Are Racial Identities Endogenous?

Race Change and Vote Switching in the 2012-2016 US Presidential Elections

Abstract

Although racial identity is usually assumed to be unchanging, recent research shows otherwise. The role of politics in racial identification change has received little attention. Using panel data with waves around the last two presidential elections, this paper reveals survey evidence of race change and its strong relationship with vote switching patterns. Across several models and robust to various controls, switching from a non-Republican vote in 2012 to a 2016 Republican vote (i.e., non-Romney to Trump) significantly predicts nonwhite to white race change. Among nonwhites who did not vote Republican in 2012, switching to a Republican vote in 2016 increases the probability of adopting a white racial identity from a 0.03 baseline to 0.38 (962% increase). The systematic relationship arguably does not suffer from measurement error, fails to appear for the 2008-2012 election period, and makes theoretical sense in light of 2016 campaign rhetoric and trends in political-social identity alignment.
Racial identification is the strongest demographic correlate of vote choice in American politics. Social scientists across many disciplines routinely assume that race is a stable and exogenous predictor of a wide range of attitudes and behaviors. Nevertheless, researchers have begun to document individual level changes in racial identification. Linked censuses between 2000 and 2010 show 6.1 percent of Americans alter their reported race, and similar amounts change in short-term U.S. Census reinterviews (Liebler et al., 2017). Historical accounts using 19th-20th century Census data demonstrate “racial passing” among Blacks and its association with relocating to white-heavy communities (Nix and Qian, 2015). Saperstein and Penner (2012) find changes in racialized traits like unemployment, poverty, and urbanicity drive race change over two decades. Davenport (2018) shows how racial and socioeconomic contexts shape biracials’ reported races.

Despite evidence undermining assumptions about race as fixed and exogenous, the potential for political factors to change in tandem with race has received little attention. Given that partisanship can shape identities outside the political realm (e.g., Margolis, 2018), politics’ influence could conceivably extend to a trait such as race. Panel data with survey interviews of Americans in 2011 and 2016 elucidates whether change in a prominent form of political behavior – presidential vote choice – is associated with racial identity change.

Theory and Expectations

We have a few reasons to expect a link between voting patterns and racial change. First, racial campaign rhetoric framed the 2016 election around identity (Sides, Tesler and Vavreck, 2018), raising the salience of both outgroup and ingroup identities (Jardina, 2019). Trump’s embrace of white identity and nonwhite hostility contrasted heavily with Clinton’s racial

1 Any individual level analysis of vote choice would reveal this. See Finkel (1993) as an example.
2 One exception is Egan (2018), who uses panel data to show ideological partisans changing social identities to better match their party’s stereotypical groups. On race-related outcomes, this occurs only for Latino ethnicity. The current study focuses on a different predictor (vote choice, a behavior, not an attitude), specifically on race as the outcome, and different time periods (emphasizing an election period).
liberalism and nonwhite compassion (Sides, Tesler and Vavreck, 2018). Such rhetoric may have induced conformance to group stereotypes, with new group entrants – vote switchers – feeling the strongest need to demonstrate their belonging. Second, “social sorting” posits that growing within-party identity alignment exerts pressure for congruence among individuals who hold inconsistent identities (Mason and Wronski, 2018). Loyalty to one’s side during an identity-focused election could have further impelled individuals to make part of their identity (race) more congruent with their vote. Accordingly, we hypothesize that changes in vote choice between 2012 and 2016 are associated with evolving racial identities. People who switched their votes from non-Republican in 2012 to Republican in 2016 (into a Trump vote) were more likely to change their racial identification from nonwhite to white (H1). Similarly, those who switched their votes from non-Democrat in 2012 to Democrat in 2016 (into a Clinton vote) were more likely to change their racial identification from white to nonwhite (H2).

Data

We use data from the Democracy Fund’s Voter Study Group (VSG) panel, which contains interviews of the same 8,000 Americans in December 2011, November 2012, and December 2016. As the only known panel dataset with waves before and after the 2016 election and contemporaneous measures of vote and race around the last two elections, the VSG provides the data best suited to testing the hypotheses. The independent variable, vote switching, draws on post-election measures of vote choice in 2012 and 2016. The dependent variable is change in racial identity from 2011 to 2016. Condensed forms of these variables appear in the analysis. A “Non-Republican vote” represents any choice except voting for a Republican (other candidates, non-voting, survey nonresponse) while “Republican vote” is preference for a Republican; the same is used for the Democratic side. Race appears as either white or nonwhite status. The latter encompasses nonwhite races/ethnicities (Black, Hispanic, Asian, etc.) and survey nonresponse. While variable constructions include survey item nonresponse
in order to fully use data, results are not sensitive to excluding nonresponse.\(^4\)

