International Wage Curves

David G. Blanchflower and Andrew J. Oswald

This paper uses international microeconomic data to document the existence of an inverse relation between workers' pay and the local rate of unemployment. This relation, or wage curve, is estimated for regions using data for Britain, the United States, Canada, Austria, Italy, Holland, Switzerland, and Norway. Evidence of an equivalent relation is presented for industries using data

David G. Blanchflower is professor of economics at Dartmouth College and a research associate of the National Bureau of Economic Research. He is also a research associate of the Centre for Economic Performance, London School of Economics. Andrew J. Oswald is a senior research fellow at the London School of Economics.

This paper draws on work done for a monograph, The Wage Curve, to be published by the MIT Press. Richard Freeman, George Johnson, and Larry Katz provided valuable detailed comments. The authors also received suggestions and help from John Abowd, Fran Blau, John Bauer, David Card, Bob Gregory, Alan Gustman, Bertil Holmlund, Richard Layard, John Schmitt, Dennis Snower, Bob Topel, and Steve Venti. Prakash Loungani and Larry Katz generously provided data on variables suitable for instrumenting U.S. unemployment. This work was supported by the Economic and Social Research Council (Swindon, U.K.).

1. Early British results are reported in Blanchflower and Oswald (1990) and Blanchflower, Oswald, and Garrett (1990), which appeal to a bargaining approach without any explicit regional modeling. The papers give cross-sectional results for various U.K. samples and also one small U.S. sample (although they cannot control fully for regional fixed effects) and attempt to summarize previous writings. One notable early paper in this literature is Blackaby and Manning (1987). These authors' later work on the United Kingdom is contained in Blackaby and Manning (1990). Jackman, Layard, and Savouri (1991) offer an interesting model and, using British regional data, obtain results compatible with those presented here; Blanchflower (1991) provides recent U.K. estimates and finds an unemployment elasticity of approximately $-0.1$; Christofides and Oswald (1992) also obtain a similar estimate of approximately $-0.08$ using longitudinal Canadian contract data. A number of other authors have recently tested and found some support for wage curves: these include Edin, Holmlund, and Ostros (1992) for Sweden, Groot, Mekkeholt, and Oosterbeek (1992) for Holland, and Freeman (1990), Katz and Krueger (1991a, 1991b), and Blanchflower and Lynch (1994) for the United States. Topel (1986) also studies wage determination in geographic labor markets but examines effects from variables such as the rate of change of employment rather than from the level of unemployment. Holmlund and Zetterberg (1991) find a role for unemployment in industry wage equations for various countries.

2. There is a related literature using micro data that tests for effects from the aggregate level of unemployment. This includes Bils (1985) and Nickell and Wadhwani (1990). Using PSID and
for Korea and Germany (where lack of regional data prevents the same exercise as for the other nations) and for the United States. The estimates suggest that, on average, the unemployment elasticity of pay is approximately $-0.1$, which implies that a doubling of unemployment leads to a fall in the level of the wage by 10 percent. The empirical work can be viewed as an attempt to trace out the supply half of the scissors that describes labor market equilibrium.

One way to interpret this paper is to see it as establishing, in an atheoretical way, a statistical fact or "law" about labor markets in many countries. High unemployment within a region or an industry is associated, ceteris paribus, with low wages. The relation between the two takes the form of a convex curve with a negative gradient. This curve's structure seems to be qualitatively, and often quantitatively, the same across countries. For example, the estimated responsiveness of pay to unemployment is similar in the United States and Britain.

The paper's evidence for a wage curve also raises theoretical questions. The original empirical research project began in 1987, as an attempt to apply union bargaining models to British cross-sectional data, and gradually took on an international flavor (as it became clear that the main finding held more generally). The original concern was to go beyond time-series methods in order to provide a cross-sectional approach to the calculation of the unemployment elasticity of pay.

During the years of this project, theoretical macroeconomics has begun to change. A generation of models has sprung up in which a wage curve (in this paper's terminology) is the primary distinguishing feature. The exact history of this research current is discussed in Layard, Nickell, and Jackman (1991) and Phelps (1992). Influential contributions include Shapiro and Stiglitz (1984), Layard and Nickell (1986), and the Scandinavian Journal of Economics symposium issue "Unemployment-Inflation Trade-Offs in Europe" (1990). A textbook treatment is contained in Carlin and Soskice (1990). The gist of all this work is that, in the 1980s, "a surrogate employment supply curve, or equilibrium wage curve, was born" (Phelps 1992, 1004). A review by Michael Woodford (1992, 396) describes the new theories succinctly: "All of these imply that labor market equilibrium (i.e. a state in which expectations are fulfilled and transacting parties correctly understand the aggregate state of the economy) lies at the intersection of the derived labor demand curve with a surrogate labor supply curve that lies to the left of, and is flatter than, the true Marshallian labor supply curve." A recent overview by Lindbeck (1992) adopts the same approach and uses the assumption that there is a Layard-Nickell "wage-setting curve," different from conventional atomistic supply, that slopes upward in real-wage/employment space. Another new model in which a central part is played by the same general form of wage equation is the fairness approach described in Akerlof and Yellen (1990).

As Shapiro and Stiglitz (1984) and Layard and Nickell (1986) make clear, the novel aspect of these models is not their assumptions about labor demand, which are the standard ones, but rather that the models replace the conventional labor supply curve with a wage-fixing function. This allows the theories to explain, or at least to be consistent with, both involuntary unemployment and the paradoxical fact that real wages fluctuate little over the cycle while the long-run supply of workers appears to be close to vertical.

There are at least two reasons to predict that high unemployment will tend to lead to low pay. The first is that workers have low bargaining power when surrounded by extreme levels of joblessness. This rationale fits well with union and other bargaining theories and, more generally, with Marxist accounts of the role of the reserve army of the unemployed. The second follows efficiency wage models in stressing the role of unemployment as a motivator. In a booming labor market, firms may have to pay well to ensure that individual workers, who know that there are many other jobs open to them, exert enough effort at work.

Although primarily empirical, the paper's secondary purpose is to write down a multiregion efficiency wage model that is consistent with, and offers a possible conceptual framework for the analysis of, the empirical patterns found in the international data. According to this model, even when workers are free to migrate between regions, the contemporaneous cross-sectional correlation between pay and unemployment will be negative rather than, as is sometimes asserted, positive. Within this framework, the paper's estimated wage curve corresponds to a no-shirking condition of the kind in, for example, Shapiro and Stiglitz (1984).4

4.1 Background

Three literatures lie behind the empirical work reported in the paper. The oldest is the extensive research into Phillips curves stemming from Phillips (1958). Although similar in its broad concern with the macroeconomic relation between aggregate joblessness and wage setting, the present paper does not study the rate of wage inflation or purport to uncover a disequilibrium adjustment mechanism. It is probably not usefully thought of as an attempt to estimate quasi Phillips curves. A second and related strand of research is the writings of authors such as Layard and Nickell (1986) and, before them, Sargent ([1964] 1984) who use time-series data to estimate the effect of the aggregate unemployment rate on the aggregate level of wages. The present paper can be

CPS data, Beaudry and DiNardo (1991) argue that wages depend, not on current labor market conditions, but on aggregate and industry unemployment rates in earlier time periods when unemployment was low.

3. The early survey by Oswald (1986) argued that an unemployment elasticity of $-0.1$ was emerging consistently from different kinds of aggregated and disaggregated evidence.

