>
<th>agm. jt. p/o</th>
<th>$y(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/agm. p/o</td>
<td>pr: 0</td>
</tr>
<tr>
<td>quasi-rents</td>
<td>$y(x)$</td>
</tr>
<tr>
<td>stage-3 p/o</td>
<td>pr: $\alpha y(x)$</td>
</tr>
</tbody>
</table>

In *stage 2*, input supplier chooses x to maximize $(1 - \alpha)y(x) - x$, so the optimal quantity \hat{x} of input satisfies $(1 - \alpha)y'(\hat{x}) = 1$

Note: $\hat{x} < x^E$ for $\alpha > 0$; under-investment associated with hold up

Proposition 1 *In the Benchmark Model, a hold-up problem exists under free trade, leading to an inefficiently low volume of input trade ($\hat{x} < x^E$).*
Constrained-Efficient Trade Policy

- International nature of hold-up problem makes organizational/contractual remedies especially problematic.

In the absence of these remedies, can trade policy help to alleviate hold-up?

Stage 0. A social planner selects a home-country trade tax τ_1^H on the final good 1, a home-country import tax τ_x^H on home imports of the input x, and a foreign-country export tax τ_x^F on foreign exports of the input x.

Note: $p_1^H = (1 + \tau_1^H)$

Define $\tau_x \equiv (\tau_x^H + \tau_x^F)$.
Constrained-Efficient Trade Policy

Consider stage 3 for producer in H and supplier in F matched in stage 1

<table>
<thead>
<tr>
<th>agm. jt. p/o</th>
<th>$(1 + \tau_1^H) y(x) - \tau_x x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/agm. p/o</td>
<td>pr: 0</td>
</tr>
<tr>
<td>quasi-rents</td>
<td>$(1 + \tau_1^H) y(x) - \tau_x x$</td>
</tr>
<tr>
<td>stage-3 p/o</td>
<td>pr: α q.r.</td>
</tr>
<tr>
<td></td>
<td>spl: $(1 - \alpha)$ q.r.</td>
</tr>
</tbody>
</table>

In stage 2, input supplier chooses x according to FOC

$$(1 - \alpha) \left(1 + \tau_1^H\right) y'(\hat{x}) = 1 + (1 - \alpha) \tau_x,$$

implicitly defining $\hat{x}(\tau_1^H, \tau_x)$. Note: If $\tau_1^H = 0$, then $\tau_x^E \equiv -\alpha / (1 - \alpha)$ achieves $\hat{x} = x^E$ w/o consumption distortion

Proposition 2 In the Benchmark Model, the constrained-efficient trade policy choices maintain free trade in the final good and subsidize importation of the input so as to solve the hold-up problem and achieve an efficient volume of input trade ($\hat{x} = x^E$).
Does H have a unilateral incentive to “do the right thing?”

stage 0. The home government H selects a trade tax τ^H_1 on the final good 1, and a trade tax τ^H_x on the imported input x; the foreign government F remains passive, i.e., $\tau^F_x \equiv 0$

- Two goals for H: achieve the desired \hat{x}; and extract inframarginal surplus from F’s supplier
Unilateral Home Policy

- Inframarginal surplus extraction:

\[
\frac{d\pi^F(\tau^H_1, \tau^H_x(\tau^H_1))}{d\tau^H_1}\bigg|_{d\hat{x}=0} = (1 - \alpha) \hat{x} \left[\frac{y(\hat{x})}{\hat{x}} - y'(\hat{x}) \right]
\]

- What stops \(H \) from extracting all surplus from foreign suppliers?

\[
\frac{dW^H(\tau^H_1, \tau^H_x(\tau^H_1))}{d\tau^H_1}\bigg|_{d\hat{x}=0} = \tau^H_1 \frac{\partial D^H_1}{\partial p^H_1} - (1 - \alpha) \hat{x} \left[\frac{y(\hat{x})}{\hat{x}} - y'(\hat{x}) \right]
\]