Both racial identity and presidential vote change for some respondents in the data. Among 2011 nonwhite respondents, 4.64 percent changed their identity to white in 2016, while 3.58 percent of whites switch to nonwhite five years later. Switching to a white identity occurs largely among original Other, Mixed, Hispanic, and Native American identifiers, consistent with past findings (Liebler et al., 2017). Similar subgroups underlie white to non-white change. For vote choice, 13.57 percent of original non-Republican voters switch to Republican in 2016, while 10.66 percent of original non-Democratic voters vote Democrat in 2016, (previous out-party voters and non-voters make up these groups).\(^5\)

Changes in racial identity and vote choice are correlated: among nonwhites switching into a Republican vote in 2016, 9.84% reported a white identity (among those who did not switch, only 4.23% did). Trump switching and nonwhite to white change are related beyond chance ($\chi^2=6.37$, df=1, $p = 0.01$), but Clinton switching and white to nonwhite change are not ($\chi^2=.46$, df=1, $p = 0.50$). The relationships between race change and vote switching could be due to other variables. We thus estimate logistic regression models of race change that include seven control variables: age, gender, college graduate, a whites feeling thermometer, home zip code white\% (logged), racial identity importance, and a measurement error indicator.\(^6\) Measurement of all control variables come from the panel’s first wave (2011) except for racial identity importance, which appears only in 2016.\(^7\)

Results

Table 1 shows results testing H1 (models 1 and 2) and H2 (3 and 4). Each column represents a logistic regression modeling race change for relevant subsets of the data: originally nonwhite, non-Romney voters in models 1 and 2, and originally white, non-Obama voters in

\(^4\)See Online Appendix A for discussion of measurement timing and using non-validated vote choice.
\(^5\)See Online Appendix B for more information on race and vote change rates.
\(^6\)This flags respondents who report a lower education level in 2016 than in 2011 – an impossible shift. The variable thus captures respondents most prone to making mistakes, a source for measurement error.
\(^7\)See Online Appendix C for discussion of the results’ robustness to other controls.
Models 1 and 3 present bivariate relationships while 2 and 4 include controls.

Table 1: Logit Models Regressing Race Change on Vote Switch

<table>
<thead>
<tr>
<th></th>
<th>Nonwhite→White</th>
<th>White→Nonwhite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Non-R Vote→R Vote</td>
<td>1.81***</td>
<td>2.01***</td>
</tr>
<tr>
<td></td>
<td>(0.53)</td>
<td>(0.76)</td>
</tr>
<tr>
<td>Non-D Vote→D Vote</td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.74)</td>
</tr>
<tr>
<td>Age Group (45-54)</td>
<td>0.25</td>
<td>−0.19</td>
</tr>
<tr>
<td></td>
<td>(0.60)</td>
<td></td>
</tr>
<tr>
<td>Age Group (55-64)</td>
<td>0.70</td>
<td>−0.60</td>
</tr>
<tr>
<td></td>
<td>(0.51)</td>
<td></td>
</tr>
<tr>
<td>Age Group (65+)</td>
<td>−0.18</td>
<td>−0.38</td>
</tr>
<tr>
<td></td>
<td>(0.80)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>−0.14</td>
<td>−0.17</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td></td>
</tr>
<tr>
<td>B.A. Degree+</td>
<td>0.42</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.53)</td>
<td></td>
</tr>
<tr>
<td>Error-Prone Flag</td>
<td>−14.28***</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td></td>
</tr>
<tr>
<td>Race ID Imp.</td>
<td>−1.01***</td>
<td>−0.15</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td></td>
</tr>
<tr>
<td>White Feeling Therm.</td>
<td>0.03***</td>
<td>−0.02</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>log(2011 Zip White%)</td>
<td>1.24*</td>
<td>−0.07</td>
</tr>
<tr>
<td></td>
<td>(0.67)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>−4.03***</td>
<td>−7.99***</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(3.16)</td>
</tr>
<tr>
<td>Observations</td>
<td>1196</td>
<td>1113</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>−80.73</td>
<td>−48.68</td>
</tr>
</tbody>
</table>

Notes:
Models 1 and 2: For original nonwhites and non-R voters.
Models 3 and 4: For original whites and non-D voters.
* p < 0.1, ** p < 0.05, *** p < 0.01; two-tailed.

Results support only one of the two expectations: switching into a Trump vote is associated with racial identity change, but switching into a Clinton vote is not. Model 1 shows that for original nonwhite, non-Republican voters, switching to a Republican vote in 2016 – compared to voting non-Republican – increases the log odds of changing to a white racial identity by 1.81 (relative to staying nonwhite). This bivariate relationship is statistically significant (p < .001). When accounting for the set of controls in Model 2, the effect size and significance holds, as Trump switchers have a much higher chance than other voters of adopting white identity (a 2.01 log odds increase). In model 3 testing the parallel dynamic, switching to a Clinton vote in 2016 increases the log odds of originally white non-Democratic voters changing to a nonwhite identity by 0.22. However, the effect is small and does not
reach statistical significance. Including controls in model 4 returns the same result.