4. The theoretical papers by Akerlof and Yellen (1990), Bowles (1985), and Phelps (1990) also contain functions very similar to a wage curve.
seen as an attempt to employ microeconomic data to look for what might be described as a cross-sectional version of this relation. The third literature on which the paper builds is the U.S. work initiated by Harris and Todaro (1970) and Hall (1970, 1972) and continued by Adams (1985), Browne (1978), Martin (1985), and Reza (1978). This helped establish the current conventional wisdom that, by a compensating-differential argument, wages and unemployment are positively correlated across geographic areas. The paper tries to show that some aspects of that conventional wisdom are incorrect.

The paper outlines an efficiency wage model of an economy with multiple regions. This model was developed, after examination of the data, as an attempt to find a theoretical structure that is internally theoretically consistent and fits the statistical facts. The present paper does not, and could not, claim that there exist no other models that might be consistent with the estimated wage curves. Other possibilities may include the standard competitive model, contract theory, search theory, and bargaining models. However, competitive theory does not seem to offer a natural way to explain the patterns in the data because it predicts that unemployment—if defined as a disequilibrium surplus of labor supply over demand—will be positively associated with the level of wages. A competitive interpretation would require that later regressions somehow identify a labor supply curve rather than an unemployment effect on wages, and tests reported in a forthcoming monograph shed doubt on such an interpretation. The explanatory power of labor supply and participation variables, for example, is weak. Labor contract theory and search theory also have difficulty generating the correct prediction of a negative correlation between pay and joblessness. A bargaining framework can give the correct general kind of prediction, although the question of how a multiregion model might be constructed has hardly been considered in the literature, but it will not be pursued here. This is partly because one original intention of the paper was to analyze the economy of the United States, where unionism is relatively unimportant, and where choosing a bargaining framework seems correspondingly less appropriate (although not impossible). While important, these issues are taken up more fully in a future monograph and are not the primary focus of the paper.

A central question is that of how the identification of a wage equation is to be achieved if the labor market is to be thought of as a pair of simultaneous equations. At the broadest level, there appear to be three possibilities. First, and most restrictive, the wage curve would be identified if all the random shocks occur on the demand side, namely, through movements in demand shift variables. This is not a plausible exact condition, but it might hold in an approximate way if demand shocks are quantitatively dominant. Second, the wage function would be identified if the system were appropriately recursive. If the pay equation includes lagged unemployment, for example, rather than the contemporaneous level of joblessness, it may be sufficient to treat unemployment as a predetermined variable in the wage equation. Third, if there exist suitable variables that enter the unemployment equation but not the wage equation, then the wage curve could be estimated by conventional instrumental variable methods. If none of these is feasible, OLS estimation is likely to bias upward the coefficient on unemployment in the wage equation, which will make it harder to obtain a significant negative unemployment coefficient in a wage equation.

This project considered the three possibilities routes to the identification of the wage equation described above. The most attractive theoretically is the third method, but a practical difficulty is that of finding suitable instruments. Instrumenting unemployment in the U.S. case, for example, by using regional federal expenditure and weather variables makes no difference to the results found with OLS. Instrumenting with military spending and compositional variables (these were generously provided by Larry Katz) increases the estimated unemployment elasticity very marginally. Instrumental variable estimation has to date not changed any of the research project's conclusions. For this practical reason, the approach taken throughout the paper will be to present OLS results and to defer more detailed discussion of simultaneity to a future monograph. In some cases, the estimated equations here could be seen as relying on lags for identification.

An efficiency wage framework suggests that regions with different unemployment benefit levels may have "no-shirking conditions" that differ by a vertical intercept term. This implies that an important addition to wage equations will be controls for regional fixed effects. Such controls will also capture innate differences in the regions' probability distributions of demand shocks. Without including regional fixed-effect terms, an estimated wage equation will tend incorrectly to conflate a no-shirking condition with a Harris and Todaro (1970) zero-migration condition. The latter, loosely speaking, suggests that, in a cross section, the expected unemployment rate may be positively correlated with the expected wage. The former, by contrast, requires that the contemporaneous levels of pay and unemployment be negatively correlated. The model given at the end of the paper shows that these are not incompatible.

4.2 Empirical Evidence for International Wage Curves

Earnings equations were estimated on pooled cross-sectional data for a set of ten countries. Although theory implicitly describes real-wage determination, no consistent regional price data exist for the set of countries, so it is necessary to assume that regional CPI differences are adequately captured by using year and geographic dummies. This method will go wrong only when there are important changes in the relative structure of regions' product prices, which arbitrage should go some way toward preventing. Moreover, Blackaby and Manning (1990) have shown that, in a U.K. sample, the inclusion of regional price deflators makes no substantive difference to the existence of a wage curve, and the industry wage curves that are successfully estimated later in this paper can presumably be seen as immune from the criticism that omitted area
price definitions are needed. For these reasons, the lack of geographic prices may not be an insurmountable difficulty. In most of the regression equations, unemployment within a regional level is included as an explanatory variable. Where geographic codes are missing, however, industry unemployment rates are used. Wherever possible, regional and industry dummies are included in the regressions to capture the innate differences among areas. These may correspond to controls for the different utility levels available to urban areas. The wage equation captures the dependence of average earnings on unemployment. Column 3 estimates a cross-sectional log earnings equation. Where geographic codes are missing, however, industry unemployment rates are used. Wherever possible, regional and industry dummies are included in the regressions to capture the innate differences among areas. These may correspond to controls for the different utility levels available to urban areas. The wage equation captures the dependence of average earnings on unemployment. Column 1 of table 4.1 estimates a cross-sectional log earnings equation.

### Table 4.1


<table>
<thead>
<tr>
<th></th>
<th>All Employees</th>
<th>Private-Sector Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Log unemployment (U)</td>
<td>(-0.150)</td>
<td>(-0.108)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>(0.784)</td>
<td>(0.734)</td>
</tr>
<tr>
<td>(F)</td>
<td>(356.43)</td>
<td>(319.29)</td>
</tr>
<tr>
<td>(DF)</td>
<td>(8.125)</td>
<td>(8.116)</td>
</tr>
</tbody>
</table>

**Source:** British Social Attitudes Survey Series.

**Note:** Unless stated otherwise, the following control variables were included: (1) 41 industry dummies, (2) 10 regional dummies, (3) marital status dummies, (4) nonmanual dummy, (5) supervisor dummy, (6) union dummy, (7) gender dummy, (8) experience and its square, (9) years of schooling, (10) whether employment is expected to rise at the workplace dummy, (11) unemployed in previous 5 years dummy, (12) 7 year dummies plus a constant. The dependent variable is the natural log of gross annual earnings. \(U\) is the natural log of the regional unemployment rate. Union status is determined on the basis of union recognition at the workplace. \(t\)-statistics are given in parentheses.
Table 4.2 The U.K. Wage Curve, 1973–77

<table>
<thead>
<tr>
<th>Weekly Earnings</th>
<th>Hourly Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>U,</td>
<td>-0.070</td>
</tr>
<tr>
<td>(10.47)</td>
<td>(4.83)</td>
</tr>
<tr>
<td>Regional dummies (10)</td>
<td>No</td>
</tr>
<tr>
<td>Constant</td>
<td>2.890</td>
</tr>
<tr>
<td>F</td>
<td>598</td>
</tr>
<tr>
<td>DF</td>
<td>60,486</td>
</tr>
<tr>
<td>F</td>
<td>1,158.21</td>
</tr>
</tbody>
</table>

Source: General Household Survey Series.