- Negative at \(\tau^H_1 = 0 \) due to concavity of \(y(x) \). Hence, \(\hat{\tau}^H_1 < 0 \)
- Note: \(\tau^H_1 = 0 \) efficient for any level of \(\hat{x} \):

\[
\frac{dW^W(\tau^H_1, \tau^H_x(\tau^H_1))}{d\tau^H_1}\bigg|_{d\hat{x}=0} = \tau^H_1 \frac{\partial D^H_1}{\partial p^H_1}
\]

- Hence, \(p^H_1 = (1 + \tau^H_1) \) inefficiently low for any level of \(\hat{x} \)
Desired \hat{x} satisfies

$$y' (\hat{x}) = 1 - (1 - \alpha) \frac{\hat{x}}{\partial \hat{x}/\partial \tau^H_x} > 1$$

Hence, $\hat{x} < x^E$
stage 0. The home government H selects a trade tax τ_{1}^{H} on the final good 1, and a trade tax τ_{x}^{H} on the imported input x; simultaneously, the foreign government F selects a trade tax τ_{x}^{F} on the exported input x.

- F has no reason to distort τ_{1}^{F}, and can pass cost of $\tau_{x}^{F} > 0$ on to producers in H who accept lower bargaining surplus.

- **Proposition 3** In the Nash equilibrium of the Benchmark Model, F maintains free trade in the final good and taxes the exports of the input, while H intervenes in both the final-good and input markets, resulting in (i) an inefficiently low volume of input trade ($\hat{x} < x^{E}$), and (ii) an inefficiently low local price for the final good in H’s market.
Two inefficiencies to correct: inefficiently low volume of input trade, and inefficiently low local price for the final good in H’s market.

Hence, an agreement on input trade volume alone cannot achieve efficiency frontier in presence of offshoring.

To see why, suppose F agrees to $\bar{\tau}_x^F$ and H may choose τ_1^H and τ_x^H to satisfy $\hat{x}(\tau_1^H, \tau_x^H + \bar{\tau}_x^F) = x^E$. Then H’s choices satisfy

$$\frac{dW^H(\tau_1^H, \tau_x^H(\tau_1^H), \bar{\tau}_x^F)}{d\tau_1^H} \bigg|_{d\hat{x}=0} = \tau_1^H \frac{\partial D_1^H}{\partial \rho_1^H} - (1 - \alpha) x^E \left[\frac{y(x^E)}{x^E} - y'(x^E) \right] = 0$$

implying $\tau_1^H < 0$

So efficiency requires negotiations over τ_x^H, τ_x^F and τ_1^H.
Interpreting Inadequacy of Market Access Focus

- Define p_x^*, the *international* (untaxed) price negotiated in stage 3 for exchange of inputs between foreign supplier and home producer:

$$p_x^*(\tau_1^H, \tau_x^H, \tau_x^F) \equiv (1 - \alpha) (1 + \tau_1^H) \frac{y(\hat{x}(\tau_1^H, \tau_x))}{\hat{x}(\tau_1^H, \tau_x)} - (1 - \alpha) \tau_x^H + \alpha \tau_x^F$$

- But

$$\frac{dp_x^*(\tau_1^H, \tau_x^H(\tau_1^H), \bar{\tau}_x^F)}{d\tau_1^H} \bigg|_{d\hat{x}=0} = (1 - \alpha) \left[\frac{y(\hat{x})}{\hat{x}} - y'(\hat{x}) \right] > 0$$

$$\implies \frac{dW^H(\tau_1^H, \tau_x^H(\tau_1^H), \bar{\tau}_x^F)}{d\tau_1^H} \bigg|_{d\hat{x}=0}$$

$$= \tau_1^H \frac{\partial D_1^H}{\partial p_1^H} - \chi \frac{dp_x^*(\tau_1^H, \tau_x^H(\tau_1^H), \bar{\tau}_x^F)}{d\tau_1^H} \bigg|_{d\hat{x}=0} = 0$$

- Evidently, market access focus inadequate because H retains policy flexibility to manipulate its ToT
Absent offshoring and the bilateral bargaining over international price that offshoring implies, an agreement over input trade volume would work (ToT theory)

Proposition 4 *In the presence of offshoring, an efficient trade agreement must achieve deep integration, requiring governments to agree to constraints on policies that extend beyond market access commitments.*

Note: Propositions 3 and 4 hold for $\alpha \rightarrow 0$, and hence regardless of whether lock-in effect leads to hold-up problem