To better convey effect magnitude, Figure 2 depicts the first differences in the probability of racial identity change for each subgroup. The top point estimate is the change in probability of nonwhite to white change due to switching into a 2016 Republican vote. Similarly, the bottom point represents the change in probability of white to nonwhite change due to switching into a 2016 Democratic vote, based on the results in models 2 and 4 in Table 1.8

Among originally nonwhite non-Republican voters, the probability of white identity adoption increases by 0.35 when switching to Republican in 2016. This is notable in light of the .036 baseline probability of nonwhite to white change. Switching into a Trump vote increases the probability of adopting white identity by 962%, to 0.38. Substantively, this movement of an already low-probability event to a dramatic increase is very significant. More than a third of Trump switchers adopt a white racial identity. Among original white non-Democratic voters, the probability of changing racial identity to nonwhite increases slightly by 0.001 (the figure rounds it to 0.00) as a due to voting Democratic in 2016. The former first difference is statistically significant while the latter is not. Both in terms of substantive and statistical significance, evidence emerges for the hypothesized dynamic only on the Republican side.9

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Nonwhite to White</th>
<th>White to Nonwhite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch to 2016 Rep Vote</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Switch to 2016 Dem Vote</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: First Differences in Race Change Probability

8 Controls are held at the average modal or median values across the two data subsets for consistency.
9 Online Appendix C shows these results hold when using alternative tests (multinomial logistic regression).
Limitations with Causal Direction

An obvious limitation here is causal interpretation. Because records of individuals’ traits occur at two time points, this analysis cannot distinguish between the two possible causal directions that could be driving the observed statistical association. Alternatively, individuals could first change their racial identity and switch votes in response. This study’s primary contribution should therefore be viewed as a surprising, noteworthy, and robust correlational relationship with a theoretical framework suggestive of race’s endogeneity to vote preference. Our theory and past literature can provide suggestive evidence on which causal direction might be at play.

Group pressure and identity alignment studies (Mason and Wronski, 2018; Saperstein and Penner, 2012) point to vote switching influencing racial identity change (Process A) rather than race change shaping vote switching (Process B). In Process A, non-Romney voters switch to Republican in 2016 before altering their race. By one estimate, 88 percent of Trump voters were white. In Process B, 2011 nonwhites adopt a white identity before switching their vote, joining a racial group of which 54 percent voted for Trump. Compared to Process B (white individuals voting Trump), Process A (Trump voters being white) represents entrance into a much more homogeneous group context, which likely exerts a stronger pressure to change identity to better fit with a new group.

Although speculative, the implied causal direction in this study remains grounded in theory and is consistent with past studies. Moreover, documenting that race and vote change together implies that race cannot be assumed as exogenous to vote choice.

Addressing Measurement Error

Another concern here is that measurement error in the race variable could account for change over time. Perhaps individuals who change identities mistakenly select their race in

one of the waves. Using a large dataset to examine low frequency events evokes past instances in political science research where measurement error misled researchers (Ansolabehere, Luks and Schaffner, 2015). While having only two time points limits applicability of error corrections (e.g., Asher, 1974), previous results and other data should relieve some concern.11

Expected and intuitive relationships between race change and other variables. Correlations between race change and other variables lend credence to the idea that race change captures something meaningful and not random survey-taking mistakes. If measurement error had plagued the race change measurement, such expected patterns would be harder to observe. Model 2 shows that a one point increase in the importance of race to one’s identity corresponds to a 1.01 log odds decrease of switching from nonwhite to white identity ($p < .001$). The negative relationship makes conceptual sense, as those most attached to their racial identity change it less. The white feeling thermometer measure is significantly related to nonwhite to white race change; nonwhites with warmer feelings towards whites in 2011 understandably are more likely to report a white identity in 2016. In another model not shown here, 2011-2016 racial resentment change is positively associated with nonwhite to white change; increasing resentment toward nonwhites correlates with movement away from a nonwhite label. Lastly, the marginally significant positive relationship between (white) racial composition of home zip code and nonwhite to white race change reflects past findings (Davenport, 2018). These results thus effectively validate the race change variable as capturing something more than measurement error.

Individuals randomly answering survey questions. A correlation could appear between random responses to questions, such as race and vote choice. Creating an “Error-Prone Flag” variable addresses this. The variable takes on a value of 1 for individuals who report an impossible survey outcome: dropping in education level from the first to second wave of the survey. If survey-takers who make mistakes or answer randomly on one question are likely to make mistakes or answer randomly on others, then this flag should correlate

11It’s also worth noting race change survey evidence is not unique to an online mode, where mistakes would likely be most common (Saperstein and Penner, 2012).
positively with race change and attenuate the vote switch effect. Table 1, however, does not support this; the error flag instead is negatively associated with race change and the vote switch effect is robust to this control.12 An alternative error flag also neither correlates with race change nor attenuates the vote switch effect (see Appendix Section C). Efforts like these to adjust for careless survey-taking minimize the threat posed by measurement error.