Note: In all cases, there are 60,565 observations. Unless stated otherwise, the following control variables were included: (1) 24 industry dummies, (2) 10 regional dummies, (3) 5 marital status dummies, (4) 17 qualification dummies, (5) 18 occupation dummies, (6) 4 year dummies, (7) gender dummy, (8) experience and its square, (9) part-time dummy. The dependent variable is the natural log of gross earnings. U, is the natural log of the regional unemployment rate. t-statistics are given in parentheses.

 econometrics papers by Moulton [1986, 1987, 1990], Greenwald [1983], and Klock [1981]), the means of the dependent variable and every independent variable in each region/year cell were calculated. Table 4.3 reports the results of reestimating the BSA regressions using these regional cell means, rather than the individual data themselves, as observations. This satisfies Moulton’s condition that the level of aggregation should be the same on both sides of the regression equation. Column 2 of table 4.3 shows that, controlling for regional dummies, the coefficient on the log of unemployment is -0.12, with a t-statistic of 1.8. Including a lagged dependent variable raises the t slightly. Although the estimate of the quantitative effect of unemployment on pay hardly changes between tables 4.1 and 4.3, therefore, the level of statistical significance looks considerably lower in the latter. The experiments reported in columns 4–7 suggest that current unemployment has greater statistical power than the lagged rate of unemployment, which is generally weak in this data set.

U.S. results are given in table 4.4, using the March Current Population Surveys (CPSs) from 1964 to 1988, which provides a larger sample than is available for other countries. The unemployment and earnings data used in the subsequent regressions relate to the respondent’s labor market behavior in the year preceding the date of interview. When estimating an earnings equation using, for example, the March 1987 CPS, regional unemployment and industry unemployment rates are mapped in for 1986. In what follows, years relate to the year preceding the survey rather than to the date of the survey. In the above case, for example, estimates from the 1987 CPS would be recorded as being for 1986. The equations in table 4.4 are estimated on regional cell means (derived from the full sample of approximately 1.5 million observations), and, because there are twenty-one regions times twenty-five years, the equations have between 380 and 450 degrees of freedom. These twenty-one regions are each large areas of the United States, such as New York State (see table 4.4), and this choice of aggregation was necessitated by changes in data collection through the period. The included personal control variables, such as experience, schooling, and marital status, are calculated as regional cell means. All the regressions incorporate full sets of (twenty-four) year dummies and (forty-five) regional groups over the twenty-five-year period. These area groupings are used to derive the regional dummies that we include in our subsequent regressions. For the 1964–67 and 1976–88 CPSs, unemployment rates are mapped in at the state level. The other years use somewhat broader area definitions. In both cases, there are over one thousand separate unemployment observations.
Table 4.4 The U.S. Regional Wage Curve, 1963–87

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_t$</td>
<td>-0.027</td>
<td>-0.048</td>
<td>-0.047</td>
<td>-0.030</td>
<td>-0.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.78)</td>
<td>(5.56)</td>
<td>(5.81)</td>
<td>(2.87)</td>
<td>(2.53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{t-1}$</td>
<td>-0.028</td>
<td>-0.048</td>
<td>-0.024</td>
<td>-0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.63)</td>
<td>(5.69)</td>
<td>(2.27)</td>
<td>(5.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{t-2}$</td>
<td>-0.041</td>
<td>-0.040</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.86)</td>
<td>(3.75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_{t-1}$</td>
<td>0.288</td>
<td>0.275</td>
<td>0.273</td>
<td>0.249</td>
<td>0.252</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.96)</td>
<td>(8.52)</td>
<td>(8.38)</td>
<td>(7.57)</td>
<td>(7.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional dummies</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Constant</td>
<td>5.672</td>
<td>6.611</td>
<td>4.931</td>
<td>5.035</td>
<td>5.109</td>
<td>5.495</td>
<td>5.434</td>
</tr>
<tr>
<td>$R^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(25.10)</td>
<td>(29.38)</td>
<td>(16.38)</td>
<td>(16.70)</td>
<td>(16.86)</td>
<td>(17.08)</td>
<td>(16.97)</td>
</tr>
<tr>
<td>$F$</td>
<td>1,488.83</td>
<td>2,045.06</td>
<td>2,288.66</td>
<td>2,299.44</td>
<td>2,281.41</td>
<td>2,173.63</td>
<td>2,182.92</td>
</tr>
<tr>
<td>$DF$</td>
<td>445</td>
<td>424</td>
<td>403</td>
<td>402</td>
<td>403</td>
<td>382</td>
<td>381</td>
</tr>
</tbody>
</table>


Note: All equations include full sets of year dummies, region dummies (20), industry dummies (43), plus controls for (1) experience and its square, (2) years of schooling, (3) marital status dummies, (4) race dummies, (5) private-sector dummy, (6) part-time dummy. Unemployment rates and the dependent variable (annual income) are in natural logarithms. All variables, including the dependent variable, are measured as the mean of all observations in a year/state cell. t-statistics are given in parentheses.

Table 4.5 The U.S. State Wage Curve, 1979–87

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_t$</td>
<td>-0.010</td>
<td>-0.073</td>
<td>-0.088</td>
<td>-0.066</td>
<td>-0.051</td>
<td>-0.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.74)</td>
<td>(7.32)</td>
<td>(7.26)</td>
<td>(4.28)</td>
<td>(3.92)</td>
<td>(4.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{t-1}$</td>
<td>-0.033</td>
<td>-0.034</td>
<td>-0.072</td>
<td>-0.055</td>
<td>-0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.29)</td>
<td>(2.58)</td>
<td>(6.18)</td>
<td>(3.65)</td>
<td>(1.00)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$U_{t-2}$</td>
<td>-0.026</td>
<td>-0.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.78)</td>
<td>(1.77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_{t-1}$</td>
<td>.009</td>
<td>.002</td>
<td></td>
<td></td>
<td>-0.005</td>
<td>-0.005</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.46)</td>
<td>(.13)</td>
<td></td>
<td></td>
<td>(.25)</td>
<td>(.29)</td>
<td>(.11)</td>
<td></td>
</tr>
<tr>
<td>State dummies</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$R^2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20.56)</td>
<td>(26.28)</td>
<td>(22.11)</td>
<td>(22.11)</td>
<td>(26.63)</td>
<td>(21.93)</td>
<td>(22.03)</td>
<td>(16.97)</td>
</tr>
<tr>
<td>$F$</td>
<td>110.32</td>
<td>232.41</td>
<td>171.76</td>
<td>172.82</td>
<td>234.78</td>
<td>164.22</td>
<td>164.60</td>
<td>173.21</td>
</tr>
<tr>
<td>$DF$</td>
<td>390</td>
<td>340</td>
<td>285</td>
<td>284</td>
<td>340</td>
<td>286</td>
<td>285</td>
<td>284</td>
</tr>
</tbody>
</table>


Note: All equations include full sets of year dummies, 50 state dummies (including the District of Columbia), industry dummies (43), plus controls for (1) experience and its square, (2) years of schooling, (3) marital status dummies, (4) race dummies, (5) private-sector dummy, (6) part-time dummy. Unemployment rates and the dependent variable (annual income) are in natural logarithms. All variables, including the dependent variable, are measured as the mean of all observations in a year/state cell. t-statistics are given in parentheses.
International Wage Curves

...mated on the full micro sample without use of cell means, and both industry and regional unemployment rates—again in logarithms—are entered together as explanatory variables. For the full sample of 1963–87 (cols. 7–9 of table 4.6), when industry and regional dummies are included, the industry unemployment elasticity of pay and the regional unemployment elasticity of pay are each approximately −0.1.