Key for the results is bilateral determination of prices resulting from lock-in effects
Introduce political economy weights:

\[W^j = CS^j + \gamma^j \pi^j + \text{Trade Tax Revenue}^j, \quad \text{with } \gamma^j \geq 1, \quad \text{for } j \in \{H, F\} \]

- Can ensure that model predicts import tariffs and export subsidies with sufficient political economy forces
- Focus on different point: in the presence of offshoring, political economy leads to new inefficiencies that are not associated with international cost-shifting
To establish this point, useful to express home and foreign government welfare in terms of local and international prices that policies induce:

\[W^H = \bar{W}^H \left(p_1^H(\tau_1^H), \ p_x^H(\tau_1^H, \tau_x), \ p_x^F(\tau_1^H, \tau_x), \ p_x^*(\tau_1^H, \tau_x, \tau_x) \right) \]

and

\[W^F = \bar{W}^F \left(p_1^H(\tau_1^H), \ p_x^H(\tau_1^H, \tau_x), \ p_x^F(\tau_1^H, \tau_x), \ p_x^*(\tau_1^H, \tau_x, \tau_x) \right) \]

And world welfare:

\[W^W = \bar{W}^W \left(p_1^H(\tau_1^H), \ p_x^H(\tau_1^H, \tau_x), \ p_x^F(\tau_1^H, \tau_x) \right) \]
Efficient policies satisfy:

\[
\tilde{W}^W_{p^H_1} \frac{\partial p^H_1}{\partial \tau^H_1} + \tilde{W}^W_{p^H_x} \frac{\partial p^H_x}{\partial \tau^H_x} + \tilde{W}^W_{p^F_1} \frac{\partial p^F_1}{\partial \tau^F_1} + \tilde{W}^W_{p^F_x} \frac{\partial p^F_x}{\partial \tau^F_x} = 0
\]

\[
\left(\frac{\partial p^H_1}{\partial \tau^H_1} + \frac{\partial p^H_x}{\partial \tau^H_x} \frac{d \tau^H_x}{d \tau^H_1} \right)_{dp^*_x = 0} = 0
\]

At efficient policies, a small change in \(\tau^x_1 \) must have no first-order impact on world welfare.

And small changes in \(\tau^H_1 \) and \(\tau^H_x \) that hold fixed \(p^*_x \) and hence \(p^F_1 \) must have no first-order impact on world welfare either.
Note. An increase in τ^H_1 that is accompanied by a change in τ^H_x which prevents p^*_x from changing must *alter* the equilibrium volume of input trade \hat{x}:

$$
\frac{\partial \hat{x}(\tau^H_1, \tau_x)}{\partial \tau^H_1} + \frac{\partial \hat{x}(\tau^H_1, \tau_x)}{\partial \tau_x} \frac{d\tau^H_x}{d\tau^H_1} \bigg|_{dp^*_x=0} \left[\frac{y^{'\prime}(\hat{x})}{\hat{x}} - y^\prime (\hat{x}) \right] \hat{x} = \frac{p^H_1 \left(\left[\frac{y^\prime(\hat{x})}{\hat{x}} - y^\prime (\hat{x}) \right] + \hat{x}y^\prime'' \right)}{\neq 0}
$$

- This is why efficiency requires that the impacts of small changes in τ^H_1 and τ^H_x that hold fixed p^*_x must have no first-order impact on home *and* foreign welfare.
- Different from ToT theory, where foreign welfare automatically unaffected; comes from bilateral bargaining over p^*_x.

Source: Antràs and Staiger (Harvard & Wisconsin)
Nash policies satisfy:

\[
\tilde{W}_W \frac{\partial p^H_x}{\partial \tau_x} + \tilde{W}_F \frac{\partial p^F_x}{\partial \tau_x} = -\hat{x}^N
\]

and

\[
\tilde{W}^H_{p^1_x} + \tilde{W}^H_{p^H_x} \left(\frac{\partial p^H_x}{\partial \tau^H_1} + \frac{\partial p^H_x}{\partial \tau_x} \frac{d \tau^H_x}{d \tau^H_1} \bigg|_{dp^*_x=0} \right) = 0
\]

Easy to see: Nash not efficient; not surprising, as international cost-shifting motive still active when political economy motives present

More interesting question: Is international cost-shifting still the only source of inefficiency?
Political Optimum: unilateral choices “as if” $\bar{W}_{p_x^*}^H \equiv 0 \equiv \bar{W}_{p_x^*}^F$. If efficient, then int. cost-shifting (“ToT manipulation”) is the problem.