Placebo test. Given that the outlined theory suggests the influence of vote on race change is 2016 election-specific, we test whether the same relationship appears in an earlier pair of election years. The Cooperative Campaign Analysis Project (CCAP) panel dataset allows for a placebo test as it contains 2008 and 2012 measures of racial identification and vote choice as well as comparable controls. The same analysis but for these earlier elections reveals null effects of vote switching on race change (See Appendix Section D for more), supporting the idea of a systematic relationship specific to the 2016 election context.

Conclusion

In their work on social sorting – the growing alignment of social/political identities – Mason and Wronski (2018) argue “Republicans are generally more sensitive to who does and does not ‘belong’ in the party” and have more “identity-based ‘deal-breakers.’” Investigating the role of politics in race change, we find novel patterns that fit with this claim. Across various tests, switching to a Republican vote in 2016 strongly predicts white racial identity adoption among previous nonwhite identifiers. The parallel expectation on the Democratic side does not receive support; original whites who switched to a 2016 Democratic vote were not more likely to become nonwhite. A placebo test for the 2008-2012 election periods suggests the race change dynamic was unique to 2016. While speculative, our theory of campaign rhetoric unusually focused on racial identity (Sides, Tesler and Vavreck, 2018) paired with the Republican Party’s stronger pressure for identity congruence (Mason and Wronski, 2018) can together shed suggestive light on this study’s surprising result.

12The unusually large coefficient on this variable results from the lack in variation of race change along the Error-Prone Flag (almost no individuals who went backwards in education change their race to white).
The results have important broader implications. Census data confirm that a small but notable portion of Americans alter their race (Liebler et al., 2017). Other research has discovered how politics can shape social identity (Egan, 2018; Margolis, 2018). The current study bridges these two literatures. At the very least, race change and vote switching have a very strong link; at most, individuals alter their race in response to their evolving vote allegiances. This potential endogeneity undermines strong assumptions about the two variables’ relationship. Racial identities may sometimes be a function of political variables of interest, introducing post-treatment bias potential (Montgomery, Nyhan and Torres, 2018). Panel surveys should ask race in every wave they field, early in surveys rather than at the end. Further analysis should build on explaining racial and other identity change as a correlate or consequence of political variables that identities are commonly thought to explain.

References

Nyhan, Brendan. N.d. “Trial heat polls: All heat, no light: They generate plenty of stories, but it’s way too early for polls to predict anything about 2016.”.

Online Appendix

Table of Contents
Section A Additional Data Notes
Section B Summary Statistics
Section C Alternative Regression Models
Section D 2008-2012 Placebo Test
A Additional Data Notes

In this online appendix section, we discuss a few details about how we process the data used in the main text analysis.

1. **Timing of “pre” and “post” measurement of variables.** It’s worth noting that the survey wave years for our measurements of vote choice and racial identification do not perfectly align. Ideally, race measurements would come from the same wave years. However, because the panel does not ask race in 2012, a 2011 measure is used. The years therefore do not perfectly match, as the “pre” measure of race is in 2011 and the “pre” measure of vote choice is in 2012. A 2011 vote measure offers an alternative, but a flawed one. Asking about an Obama-Romney general election during the primaries makes for a less precise *general election* preference (Nyhan N.d.). 2012 and 2016 vote measures are thus used, though interchanging 2011 vote produces similar results.

2. **Dealing with non-vote validated vote choice measures.** The dataset does not include a voter file-based measure of turnout, and thus the vote choice variables do not incorporate validated turnout. The turnout rate among survey respondents in 2012 is 84 percent and in 2016 is 86 percent. These turnout rates exceed the true levels from the general population. Individuals lying about their turnout status likely plays a role in this pattern, but cannot be known for sure. Although this partially undermines the quality of the data, the problem is not extreme, as other factors also contribute to this overestimate. The overrepresentation of politically engaged individuals (Kohut et al. 2012) – especially those who stayed on a panel for five years and responded to three different political surveys during that time – likely accounts for more of the overall overreport rate than usual, and such frequent survey participation may have heightened inadvertent mobilization (Jackman and Spahn 2019).
B Summary Statistics

Figure B.1: 2016 by 2011 Racial Identification (Weighted Percentages and Counts)
Figure B.2: 2016 by 2012 Vote Choice (Weighted Percentages and Counts)
Table B.1: Race Change × Vote Pattern Row Pct. and Counts (Weighted)

