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Abstract
Math anxiety (MA) is associated with negative thoughts and emotions when encountering mathematics, often resulting in under-
performance onmath tasks. One hypothesizedmechanism bywhichMA affects performance is through anxiety-related increases
in working memory (WM) load, diverting resources away from mathematical computations. We examined whether this effect is
specific to WM or whether the impact of MA extends to an overall depletion of executive function (EF) resources. In this fMRI
experiment, we manipulated two separate factors known to impact EF demands—task-switching (TS) and increasedWM load—
in order to evaluate howMA relates to behavioral performance and neural activity related to mathematical calculations. Relative
to a difficult non-math task (analogies), we observed MA-related deficits in math performance and reduced neural activity in a
network of regions in the brain associated with arithmetic processing. In response to TS demands, higher levels of math anxiety
were associatedwith a pattern of avoidance and disengagement.When switching from the control task, highmath anxiety (HMA)
was associated with disengagement from math trials, speeding through these trials, and exhibiting reduced neural activity in
regions associated with arithmetic processing. The effects of math anxiety andWMwere most pronounced at the lowest levels of
WM load. Overall, the results of this study indicate that the effects of MA are broader than previously demonstrated and provide
further insight into how EF deficits in MA might impact recruitment of neural resources that are important for successful math
computations.
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Math anxiety (MA), or negative emotions, thoughts, and
worries associated with mathematics, has been shown to pres-
ent a significant challenge for students in STEM fields
(Beilock & Maloney, 2015). Math anxiety is associated with
deficits in mathematical processing (Ashcraft, 2002) and
achievement (Betz, 1978; Hembree, 1990; Ramirez,
Gunderson, Levine & Beilock, 2013). These deficits may
not be attributed to lack of inherent mathematical skill but

are caused by anxiety-related changes in working memory
(Ashcraft & Krause, 2007; Hopko, Ashcraft, Gute,
Ruggiero, & Lewis, 1998). Compared with low MA (LMA)
individuals, high MA (HMA) individuals experience an array
of anxiety-related behaviors, which likely have an impact on
math computations. Previous research has suggested that be-
haviors associated with math anxiety are characteristic of
avoidance (Betz, 1978; Faust, Ashcraft, & Fleck, 1996;
Pizzie & Kraemer, 2017). Math anxiety impacts working
memory by allocating resources that would usually support
math computation to systems that process anxious emotion.
For example, verbal working memory resources are utilized
by negative self-talk and rumination (DeCaro, Rotar, Kendra,
& Beilock, 2010; Maloney, Schaeffer, & Beilock, 2013).
Some of the underlying deficits in performance can be attrib-
uted to changes in working memory in HMA individuals
(Ashcraft & Kirk, 2001).

Relatedly, research on executive function indicates that
working memory load (i.e., updating) is one of several factors
that contribute to demands on executive function resources
and that relates to academic performance, including
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mathematical achievement (Bull & Scerif, 2001; Bull, Espy,
&Wiebe, 2008; Carpenter, Just, & Reichle, 2000; Friedman&
Miyake, 2017;Miyake& Friedman, 2012;Miyake, Friedman,
Rettinger, Shah, & Hegarty, 2001; St Clair-Thompson &
Gathercole, 2006). According to a prominent model of exec-
utive function (Miyake et al., 2000; Miyake & Friedman,
2012; Friedman &Miyake, 2017), the diverse set of cognitive
mechanisms and behaviors that make up this construct can be
characterized by shifting, updating of information in working
memory (WM), and an additional latent factor that is related to
these two domains. In in addition to not being wholly separa-
ble from shifting and updating, this latent factor is thought to
represent aspects of inhibition. Therefore, in this neuroimag-
ing study, we focused on two separable types of executive
function (EF) demands—shifting, as manipulated by our task
switching (TS) paradigm, and updating, manipulated here by
varying the task-relevant WM load—in order to assess their
associations with math calculation in MA. In this conceptual-
ization of EF, shifting (TS) and updating (WM load) are con-
sidered to be related to one another as aspects of executive
function but represent separable components EF that we have
parametrically manipulated in this study. In this way, we aim
to better understand—on both behavioral and neural systems
levels—how increased executive function demands contribute
to underlying brain activity and behavior in increased MA
compared with low MA individuals.