Columns 1–6 of table 4.6 break the time period into different samples as a way of assessing the robustness and stability of the estimates. Column 3 of table 4.6 is especially interesting because it obtains, for the period 1969–78, the Hall (1970) result that wages and unemployment are positively correlated across regions. Column 4, however, reveals that the introduction of regional dummies turns an unemployment coefficient of +0.106 into one of −0.045. Thus, it is omitted regional fixed effects that appear, in this period, to be responsible for the Hall-style finding of a positive relation between a regional wage and regional unemployment. With regional dummies included in the regressions, the regional unemployment elasticity of pay is estimated at −0.08 in 1963–68, −0.05 in 1969–78, and −0.15 in 1979–87. The estimate is −0.1 overall in column 8. It is not easy to understand these variations; they will need eventually to be explained. Nevertheless, the wage curve has a persistently negative gradient and one centered at approximately −0.1. Column 9 suggests that industry and regional unemployment are orthogonal to one another.

Two other points are worth noting. First, a series of U.S. wage equations was estimated for the period 1979–87 replacing regional dummies with “permanent” regional unemployment rates. This permanent unemployment variable was defined as average state unemployment for the period 1960–88. As expected, this variable enters positively and significantly. Although its inclusion improves the performance of the regional unemployment variable, it significantly worsens the overall fit of the equation compared with the specification including regional dummies. Second, a possible objection to noncompetitive interpretations of the estimated wage-unemployment correlation is that unemployment here could be acting as a mismeasured variable for a conventional labor supply curve. In order to test for such a possibility, regressions for the United States were estimated that included the labor force participation rate and, as an alternative, the employment/population ratio. These regressions were estimated on state means for the period 1979–87. When included with the state unemployment rate, these variables were typically insignificant, whereas the coefficient on the unemployment variable remained significant and of the same size as above. Further details on these issues are available on request from the authors.

Separate union and nonunion wage curves are estimated for the United States in tables 4.7 and 4.8. Because of data restrictions, it is necessary to use the March CPSs from 1983 to 1988. As was true in the U.K. case, the union sector of the United States appears to have a less elastic wage curve than the nonunion sector. The coefficient on regional log U is, in table 4.7, approxi-
Table 4.7 Union and Nonunion Wage Curves, United States, 1982–87

<table>
<thead>
<tr>
<th></th>
<th>All (1)</th>
<th>Union (2)</th>
<th>Nonunion (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_i$, industry</td>
<td>−.209</td>
<td>−.053</td>
<td>−.234</td>
</tr>
<tr>
<td></td>
<td>(14.58)</td>
<td>(1.89)</td>
<td>(14.27)</td>
</tr>
<tr>
<td>$U_i$, region</td>
<td>−.114</td>
<td>−.0697</td>
<td>−.119</td>
</tr>
<tr>
<td></td>
<td>(5.05)</td>
<td>(1.54)</td>
<td>(4.67)</td>
</tr>
<tr>
<td>Union dummy</td>
<td>.193</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>(26.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>8.084</td>
<td>8.570</td>
<td>8.090</td>
</tr>
<tr>
<td></td>
<td>(114.87)</td>
<td>(60.13)</td>
<td>(101.63)</td>
</tr>
<tr>
<td>$R^2$</td>
<td>.533</td>
<td>.376</td>
<td>.531</td>
</tr>
<tr>
<td>$F$</td>
<td>875.19</td>
<td>86.41</td>
<td>715.02</td>
</tr>
<tr>
<td>$DF$</td>
<td>86,379</td>
<td>15,765</td>
<td>70,502</td>
</tr>
<tr>
<td>$N$</td>
<td>86,493</td>
<td>15,878</td>
<td>70,615</td>
</tr>
</tbody>
</table>


Note: All equations include full sets of year, state (50), and industry variables (43) plus controls for (1) experience and its square, (2) years of schooling, (3) marital status variables, (4) race variables, (5) private sector, (6) part-time status. All unemployment rates and the dependent variable (annual income) are in natural logarithms. t-statistics are given in parentheses. N.A. = not available.

Table 4.8 Union and Nonunion Wage Curves, United States, 1982–87

<table>
<thead>
<tr>
<th></th>
<th>Private Sector</th>
<th>Public Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (1)</td>
<td>Union (2)</td>
</tr>
<tr>
<td>$U_i$, industry</td>
<td>−.222</td>
<td>−.070</td>
</tr>
<tr>
<td></td>
<td>(14.65)</td>
<td>(2.18)</td>
</tr>
<tr>
<td>$U_i$, region</td>
<td>−.122</td>
<td>−.076</td>
</tr>
<tr>
<td></td>
<td>(4.69)</td>
<td>(1.25)</td>
</tr>
<tr>
<td>Union dummy</td>
<td>.194</td>
<td>N.A.</td>
</tr>
<tr>
<td></td>
<td>(21.36)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(104.47)</td>
<td>(49.70)</td>
</tr>
<tr>
<td>$R^2$</td>
<td>.528</td>
<td>.380</td>
</tr>
<tr>
<td>$F$</td>
<td>708.13</td>
<td>57.91</td>
</tr>
<tr>
<td>$DF$</td>
<td>70,192</td>
<td>10,103</td>
</tr>
<tr>
<td>$N$</td>
<td>70,304</td>
<td>10,214</td>
</tr>
</tbody>
</table>


Note: All equations include full sets of year, state (50), and industry variables (43) plus controls for (1) experience and its square, (2) years of schooling, (3) martial status variables, (4) race variables, (5) private sector, (6) part-time status. All unemployment rates and the dependent variable (annual income) are in natural logarithms. t-statistics are in parentheses. N.A. = not available.

Table 4.9 Public-Sector Wage Curves, United States, 1982–87

<table>
<thead>
<tr>
<th></th>
<th>Federal (1)</th>
<th>Local (2)</th>
<th>State (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U_i$, industry</td>
<td>+.001</td>
<td>−.074</td>
<td>−.234</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.59)</td>
<td>(14.27)</td>
</tr>
<tr>
<td>$U_i$, region</td>
<td>+.044</td>
<td>−.143</td>
<td>−.119</td>
</tr>
<tr>
<td></td>
<td>(.47)</td>
<td>(1.92)</td>
<td>(4.67)</td>
</tr>
<tr>
<td>Union dummy</td>
<td>.102</td>
<td>.269</td>
<td>.203</td>
</tr>
<tr>
<td></td>
<td>(3.65)</td>
<td>(12.95)</td>
<td>(9.69)</td>
</tr>
<tr>
<td>Constant</td>
<td>7.151</td>
<td>8.261</td>
<td>8.478</td>
</tr>
<tr>
<td></td>
<td>(15.50)</td>
<td>(16.40)</td>
<td>(20.29)</td>
</tr>
<tr>
<td>$R^2$</td>
<td>.533</td>
<td>.376</td>
<td>.571</td>
</tr>
<tr>
<td>$F$</td>
<td>875.19</td>
<td>86.41</td>
<td>80.76</td>
</tr>
<tr>
<td>$DF$</td>
<td>3,603</td>
<td>5,706</td>
<td>5,540</td>
</tr>
<tr>
<td>$N$</td>
<td>3,703</td>
<td>5,801</td>
<td>5,635</td>
</tr>
</tbody>
</table>


Note: All equations include full sets of year, state (50), and industry variables (43) plus controls for (1) experience and its square, (2) years of schooling, (3) martial status variables, (4) race variables, (5) private sector, (6) part-time status. All unemployment rates and the dependent variable (annual income) are in natural logarithms. t-statistics are in parentheses.