<table>
<thead>
<tr>
<th></th>
<th>Consistent Non-R</th>
<th>Non-R to R Vote</th>
<th>Consistent R</th>
<th>R to Non-R Vote</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stayed Nonwhite</td>
<td>72.78% (1587)</td>
<td>6.81% (149)</td>
<td>17.04% (372)</td>
<td>3.37% (73)</td>
<td>2181</td>
</tr>
<tr>
<td>Nonwhite to White</td>
<td>26.61% (28)</td>
<td>15.29% (16)</td>
<td>43.42% (46)</td>
<td>14.68% (16)</td>
<td>106</td>
</tr>
<tr>
<td>Stayed White</td>
<td>47.51% (2617)</td>
<td>9.14% (503)</td>
<td>36.43% (2007)</td>
<td>6.92% (381)</td>
<td>5508</td>
</tr>
<tr>
<td>White to Nonwhite</td>
<td>47.94% (98)</td>
<td>5.76% (12)</td>
<td>41.63% (85)</td>
<td>4.68% (10)</td>
<td>205</td>
</tr>
<tr>
<td>Total</td>
<td>4330</td>
<td>680</td>
<td>2510</td>
<td>480</td>
<td>8000</td>
</tr>
</tbody>
</table>

Table B.2: Vote Pattern × Race Change Row Pct. and Counts (Weighted)

<table>
<thead>
<tr>
<th></th>
<th>Stayed Nonwhite</th>
<th>Nonwhite to White</th>
<th>Stayed White</th>
<th>White to Nonwhite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent Non-R Vote</td>
<td>36.65% (1587)</td>
<td>0.65% (28)</td>
<td>60.43% (2617)</td>
<td>2.27% (98)</td>
</tr>
<tr>
<td>Non-R Vote to R Vote</td>
<td>21.86% (149)</td>
<td>2.38% (16)</td>
<td>74.03% (503)</td>
<td>1.73% (12)</td>
</tr>
<tr>
<td>Consistent R Vote</td>
<td>14.81% (372)</td>
<td>1.83% (46)</td>
<td>79.96% (2007)</td>
<td>3.40% (85)</td>
</tr>
<tr>
<td>R Vote to Non-R Vote</td>
<td>15.31% (73)</td>
<td>3.25% (16)</td>
<td>79.44% (381)</td>
<td>2.00% (10)</td>
</tr>
</tbody>
</table>

Table B.3: 2011 × 2016 Reported Racial Identities Row Pct. and Counts (Weighted)

<table>
<thead>
<tr>
<th></th>
<th>Asian</th>
<th>Black</th>
<th>Hispanic</th>
<th>Mid. Eastern</th>
<th>Mixed</th>
<th>Native Am.</th>
<th>Other</th>
<th>White</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresponse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td>4% (1)</td>
<td>25% (5)</td>
<td>0% (0)</td>
<td>0% (0)</td>
<td>0% (0)</td>
<td>1% (0)</td>
<td>1% (0)</td>
<td>68% (14)</td>
<td>20</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96%</td>
<td>0%</td>
<td>0%</td>
<td>0% (0)</td>
<td>1% (2)</td>
<td>0% (0)</td>
<td>2% (3)</td>
<td>1% (1)</td>
<td>155</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% (0)</td>
<td>98%</td>
<td>0% (0)</td>
<td>1% (8)</td>
<td>0% (0)</td>
<td>1% (10)</td>
<td>0% (2)</td>
<td>826</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% (0)</td>
<td>1%</td>
<td>96%</td>
<td>0% (0)</td>
<td>0% (4)</td>
<td>0% (1)</td>
<td>0% (3)</td>
<td>1% (12)</td>
<td>863</td>
</tr>
<tr>
<td>Mid. Eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4% (0)</td>
<td>0%</td>
<td>0% (0)</td>
<td>61% (4)</td>
<td>2% (0)</td>
<td>0% (0)</td>
<td>10% (1)</td>
<td>23% (1)</td>
<td>6</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% (11)</td>
<td>7%</td>
<td>11%</td>
<td>3% (8)</td>
<td>53%</td>
<td>4% (10)</td>
<td>6% (14)</td>
<td>12% (30)</td>
<td>247</td>
</tr>
<tr>
<td>Native Am.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% (0)</td>
<td>0% (0)</td>
<td>0% (0)</td>
<td>0% (0)</td>
<td>11%</td>
<td>68% (32)</td>
<td>6% (3)</td>
<td>16% (7)</td>
<td>47</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1% (1)</td>
<td>3%</td>
<td>2% (2)</td>
<td>0% (0)</td>
<td>6% (6)</td>
<td>1% (1)</td>
<td>53% (59)</td>
<td>35% (39)</td>
<td>111</td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% (3)</td>
<td>0%</td>
<td>0% (77)</td>
<td>0% (2)</td>
<td>1% (31)</td>
<td>1% (7)</td>
<td>1% (65)</td>
<td>96% (5508)</td>
<td>5712</td>
</tr>
<tr>
<td>Total</td>
<td>165</td>
<td>870</td>
<td>938</td>
<td>14</td>
<td>187</td>
<td>51</td>
<td>158</td>
<td>5614</td>
<td>8000</td>
</tr>
</tbody>
</table>