To examine the effect of each EF component during math-
ematical calculation, we explored brain activity while we ma-
nipulated EF demands as follows: 1) task switching between
variable length blocks of math trials and word-based analogy
trials: switching back and forth between task sets requires
adopting a new set and initially increases demand on EF re-
sources when one switches to a new task (Friedman &
Miyake, 2017; Liefooghe, Barrouillet, Vandierendonck, &
Camos, 2008; Miyake & Friedman, 2012), and 2) WM load:
increasing the number of arithmetic computations in an order-
of-operations task, which increases updating demands as the
number of operands increases (Ashcraft & Krause, 2007).
Whereas previous work has manipulated WM load in math
anxiety by increasing the difficulty of math problems
(Ashcraft & Krause, 2007b; Faust et al., 1996), here we also
manipulated EF through factors that do not necessarily have to
do specifically with the math task demands by task-switching.

Math anxiety is associated with avoidance on multiple
levels of behavior. At the broadest level, MA individuals
avoid taking math classes, which undermines math achieve-
ment, and as a result they subsequently shy away from math-
related careers (Betz, 1978; Hembree, 1990). This pattern of
avoidance extends to how HMA students process individual
math problems. For example, when HMA individuals were
tasked with solving arithmetic problems that were increasing-
ly complex, they showed a speed-accuracy tradeoff (Faust
et al., 1996). WhenWM demand increased, HMA individuals

disengaged from these problems and sped through the difficult
problems at the expense of accuracy. This initial avoidance
response may occur during very early attentional processing
of math information (Hopko, McNeil, Gleason, & Rabalais,
2002; Pizzie & Kraemer, 2017) and has been demonstrated
even when participants are only exposed to numeric stimuli
and are not tasked with completing any math computations.
For example, HMA individuals showed difficulty with exec-
utive function when a Stroop task was completed with nu-
merals, indicating that even incidental exposure to mathemat-
ical information is related to executive function and inhibitory
mechanisms (Hopko et al., 2002). Using an attentional de-
ployment paradigm, increased MAwas associated with a dis-
engagement bias for math information (Pizzie & Kraemer,
2017), such that HMA individuals avoided looking at mathe-
matical expressions even when they knew they would never
be asked to solve them.

Deficits associated with math anxiety are exacerbated by
increased WM load, pointing to diminished EF and WM re-
sources as a hypothesized mechanism by which anxiety inter-
feres with math performance (Ashcraft, 2002; Beilock, 2008;
Beilock & Ramirez, 2011). For example, adding “carry” op-
erations to arithmetic problems to increase the difficulty re-
sulted in deficits for HMA individuals (Faust et al., 1996).
HMA individuals also show an enhanced effect in which as
the number of operands in an arithmetic problem grows larger
(and also the magnitude of the numbers calculated increases),
HMA individuals show increased errors and increased re-
sponse time (Ashcraft & Krause, 2007). Overall, MA is relat-
ed to executive function and working memory resources
through a deficient inhibitory mechanism, such that task-
irrelevant anxious thoughts disrupt cognitive resources
(DeCaro et al., 2010; Hopko et al., 1998).Moreover, increased
MAwas associated with increased attention to distractors and
lessened ability to devote WM resources away from
distracting negative thoughts (Hopko et al., 1998). However,
this interpretation suggests that other executive functions be-
sides WM also should be impacted by MA, because these
functions, such as task switching, also are known to depend
on inhibitory mechanisms (Miyake & Friedman, 2012).

In the current experiment, we manipulated EF in two ways,
bymodulating shifting through task-switching and updating, a
concept related to working memory load, in order to gain a
better understanding of how these changes in cognitive re-
sources would be associated recruitment of neural systems
important for mathematical computations. Additionally, we
examined how manipulations of WM load would be associat-
ed with avoidance behaviors in MA. Math anxiety is associ-
ated with increased avoidance (Faust et al., 1996; Pizzie &
Kraemer, 2017), and WM deficits are created by increasing
cognitive load (Ashcraft, 2002). Previous research has sug-
gested that math anxiety is separately associated with both
avoidance and working memory deficits, but our experiment
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considers both behaviors together. This consideration is im-
portant, because increased pressure on WM resources might
be associated with two different patterns of behavior, resulting
in increased engagement due to effort on the task or increased
disruption due to avoidance or distracting thoughts (Ramirez,
Shaw, & Maloney, 2018; Suárez-Pellicioni, Núñez-Peña, &
Colomé, 2015). If deficits are attributed to utilizing more
working memory resources for inefficient strategies, we
would expect increased effortful engagement with the task at
hand, attempting to compensate for the additional draw on
executive function resources. In terms of neural activity, in
this case, we would predict increased neural activity in regions
of the brain associated with mathematical calculations for in-
creased math anxiety. However, if deficits are caused by WM
being disrupted by distracting ruminations or negative emo-
tion, we would expect these deficits to be associated with
avoidance or disengagement. In this case, we hypothesized
that increased math anxiety would be associated with de-
creased activity in regions of the brain associated with math-
ematical calculations, due to disrupted processing and avoid-
ance of math. Thus, in the present experiment, we examined
how increasing demand on executive function resources
would be associatedwith variation inmath anxiety, taking into
consideration these two hypotheses for how increased demand
on EF and WM resources would be related to engagement or
avoidance in more math anxious individuals.