Importantly $-0.07$ (poorly determined) in union employment and $-0.12$ in nonunion employment. The public/private-sector distinction is examined in tables 4.8 and 4.9. Columns 1 and 4 of table 4.8 suggest that wages are a little more responsive to regional unemployment in the private than in the public sector. Once again, the union sector has a less elastic wage curve. The results reported in table 4.9 are more dramatic (similar findings are given by Katz and Krueger [1991a]); they show that federal sector employees' pay is effectively independent of regional unemployment, with the result that the wage curve is flat.

Although it is not possible to present results in detail, wage curve estimates for Canada, South Korea, Austria, Italy, Holland, Switzerland, Norway, and Germany are summarized in brief form in table 4.10. These use data sets of varying sizes and types (most come from the International Social Survey Programme) but give estimates that are similar. Controlling for region or industry fixed effects, estimates of the unemployment elasticity of wages are distributed around $-0.1$. They vary from a low of $-0.05$ for Korea's unemployment elasticity to a high of $-0.12$ for Austria's and Holland's, which might be interpreted as showing that countries do not differ markedly. The reported results are based on earnings equations of an otherwise conventional cross-sectional kind—the exact specification used does not appear to affect the key findings—into which the log of the unemployment rate has been added. Details of these specifications are available from the authors.
### Table 4.10 International Wage Curves

<table>
<thead>
<tr>
<th>Country</th>
<th>Dependent Variable</th>
<th>Data Set</th>
<th>Coefficient on Log U</th>
<th>t-statistic</th>
<th>Fixed Effects</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. S. Korea</td>
<td>Gross monthly earnings</td>
<td>Occupational Wage Surveys, 1983, 1986</td>
<td>-.05*</td>
<td>25.0</td>
<td>Yes</td>
<td>1,168,142</td>
</tr>
<tr>
<td>3. Austria</td>
<td>Gross monthly earnings</td>
<td>ISSP, 1985-86</td>
<td>-.16</td>
<td>2.2</td>
<td>No</td>
<td>758</td>
</tr>
<tr>
<td>4. Austria</td>
<td>Gross monthly earnings</td>
<td>ISSP, 1985-86</td>
<td>-.12</td>
<td>1.7</td>
<td>Yes</td>
<td>758</td>
</tr>
<tr>
<td>5. Italy</td>
<td>Gross monthly earnings</td>
<td>ISSP, 1986-88</td>
<td>-.12</td>
<td>3.8</td>
<td>No</td>
<td>1,532</td>
</tr>
<tr>
<td>6. Italy</td>
<td>Gross monthly earnings</td>
<td>ISSP, 1986-88</td>
<td>-.08</td>
<td>2.0</td>
<td>Yes</td>
<td>1,532</td>
</tr>
<tr>
<td>7. Holland</td>
<td>Net monthly earnings</td>
<td>ISSP, 1988-89</td>
<td>-.23</td>
<td>2.6</td>
<td>No</td>
<td>1,270</td>
</tr>
<tr>
<td>8. Holland</td>
<td>Net monthly earnings</td>
<td>ISSP, 1988-89</td>
<td>-.12</td>
<td>3.6</td>
<td>Yes</td>
<td>1,270</td>
</tr>
<tr>
<td>9. Switzerland</td>
<td>Net monthly earnings</td>
<td>ISSP, 1987</td>
<td>-.12</td>
<td>3.6</td>
<td>Yes</td>
<td>645</td>
</tr>
<tr>
<td>10. Norway</td>
<td>Gross yearly earnings</td>
<td>ISSP, 1989</td>
<td>-.07</td>
<td>2.1</td>
<td>No</td>
<td>933</td>
</tr>
<tr>
<td>11. Norway</td>
<td>Gross yearly earnings</td>
<td>ISSP, 1989</td>
<td>-.09</td>
<td>2.4</td>
<td>Yes</td>
<td>933</td>
</tr>
<tr>
<td>12. West Germany</td>
<td>Gross monthly earnings</td>
<td>ISSP, 1986-88</td>
<td>-.02*</td>
<td>.7</td>
<td>No</td>
<td>1,760</td>
</tr>
<tr>
<td>13. West Germany</td>
<td>Gross monthly earnings</td>
<td>ISSP, 1986-88</td>
<td>-.08*</td>
<td>2.1</td>
<td>Yes</td>
<td>1,760</td>
</tr>
</tbody>
</table>

*Note: Log U is defined as an area unemployment rate at various levels of disaggregation in different countries. Where indicated by an asterisk, unemployment is measured at the industry level. The dependent variable is in natural logarithms. In all cases, personal variables are included as controls (i.e., gender, race, age, schooling, etc.).

### 4.3 Interpreting the Data

A downward-sloping wage curve is observed in what appears to be a robust way, across various nations, in these microeconomic data sets. The next questions to be tackled are those of why this occurs, of what it implies for labor economics and macroeconomics, and eventually of what it means for government policy. One way to start is to try to write down a model that is internally consistent and makes the correct predictions about the correlation visible in the data.

An intuitive objection to the empirical results is that the wage-unemployment correlation should—by an argument based on compensating differentials—be positive rather than negative. A milder version of such a view is that, at best, the estimated wage curves are likely to be a mixture of downward-and upward-sloping functions and thus that there is an unresolved simultaneity problem. According to this point of view, the estimates confute the positive Harris-Todaro gradient and the negative gradient of a macroeconomic model such as efficiency wage theory.

This section sets out a model in which a downward-sloping wage curve is derived from optimizing behavior. The reason for the negative gradient is that unemployment frightens workers and that, in consequence, firms find that, in recessions, it is feasible to pay their employees less well. The model is constructed in such a way that, contrary to Harris and Todaro (1970), wages and unemployment are negatively rather than positively related. To understand why the upward-sloping Harris-Todaro relation is misleading, it is necessary to recall that, in reality, migration is a costly process that takes place in a world with random demand shocks.

The theoretical framework allows workers to migrate across regions but assumes that it is not possible to do so instantly. Unemployed individuals do not immediately attempt to migrate: they migrate only if one region offers a better expected utility than another. This realistic assumption of costly, rational, far-sighted migration decisions effectively decouples current pay and current unemployment and so bypasses the positive gradient of the Harris-Todaro relation. A high wage in the current period need not be accompanied in that period by high unemployment; pay and unemployment are positively related (at most) only in expected or long-run terms.

One version of the model goes further: it shows that regions that differ only in nonpecuniary attractions may have the same wage curve and nothing that corresponds to a visible positive wage-unemployment relation. This is possible, for example, if one region is inherently attractive and, to ensure consistency with a zero-migration equilibrium, therefore offers both low pay and high unemployment. Another region, say, pays well and has low unemployment but is an inherently unattractive place. The result is a negatively inclined wage function even in long-run equilibrium.