C Alternative Regression Models

Robustness to Other Controls

In the model described in the main text’s Data section, other controls are excluded due to their close relation to existing ones and substantial missingness on these other variables. When tested separately for each new covariate, results from the main model are robust to various controls. Using 2011, 2016, and 2011-2016 change measurements of these variables, the controls span racial attitudes (racial resentment and white feeling thermometer), social context (home zip code white% and median household income), personal socioeconomic characteristics (education and family income), and partisanship. Notably, these alternative specifications express controls as changes (e.g., 2011 to 2016 change in education rather than 2011 education) and thus in the same form of the predictor and outcome (changes in race and vote), rather than in level form. These controls neither affect the main results nor correlate with the outcome.

Multinomial Regression Models

The relationships tested using logistic regression in the main text are estimated here with a different modeling approach: multinomial logistic regression. This serves as a more comprehensive approach, as it incorporates new measures for the dependent and independent variables that encompass all possibilities for change (or lack of change) in racial identity and vote choice. Analysis will pay most attention to the hypothesized dynamic on the Republican side to check the main text finding’s robustness to a different modeling approach.

The first of these multinomial models employs a four-category “Race Change” variable, built from crossing 2011 race (white or nonwhite) and 2016 race (white or nonwhite), as the dependent variable. The value of “stayed nonwhite” is chosen as the reference group in the modeling. While the selection of the base does not change the interpretation of results, this choice makes most sense for presentation of results given the focus on the Republican
expectation: choosing “Nonwhite to white” relative to the omitted “Stayed nonwhite” group will be the key comparison of interest in these results. The model in Table C.1 regresses this four-category variable on the two dummy predictor variables: “Switch to R Vote,” which indicates people who did not vote Republican in 2012 but did so in 2016, and “Switch to D Vote,” which indicates people who did not vote Democratic in 2012 but did so in 2016. The same set of controls as in the main text analysis is used.

Table C.1: Multinomial Logit Model Regressing Race Change (Base=Stayed Nonwhite) on Vote Switch Indicators and Controls

<table>
<thead>
<tr>
<th></th>
<th>Nonwhite to white</th>
<th>Stayed white</th>
<th>White to nonwhite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-R Vote→R Vote</td>
<td>1.59***</td>
<td>0.62***</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td>(0.13)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>Non-D Vote→D Vote</td>
<td>1.18***</td>
<td>0.19</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.13)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>Age Group (45-54)</td>
<td>0.23</td>
<td>0.45***</td>
<td>0.51***</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.09)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>Age Group (55-64)</td>
<td>0.18</td>
<td>0.48***</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(0.32)</td>
<td>(0.09)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Age Group (65+)</td>
<td>0.16</td>
<td>0.78***</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(0.42)</td>
<td>(0.11)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>Female</td>
<td>-1.02***</td>
<td>-0.14**</td>
<td>-0.48***</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.06)</td>
<td>(0.16)</td>
</tr>
<tr>
<td>B.A. Degree+</td>
<td>-0.36</td>
<td>0.06</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.07)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Error-Prone Flag</td>
<td>-2.21</td>
<td>-0.45**</td>
<td>-0.73</td>
</tr>
<tr>
<td></td>
<td>(1.64)</td>
<td>(0.21)</td>
<td>(0.62)</td>
</tr>
<tr>
<td>Race ID Imp.</td>
<td>-0.95***</td>
<td>-0.54***</td>
<td>-0.66***</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.02)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>White Feeling Therm.</td>
<td>0.004</td>
<td>0.02***</td>
<td>0.01***</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.002)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>log(2011 Zip White%)</td>
<td>1.62***</td>
<td>1.56***</td>
<td>0.98***</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.06)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Constant</td>
<td>-7.03***</td>
<td>-5.37***</td>
<td>-4.68***</td>
</tr>
<tr>
<td></td>
<td>(1.15)</td>
<td>(0.26)</td>
<td>(0.62)</td>
</tr>
<tr>
<td>AIC</td>
<td>9127.06</td>
<td>9127.06</td>
<td>9127.06</td>
</tr>
</tbody>
</table>

Notes:
N = 7511.
*p < 0.1, **p < 0.05, ***p < 0.01; two-tailed.
This alternative modeling approach reinforces evidence in favor of **H1**: switching into a vote for Trump in 2016 is strongly associated with changing one’s race from nonwhite to white. As alluded to before, the log odds coefficient (1.59) in the upper left corner of Table B.1 is of most interest. It indicates that relative to individuals who did *not* switch into a Republican vote in 2016, switching into a Republican vote increases the log odds of being in the “Nonwhite to white” category compared to the “Stayed nonwhite” category by 1.59. The result is statistically significant at $p < .01$ and occurs when other relevant variables are controlled for. The magnitude of this effect is the largest across all coefficients for the two predictors in this model. By comparison, for testing **H2**, no significant relationship emerges once again. Relative to individuals who did not switch into a Democratic vote in 2016, switching to a Democratic vote does not significantly increase the log odds of being in the “White to nonwhite” category relative to the “Stayed white” one.