Politically Optimal policies imply:

\[
\bar{W}_{p_x^*}^W \frac{\partial p_x^H}{\partial \tau_x} + \bar{W}_{p_x^*}^W \frac{\partial p_x^F}{\partial \tau_x} = 0
\]

\[
\bar{W}_{p_1^*}^H + \bar{W}_{p_x^*}^H \left(\frac{\partial p_x^H}{\partial \tau_{1*}^H} + \frac{\partial p_x^H}{\partial \tau_x} \left(\frac{d\tau_x^H}{d\tau_{1*}^H} \right) \bigg|_{d\tau_{1*}^H=0} \right) = 0
\]

But at political optimum, also have

\[
\bar{W}_{p_1^*}^F + \bar{W}_{p_x^*}^F \left(\frac{\partial p_x^H}{\partial \tau_{1*}^H} + \frac{\partial p_x^H}{\partial \tau_x} \left(\frac{d\tau_x^H}{d\tau_{1*}^H} \right) \bigg|_{d\tau_{1*}^H=0} \right) = \left(\gamma^F - 1 \right) \hat{x} \left[\frac{y(\hat{x})}{\hat{x}} - y'(\hat{x}) \right] > 0
\]

When $\gamma^F > 1$, PO inefficient; ToT manipulation not the only problem.
A trade agreement can generate additional Pareto gains beyond providing governments with an avenue of escape from a ToT-driven Prisoners’ Dilemma.

Beginning from PO, a small increase in τ_H^1 coupled with a change in τ_H^x that leaves p_x^* unchanged implies second-order loss for H but first-order gain for F.

- τ_H^x and τ_F^x can then be adjusted holding τ_x^x fixed to compensate H and still leave F with gain.

What is new problem to solve?
Recall: trade volume \hat{x} will be altered as a result of the policy adjustments described above and at PO, F’s politically motivated government is offering an export subsidy to its input producers.

Impact on W^H is second-order, but impact on W^F is

$$dW^F = \gamma^F [p^F_x - 1] d\hat{x} + \tau^F d\hat{x}.$$

When $\gamma^F = 1$, PO implies $p^*_x = 1$ and dW^F simplifies to

$$dW^F = \gamma^F [p^*_x - 1] d\hat{x} = 0.$$

But when $\gamma^F > 1$, $dW^F > 0$ because H’s policies can help provide a more efficient means of redistributing income toward input suppliers in F than is possible with F’s own policies alone.

\implies a need for additional international policy coordination beyond that required to eliminate ToT manipulation.
Proposition 5: In the presence of offshoring, an efficient trade agreement must serve two roles: it must provide governments with an avenue of escape from a terms-of-trade driven Prisoners’ Dilemma; and when the foreign government objectives include political economy considerations, it must coordinate the setting of policies across countries so as to reduce the deadweight loss associated with export promotion programs for traded intermediate inputs.
Sensitivity

- Secondary Market
- Ex-Ante Lump-Sum Transfers
- Other Extensions:
 - Vertical Integration
 - Multiple Foreign Countries and Search Costs
 - Ad Valorem Tariffs
 - Domestic Suppliers
 - Two-sided Investments
Final Thoughts & Some Open Questions

- How much are international prices disciplined by market clearing?
 - arguably less and less so with the increase in offshoring
- How sensitive is the performance of the market-access/shallow integration approach to the nature of international price determination?
- And how sensitive is the performance of reciprocity/non-discrimination rules to the nature of international price determination?
 - novel “political externalities”
- Some suggestive evidence
 - rise of deep-integration FTAs (Orefice and Rocha 2011)
 - signs of greater difficulty liberalizing trade through WTO negotiations in sectors where customized inputs are especially prevalent (Figure 1, Antràs and Staiger forthcoming)
- Important questions for the architecture of the WTO moving forward