Consider an economy consisting of two regions. The following assumptions are made about region 1 and, with small modifications, about region 2:

**Assumption 4.1.** Assume that workers are risk neutral and get utility from income and disutility from effort. Define the wage as \( w \) and the level of on-the-job effort as \( e \). Assume that utility equals the difference between income and effort so that (pecuniary) utility is

\[
\text{utility} = w - e.
\]

**Assumption 4.2.** Assume that effort at work, \( e \), is a fixed number determined by technology but that individual employees can decide to "shirk" and exert zero effort. If undetected by the firm, these individuals earn wage \( w \) and have
Assumption 4.3. An individual who shirks runs the risk of being detected. Designate as $\delta$ the probability of successfully shirking, that is, of escaping detection. Assume that anyone caught shirking is fired and has then to find work elsewhere (at required effort $e$). Let the expected utility of a fired worker be $\bar{w}$. Define it

$$\bar{w} = (w - e) \alpha(U) + b[1 - \alpha(U)].$$

This is a convex combination of $w - e$, the utility from working at the required effort level, and of $b$, which is defined as the income value of unemployment benefit plus leisure. The function $\alpha(U)$ measures the probability of finding work and how that is affected by the level of unemployment, $U$, prevailing in the local labor market.

Assumption 4.4. Assume that there is a constant rate of breakup, $r$, of firms. In steady-state equilibrium, total new hires in the local economy are $\alpha(l - n)$, where $l$ is population, $n$ is employment, and

$$rn = \alpha(l - n).$$

Unemployment is $U = 1 - nl$, so

$$r = \frac{r}{U} - \alpha.$$

This defines a function $\alpha(U)$ with derivatives

$$\alpha'(U) = -\frac{r}{U^2} < 0,$$

$$\alpha''(U) = \frac{2r}{U^3} > 0.$$  

Thus, the probability of finding a job, $\alpha$, is a convex function of unemployment, $U$.

Assumption 4.5. Equivalent conditions hold in the second region. The wage there is $\omega$, and the level of unemployment benefit is $\beta$. The unemployment rate in the second region is $\mu$.

Assumption 4.6. The second region differs from the first in that both workers and nonworkers enjoy a nonpecuniary benefit, $\phi$, from living in the region.

7. George Johnson, our discussant, raised the issue of whether this discreteness assumption, of only two effort levels, is necessary to obtain a wage curve. It is not: all that is needed, intuitively, is that workers be frightened by high unemployment. For example, using a version of efficiency wage theory, Phelps (1990, 1992) derives wage curves with a continuous effort function.

Proposition 4.1. Each region has a downward-sloping convex wage curve. If both regions have the same level of unemployment benefit (so $b = \beta$), they have a common wage curve given by the equation

$$w = e + b + \frac{e\delta}{(1 - \delta)[1 - \alpha(U)]}.$$

Proof. For a no-shirking equilibrium, the expected utility from not shirking must equal that from shirking. Thus, in region 1,

(1) \hspace{1cm} w - e = \delta w + (1 - \delta)\{w - e\alpha(U) + b[1 - \alpha(U)]\},

which simplifies, after manipulation, to

(2) \hspace{1cm} w = e + b + \frac{e\delta}{(1 - \delta)[1 - \alpha(U)]}.

In region 2, in which individuals receive a utility supplement $\phi$, the no-shirking condition is

(3) \hspace{1cm} \omega - e + \phi = \delta(\omega + \phi) + (1 - \delta)\{(\omega - e + \phi)\alpha(U) + (\beta + \phi)[1 - \alpha(U)]\}.

The $\phi$ terms cancel from both sides, leaving a wage equation

(4) \hspace{1cm} \omega = e + \beta + \frac{e\delta}{(1 - \delta)[1 - \alpha(U)]}.
If \( b = \beta \), equation (2) is identical to equation (4), and the two regions have the same wage equation. The convexity of this wage curve follows from the convexity of the \( \alpha(U) \) function and can be checked by differentiation.

More intuitively, equilibrium necessitates that wages in each region be just enough to dissuade employees from shirking. This requires that the expected utility from shirking be no greater than that from working at effort \( e \). Because the second region's nonpecuniary attractions, \( \phi \), are available to both the employed and the unemployed, the condition for no shirking is independent of \( \phi \). Thus, as long as there is no difference in unemployment benefit levels (or, more generally, the utility available to the jobless), each region has the same equation for its no-shirking condition. This common equation traces out a convex negatively sloped locus linking the wage, \( w \), to the unemployment rate, \( U \). When unemployment is low, for example, firms pay high wages to ensure that workers value their jobs sufficiently not to shirk.

**Proposition 4.2.** Assume that both regions have the same level of unemployment benefit. (i) Then, for a zero-migration equilibrium, they must face different distributions of demand shocks and exhibit different wage/unemployment patterns. (ii) Region 1 has a higher expected wage than region 2.

**Proof.** For a zero-migration equilibrium, each region must offer the same level of expected utility to workers. The expected utility of a migrant into region 1 is

\[
\int \{(w - e)\alpha(U) + b[1 - \alpha(U)]\}g(s)ds
\]

and of a migrant into region 2 is

\[
\int \{(\omega - e + \phi)\alpha(\mu) + (\beta + \phi)[1 - \alpha(\mu)]\}h(\sigma)d\sigma.
\]

Given identical unemployment benefit levels \( b = \beta \) and identical distributions of demand shocks \( g(\cdot) = h(\cdot) \), these two expressions cannot be equal. The difference between them would be \( \phi > 0 \). In equilibrium, therefore, the regions must exhibit different wage/unemployment patterns, and this establishes the first part of the proposition.

To demonstrate that the expected wage in region 1 is higher than the expected wage in region 2, it is necessary to prove that

\[
\int wg(s)ds > \int \omega h(\sigma)d\sigma.
\]

Zero migration requires

\[
\int \{(w - e)\alpha(U) + b[1 - \alpha(U)]\}g(s)ds = \int \{(\omega - e + \phi)\alpha(\mu)
\]

\[+ (\beta + \phi)[1 - \alpha(\mu)]\}h(\sigma)d\sigma.
\]

The two no-shirking conditions (one for each region) are

\[
w - e = \delta w + (1 - \delta)\{\alpha(U)(w - e) + [1 - \alpha(U)]b\},
\]

\[
\omega - e + \phi = \delta(\omega + \phi) + (1 - \delta)\{\alpha(\mu)(\omega + \phi - e) + [1 - \alpha(\mu)](\beta + \phi)\}.
\]

Rearranging and integrating both sides of each of these equations,

\[
\int \{(w - e)\alpha(U) + b[1 - \alpha(U)]\}g(s)ds = \int \{\alpha(U)(w - e) + [1 - \alpha(U)]b\}g(s)ds,
\]

\[
\int \{(\omega - e + \phi)\alpha(\mu) + (\beta + \phi)[1 - \alpha(\mu)]\}h(\sigma)d\sigma = \int \{\alpha(\mu)(\omega + \phi - e) + [1 - \alpha(\mu)](\beta + \phi)\}h(\sigma)d\sigma.
\]

By equation (8), the left-hand sides of these must be equal:

\[
\int \{(w - e)\alpha(U) + b[1 - \alpha(U)]\}g(s)ds = \int \{\alpha(U)(w - e) + [1 - \alpha(U)]b\}g(s)ds,
\]

which simplifies, noting that the integral of \( eg/(1 - \delta) \) equals the integral of \( eh/(1 - \delta) \), to

\[
\int wg(s)ds - \int \omega h(\sigma)d\sigma = \phi > 0.
\]

If proposition 4.2(i) were false, the two regions would have identical wage and unemployment outcomes. But, because region 2 is intrinsically attractive (it offers nonpecuniary benefit \( \phi \)), all workers would attempt to migrate there. In equilibrium, therefore, region 2's attractions must be exactly counterbalanced by inferior wage and unemployment combinations.