A second multinomial model is estimated with a slightly different specification. The dependent variable remains the same as in the previous model, but this new model operationalizes the independent variable – vote switching – differently. Instead of using two separate dummies for vote preference change between 2012 and 2016, the model uses a “Vote Pattern” variable made up of four categories that results from crossing 2012 vote choice (Republican Vote or Non-Republican Vote) and 2016 vote choice (Republican Vote or Non-Republican Vote). The “Consistent Non-R Vote” value in this variable is the reference category. Once again, this does not matter for interpretation of results, but does better fit with the expectation of interest (how switching away from a Non-R Vote into an R vote affects racial identity change). Table C.2 demonstrates the results of regressing the four-category racial identity variable described before (where “Stayed nonwhite” remains the reference category) on this new four-category vote pattern variable. The model includes the same set of controls as before.

The results from Table C.2 again provide support for **H1**: switching into a Republican vote in 2016 corresponds with switching from a nonwhite racial identity to a white one. All
Table C.2: Multinomial Logit Model Regressing Race Change (Base=Stayed Nonwhite) on Vote Pattern Variable (Base=Consistent Non-R Vote) and Controls

<table>
<thead>
<tr>
<th></th>
<th>Nonwhite to white</th>
<th>Stayed white</th>
<th>White to nonwhite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-R Vote \rightarrow R Vote</td>
<td>1.73***</td>
<td>0.99***</td>
<td>1.52***</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.17)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>Consistent R Vote</td>
<td>1.10***</td>
<td>0.83***</td>
<td>1.47***</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(0.09)</td>
<td>(0.19)</td>
</tr>
<tr>
<td>R Vote \rightarrow Non-R Vote</td>
<td>1.36***</td>
<td>0.90***</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.18)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>Age Group (45-54)</td>
<td>0.24</td>
<td>0.14</td>
<td>0.40*</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.09)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Age Group (55-64)</td>
<td>0.27</td>
<td>0.28***</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td>(0.10)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Age Group (65+)</td>
<td>0.68**</td>
<td>0.92***</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.33)</td>
<td>(0.12)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>Female</td>
<td>−0.02</td>
<td>0.11</td>
<td>−0.15</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.07)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>B.A. Degree+</td>
<td>−0.39*</td>
<td>−0.19**</td>
<td>−0.20</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(0.07)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>Error-Prone Flag</td>
<td>−0.75</td>
<td>−0.56*</td>
<td>−0.37</td>
</tr>
<tr>
<td></td>
<td>(1.05)</td>
<td>(0.33)</td>
<td>(0.78)</td>
</tr>
<tr>
<td>Race ID Imp.</td>
<td>−0.90***</td>
<td>−0.59***</td>
<td>−0.76***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.03)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>White Feeling Therm.</td>
<td>0.01***</td>
<td>0.02***</td>
<td>0.01**</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.002)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>log(2011 Zip White%)</td>
<td>0.80***</td>
<td>1.38***</td>
<td>0.99***</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.06)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Constant</td>
<td>−4.58***</td>
<td>−4.27***</td>
<td>−5.18***</td>
</tr>
<tr>
<td></td>
<td>(0.85)</td>
<td>(0.29)</td>
<td>(0.81)</td>
</tr>
<tr>
<td>AIC</td>
<td>7936.99</td>
<td>7936.99</td>
<td>7936.99</td>
</tr>
</tbody>
</table>

Notes:
N = 7511.
*p<0.1, **p<0.05, ***p<0.01; two-tailed.
log odds coefficients are relative to the baseline category in the independent variable, a group that represents individuals who did not vote Republican in both 2012 and 2016. Relative to this group, switching into a Trump vote (“Non-R to R Vote”) is associated with a 1.73 log odds increase of being in the “Nonwhite to white” race status category compared to the “Stayed nonwhite” category. The coefficient is statistically significant at $p < .01$ and occurs when all other variables included in the model are held constant. In light of all of these results, it is clear the significant relationship between switching into a Republican vote and changing to a white racial identification in 2016 is robust to several different modeling approaches.