To illustrate these ideas, figure 4.1 sketches wage curves. Curve 1 represents the locus along which occur the wage-unemployment combinations for regions with identical unemployment benefit levels. Repeated random shocks produce different points on the curve. To ensure a zero-migration equilibrium, the intrinsically more attractive region 2 must be characterized more often by points in the southeast portion of the wage curve, which implies worse wage and unemployment combinations. Equilibria in the less attractive region 1 must more often occur in the northwest segment of the wage curve—so that workers are willing to live there. This is captured algebraically in proposition 4.2(ii), which states that, because of its inherent disadvantages, the first region must on average offer higher wages than region 2. Equation (14) shows that, in this world of risk-neutral people, the size of the regional gap in expected wages will equal the value of the nonpecuniary difference between the regions.

**Proposition 4.3.** Assume that the regions have different levels of unemployment benefit. Then the wage curve in the high-benefit region lies vertically above that in the low-benefit region.
Proof. Because the no-shirking condition is

\[ w = e + b + \frac{e\delta}{(1 - \delta)[1 - \alpha(U)]} \]

the level of unemployment benefit, \( b \), is a vertical shift parameter in a graph of the wage equation in wage/unemployment space. This result follows from the fact that the level of unemployment benefit (or value of full leisure) is an intercept variable in the no-shirking condition defining equilibrium. As would be expected intuitively, therefore, in a region with higher benefits to those who are unemployed, firms must set higher wage rates if they are to discourage shirking.

Proposition 4.4. The results generalize to models with an arbitrary number of regions.

Proof. A nonshirking condition will hold for each region. Mathematically, the separability of \( \phi \) in the wage equation ensures that, because an equivalent non-shirking condition can be written down for each area, the results generalize to an arbitrary number of regions. The heights of the different wage curves are determined by the size of the different unemployment benefit levels.

An intuitive summary of the model's structure can be given in the following way. In this efficiency wage framework, a high level of regional unemployment is associated with a low level of regional wages; high unemployment makes employees keen to keep their jobs because it will be difficult to find another. Other things constant, therefore, these employees are reluctant to shirk at work, for fear they will be detected and dismissed. Knowing this, firms need pay only low wages to extract the required level of effort from workers. Fear of unemployment then disciplines workers.

If unemployment is low, by contrast, employers have to offer high wages. If they do not, employees are likely to take the risk of shirking at work, realizing that it will be easy to find another job if dismissed. When the unemployment rate is low, high wage rates are necessary to motivate workers.

Because individuals can eventually migrate, this is not the end of the story. First, although actual wage and unemployment combinations will depend on current demand shock variables, the average or expected wage needs to be higher in regions with low nonpecuniary attractions. This is because regions have to offer equal expected utilities; otherwise some will get no workers willing to stay. Second, a region with a relatively high level of unemployment benefit will have a relatively high wage curve (such as the bold curve, labeled II, in fig. 4.1). The intuitive reason for this is that, to ensure that there is no shirking in an area where the utility from being unemployed is relatively great, the employer must pay better than in areas where the utility of the jobless is comparatively low. It is more expensive to motivate workers who have good outside options. Some regions thus have wage curves that lie vertically above those in other regions.

Individuals do not all move to the regions with the highest wage curves or to the regions with the greatest nonpecuniary advantages because those two kinds of regions are areas that more commonly have wage and unemployment outcomes in the southeast segments of their own wage curves (i.e., worse recessions). Probabilistic demand shocks are thus an essential part of a coherent model. Put loosely, intrinsically attractive regions with high unemployment benefits must be characterized, in steady-state equilibrium, by harsher “business cycles” than less favored areas.

According to this multisector model, there can exist a downward-sloping convex function tying together the rate of unemployment in an area and the level of remuneration offered within that location. The intercept in this function depends on the size of the unemployment benefit so that regions have the same wage curve only if they do not differ in the generosity of income paid to (or for exogenous reasons enjoyed by) those out of work.

The purpose of this section has been to offer one way of thinking about the empirical patterns found in the international microeconomic data. The common empirical finding suggests that there is some systematic relation at work across the countries, and it is not easy to see how traditional models could account for it. However, in an efficiency wage framework with random demand shocks, there are reasons to believe that, just as the data show, pay and unemployment will be negatively related. The model has demonstrated why it is
misleading to expect a positive correlation between regional wage levels and unemployment levels. Because the aim has been to eschew competitive labor market theory, the analysis is necessarily unconventional. It may be that eventually the conceptual framework developed here will be seen to be incomplete or misleading, but at this juncture a multisector efficiency wage model appears to have the right general properties to fit the facts.

4.4 Conclusions

This paper uses a number of microeconomic data sets to study the relation between the level of pay and the level of unemployment. It attempts to demonstrate that there is an empirical regularity (a “wage curve”) in international pay and unemployment data, that different countries’ estimates of the unemployment elasticity of pay cluster at approximately −0.1, and that conventional wisdom on U.S. regional wage-unemployment patterns needs to be reconsidered.

The paper presents evidence from eight countries for the existence of an inverse relation between employees’ pay and the level of regional unemployment and evidence from three countries for the existence of an inverse relation between employees’ pay and the level of industry unemployment. Estimates with and without controls for sectoral fixed effects are provided. In the case of the United States, it appears to be important to allow for regional fixed effects: doing so reverses the conventional view that area wages and area unemployment rates are positively correlated.

Although presented here as a kind of statistical fact or uniformity in the data, the estimated wage curve also corresponds to the key element in a new class of macroeconomic models. One example of this class is efficiency wage theory, in which unemployment acts as a discipline device that dissuades employees from shirking on the job: a high unemployment rate allows the firm to pay less in equilibrium. The paper shows how this idea can be incorporated into a model of interregional equilibrium. Its predictions are different from, and in some cases almost the opposite of, those in the tradition of Harris and Todaro (1970) and Hall (1970, 1972). One reason is that this literature has not distinguished as clearly as it could have, on the one hand, a positive regional correlation between expected pay and expected unemployment and, on the other, a negative regional correlation between contemporaneous pay and unemployment.

The estimated wage curves imply that, averaging across nations, a doubling of local unemployment reduces the level of pay by approximately 10 percent. When taken together, the findings suggest that there is a common empirical pattern across nations. It seems that a satisfactory theory of labor market behavior needs to be able to account for the fact that international wage curves exist.

Data Appendix

British Social Attitudes Survey Series, 1983–91

This series of surveys, core funding for which was provided by the Sainsbury Family Trusts, was designed to chart movements in a wide range of social attitudes in Britain and is similar to the General Social Survey carried out by the National Opinion Research Center (NORC) in the United States. The surveys were designed and collected by Social and Community Planning Research (SCPR) and derive from annual cross-sectional surveys from a representative sample of adults aged eighteen or over living in private households in Great Britain whose addresses were on the electoral register. The first three surveys involved around eighteen hundred adults; the numbers were increased to three thousand in 1986. Interviews were also conducted in Northern Ireland for the first time in 1989.

The sampling in each year involved a stratified multistage design with four separate stages of selection. First, in each year, approximately 120 (150 in 1986) parliamentary constituencies were selected, with the probability of selection proportionate to the size of the electorate in the constituency. Then, for each constituency, a polling district was selected also with the probability of selection proportionate to the size of the electorate. Then thirty addresses were selected at a fixed interval on the electoral register. Finally, at each sampled address, the interviewer selected one respondent using a random selection procedure (a Kish grid). The majority of sample errors for each survey lie in the range 1.0–1.5; errors for subgroups would be larger. For further details of the survey design, see, for example, Jowell, Witherspoon, and Brook (1991).