Alternative Error-Prone Flag

The alternative measurement error flag referred to in the main text uses the following survey question: “Have you smoked at least 100 cigarettes in your entire life?” This same question is asked in both the 2011 and 2016 survey waves. Going from yes in 2011 to no in 2016 is impossible and thus represents another proxy for careless survey-taking. Such movement could also stem from changing social norms and pressure for a socially desirable answer. Thus, while it’s important to note that the main effect is robust to this alternative error flag control, it is not used in the main analysis.
D 2008-2012 Placebo Test

Although the overall structure and approach to the 2008-12 placebo test analysis is parallel to the 2012-16 one, limitations in the CCAP dataset prevents perfect comparability. Measures of racial identification are captured in 2008 and 2012 waves, variables for age group, gender, and education (B.A.+ degree) come from the “pre” wave (2008), and the Error-Prone Flag variable comes from education measurements in 2008 and 2012. For other variables, there are a few discrepancies. Post-election measures of vote choice are not available; instead, the analysis uses intended vote choice in the 2008 election measured in a March wave and vote in 2012 measured in a July wave. A white feeling thermometer is not available; as a comparable substitute, the analysis uses an “impression of whites” favorability rating (only measured in a July 2012 wave) – from a battery of “impression” ratings for several groups – instead. Ideally, Census zip code data would come from the first year of the panel (like in the main analysis using 2007-2011 ACS 5-year estimates for 2011 zip code racial composition). However, the 5-year estimates do not go back earlier than this time range. Another option would be to use 2000 Census zip code data, but this is further away from the ideal 2008 time point. Thus, 2007-2011 data represents the best option for zip code racial composition. Lastly, racial identity importance or a similar variable is not available; this is the one missing parallel measure to the main model.

Table D.1 presents analysis parallel to the one in Table 1 in the main text but for an earlier pair of election periods. Models 1 and 2 in Table D.1 test how switching from a non-Republican 2008 vote to a Mitt Romney vote in 2012 affects nonwhite to white race change (among non-John McCain voters and original nonwhites). Similarly, models 3 and 4 test how switching from a non-Democratic 2008 vote to a Barack Obama vote in 2012 affects white to nonwhite race change (among non-Obama 2008 voters and original whites). Models 1 and 3 show the bivariate relationships and models 2 and 4 add in controls. Across all models, no significant relationships emerge between the primary predictors and the race change outcomes. Most notably, in Model 1, while switching into a Romney vote in 2012
does increase the log odds of changing from a nonwhite to white racial identity by 0.85, this effect is not statistically significant. The insignificant relationship holds when adding more variables as controls. Notably, just as in the main analysis, measures capturing favorability towards whites and (white) racial composition of home zip codes both correlate positively with nonwhite to white race change between 2008 and 2012. These variables consistently correlate with over time race change and are not election-specific – in contrast to the vote switching variable, which arguably arose because of identity-focused campaign rhetoric in the 2016 election.
Table D.1: Logit Models Regressing Race Change on Vote Switch (2008-2012)

<table>
<thead>
<tr>
<th></th>
<th>Nonwhite→White</th>
<th>White→Nonwhite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Non-R Vote→R Vote</td>
<td>0.85</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>(0.84)</td>
<td>(0.84)</td>
</tr>
<tr>
<td>Non-D Vote→D Vote</td>
<td>-0.36</td>
<td>-0.41</td>
</tr>
<tr>
<td></td>
<td>(0.56)</td>
<td>(0.45)</td>
</tr>
<tr>
<td>Age Group (45-54)</td>
<td>-0.51</td>
<td>-0.66</td>
</tr>
<tr>
<td></td>
<td>(1.08)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>Age Group (55-64)</td>
<td>-0.48</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>(0.59)</td>
<td>(0.40)</td>
</tr>
<tr>
<td>Age Group (65+)</td>
<td>-0.51</td>
<td>-0.66</td>
</tr>
<tr>
<td></td>
<td>(1.08)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>Female</td>
<td>0.21</td>
<td>-0.87**</td>
</tr>
<tr>
<td></td>
<td>(0.48)</td>
<td>(0.42)</td>
</tr>
<tr>
<td>B.A. Degree+</td>
<td>-0.52</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>Error-Prone Flag</td>
<td>-14.80***</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.75)</td>
<td>(0.68)</td>
</tr>
<tr>
<td>Impression of Whites</td>
<td>0.55**</td>
<td>-0.44**</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>log(2011 Zip White%)</td>
<td>1.28**</td>
<td>-0.81***</td>
</tr>
<tr>
<td></td>
<td>(0.54)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.89***</td>
<td>-9.73***</td>
</tr>
<tr>
<td></td>
<td>(0.22)</td>
<td>(2.79)</td>
</tr>
<tr>
<td>Observations</td>
<td>511</td>
<td>499</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>-110.23</td>
<td>-91.36</td>
</tr>
</tbody>
</table>

Notes:
Data source: Cooperative Campaign Analysis Project panel (various 2008 and 2012 waves).
Models 1 and 2: For original nonwhites and non-R voters.
Models 3 and 4: For original whites and non-D voters.
*p < 0.1, **p < 0.05, ***p < 0.01; two-tailed.