The General Household Survey Series, 1973–77

The General Household Survey is a continuous multipurpose national sample survey based on private households selected from the electoral register. It originated in 1971 as a service to various government departments. Although there is substantial continuity in questions over time, new areas for questioning are introduced, for example, leisure in 1973 and 1977 and drinking in 1978, and the form of questions vary between years.

The sample remained largely unchanged between 1971 and 1974 and was designed to be representative of Great Britain in each calendar quarter. The three-stage sample design involved the selection of 168 local authority areas as the primary sampling units (PSUs) by probability proportional to population...
size, after first stratifying local authority areas by (a) regions, (b) conurbations, other urban areas, semirural areas, and rural areas, and (c) average ratable value. Each year, four wards (in rural areas, groups of parishes) are selected from each PSU with the probability proportional to the population size. The selected local authority areas are rotated in such a way that a quarter are replaced every three months. Within each ward, twenty or twenty-five addresses are selected. At most, three households are interviewed at each address (and, to compensate for additional households at an address, a corresponding number are deleted from the interviewer’s address list). This yielded a total effective sample of 15,360 households in 1973, for example.

Since 1975, in an attempt to reduce the effects of clustering, the sample design has been based on a two-stage sampling procedure with electoral wards as the PSUs. Geographically contiguous wards or parishes are grouped where necessary to provide a minimum electorate of twenty-three hundred before selection. Wards are stratified by (a) regions, (b) metropolitan and nonmetropolitan counties, and (c) percentage in higher or intermediate nonmanual socioeconomic groups, to produce 168 strata. Within these strata, wards are listed by (d) percentage of households in owner occupation, before being systematically selected by probability proportional to size. Four wards are used from each stratum each year, with each selected ward in use for three years before being replaced. Selection of addresses within wards remains the same as before 1975, but addresses where there are multiple households are treated somewhat differently. The sample is not representative in each calendar quarter after 1975.

Some households respond only partially; therefore, response rates can be measured in a number of different ways:

1. The minimum response rate, defined as only completely cooperating households—70 percent in 1973.
2. The maximum response rate, which excludes only households where the whole household either refused or was not contacted—84 percent in 1973.
3. The middle response rate, which includes households where information is missing for certain questions but excludes those where information is missing altogether for one or more household members—81 percent in 1973 (the middle response rate therefore includes the 6 percent [in 1973] of households in which information about one or more household members was obtained from someone else in the household [a “proxy”]; certain questions are not asked by proxy, e.g., questions about income, educational qualifications, and opinion).

The data set is based on individuals (i.e., all adults and children in the sample households); that is, the case unit is an individual, not a household. The GHS defines a household as “a group of people living regularly at one address, who are all catered for by the same person for at least one meal a day.”

The International Social Survey Series, 1985–89

The International Social Survey Programme (ISSP) is a voluntary grouping of study teams in eleven nations (Australia, Austria, Britain, Holland, Hungary, Ireland, Israel, Italy, Norway, and West Germany). In 1987, a separate Swiss survey was also included. As a condition of membership, each country undertakes to run a short, annual, self-completion survey containing an agreed-on set of questions asked of a probability-based, nationwide sample of adults. The topics change from year to year by agreement, with a view to replication every five years or so. The major advantage of the ISSP is that it produces a common set of questions asked in identical form in the participating countries.

For a description of the technical details of the surveys, see the technical appendix in Jowell, Witherspoon, and Brook (1989).


The Current Population Survey (CPS) is the source of the official government statistics on employment and unemployment in the United States. The CPS has been conducted monthly for over forty years. Currently, about 56,500 households are interviewed monthly, scientifically selected on the basis of area of residence to represent the nation as a whole, individual states, and other specified areas. Each household is interviewed once a month for four consecutive months in one year and again for the corresponding time period a year later. This technique enables month-to-month and year-to-year comparisons to be obtained at a reasonable cost while minimizing the inconvenience to any one household.

Although the main purpose of the survey is to collect information on the employment situation, a secondary purpose is to collect information on the demographic status of the population, information such as age, sex, race, marital status, educational attainment, and family structure. From time to time, additional questions are included on such subjects as health, education, income, and previous work experience. The statistics resulting from these questions serve to update similar information collected once every ten years through the decennial census and are used by policymakers and legislators as indicators of the economic situation in the United States and for planning and evaluating many government programs.

The CPS provides current estimates of the economic status and activities of the population of the United States. Because it is not possible to develop one or two overall figures (such as the number of unemployed) that would adequately describe the whole complex of labor market phenomena, the CPS is designed to provide a large amount of detailed and supplementary data. Such data are made available to meet a variety of needs on the part of users of labor market information.

Thus, the CPS is the only source of monthly estimates of total employment (both farm and nonfarm); nonfarm self-employed persons, domestics, and un-
paid helpers in nonfarm family enterprises; wage and salary employees; and, finally, total unemployment. It provides the only available distribution of workers by the number of hours worked (as distinguished from aggregate or average hours for an industry), permitting separate analyses of part-time workers, workers on overtime, etc. The survey is also the only comprehensive current source of information on the occupation of workers and the industries in which they work. Information is available from the survey not only for individuals currently in the labor force but also for those who are outside the labor force. The characteristics of such people—whether married women with or without young children, disabled individuals, students, older retired workers, etc.—can be determined. Information on their current desire for work, their past work experience, and their intentions as to job seeking are also available.

The March CPS, also known as the Annual Demographic File, contains the basic monthly demographic and labor force data described above plus additional data on work experience, income, noncash benefits, and migration.

The Korean Occupational Wage Surveys, 1983 and 1986

The Occupational Wage Survey is conducted annually by the Korean Ministry of Labor. The survey includes wage, employment, and demographic information about 5 million workers. The paper makes use of the original tapes with around 600,000 observations that are randomly sampled from the original survey. The sampling units are firms, not individuals. Firms report wage and demographic data on a random sample of their workers, but only firms with ten or more employees are included in the survey. This omits roughly one-third of the nonagricultural workforce in a typical year.

References


Kloek, T. 1981. OLS estimation in a model where a microvariable is explained by ag-
gregates and contemporaneous disturbances are equicorrelated. *Econometrica* 


Lindbeck, Assar. 1992. Macroeconomic theory and the labor market. *European Eco-


Moulton, Brent R. 1986. Random group effects and the precision of regression esti-


———. 1990. An illustration of a pitfall in estimating the effects of aggregate variables 


Oswald, Andrew J. 1986. Wage determination and recession: A report on recent work. 
*British Journal of Industrial Relations* 24, no. 2:181–94.

Phelps, Edmund. 1990. Effects on productivity: Total domestic product demand and 
incentive wages on unemployment in a non-monetary customer-market model of the 

———. 1992. Consumer demand and equilibrium unemployment in a working model 
of the customer-market incentive-wage economy. *Quarterly Journal of Economics* 
107:1003–32.

Phillips, William. 1958. The relation between unemployment and the rate of change of 


Sargan, Dennis. 1984. Wages and prices in the United Kingdom: A study in econome-

Shapiro, Carl, and Joseph Stiglitz. 1984. Equilibrium unemployment as a worker disci-


Unemployment-inflation trade-offs in Europe. 1990. *Scandinavian Journal of Eco-
nomics*, vol. 92, no. 2 (special issue).

Woodford, Michael. 1992. Seven schools of macroeconomic thought, by ES Phelps: 