In the present experiment, we utilized two working-
memory-intensive tasks to exacerbate the demand on working
memory resources: order of operations arithmetic problems
(math), and analogies. In this view, the “order of operations”
math task utilized in this experiment is very appropriate as a
measure of working memory: participants must makemultiple
calculations in a stepwise manner, holding multiple pieces of
information in mind while additional calculations are made. In
addition, these participants must hold these calculations in
mind during the initial calculation period and then wait for
the subsequent appearance of the answer screen, holding their
own calculated answer in mind and comparing it to the answer
presented on the screen. In addition, with each additional op-
erand, it adds another item and calculation to the working
memory load. In this way, we utilize the number of operands
in each problem as a method to operationalize difficulty and
working memory load, with each additional operand adding to
the working memory load of the problem. Similar to the order
of operations task, we argue that the analogy task presented to
our participants also critically relies on working memory to a
similar degree to the arithmetic task. In this task, participants
must evaluate the relationships between multiple words, and
then hold this information in mind while they wait for the
answer screen, evaluating whether the word presented on the
subsequent answer screen is in line with the analogical rela-
tionship presented on the previous screen. Thus, both the or-
der of operations task and analogical reasoning task presented

to our participants both include similar levels of working
memory demands, both involve manipulating multiple pieces
of information, and temporarily holding that information in
mind before it can be utilized to complete the task.

However, only limited research has explored how brain
activity is associated with MA and WM (Lyons & Beilock,
2012a). To date, very few studies have investigated brain ac-
tivity in adults while HMA individuals are actually
performing math computations (Pletzer, Kronbichler, Nuerk,
& Kerschbaum, 2015; Pizzie, McDermott, Salem & Kraemer,
2019; Suarez-Pellicioni, Nùñez-Peña, Colomé, 2013; Núñez-
Peña, Tubau, Suarez-Pellicioni, 2017). Most of the previous
neuroimaging literature focuses on younger populations
(Supekar, Iuculano, Chen, & Menon, 2015; Young, Wu, &
Menon, 2012), and brain activity observed during anticipatory
periods (Lyons & Beilock, 2012b; Lyons & Beilock, 2012a),
or when participants are merely exposed to mathematical in-
formation and not asked to compute answers (Pizzie &
Kraemer, 2017).

In this paradigm, we manipulated EF task demands utiliz-
ing task-switching, examining how increasing pressure on EF
resources would disrupt cognitive functioning in increased
MA. In a set of exploratory analyses, we also explored how
increasing working memory load, as referenced by task diffi-
culty, would additionally be associated with cognitive load EF
across the spectrum of MA. We would expect that HMA in-
dividuals would show decrements in task performance that are
consistent with avoidance behavior compared with low math
anxious (LMA) individuals (these individuals score so low on
a math anxiety measure that we may consider them to be
“non-math anxious”). Task switching and increasing the dif-
ficulty of math problems will add additional pressure on the
executive function resources of HMA individuals, through
additional pressure on shifting and updating resources, respec-
tively (Sharp, Miller, & Heller, 2015). Therefore, we would
expect that both of these factors will result in performance
deficits and avoidance. We would expect that HMA individ-
uals would experience additional demands on executive func-
tion when switching into a math task (compared with
switching into an analogy task) due to the increased anxiety
experienced for math. This increased anxiety for math adds
pressure onto the executive function demands created by
adopting a new task set, as well as the demands on working
memory created by increased anxiety. On a neural level, we
hypothesize that increasing WM load would be associated
with variability in activity in the brains of HMA individuals
due to avoidance behaviors. This avoidance would lead to
decreased activity compared with LMA individuals (Young
et al., 2012). We specifically selected a network of regions
hypothesized to be selective for neural activity related to ar-
ithmetic computations. In this way, we examined how execu-
tive function demands alter functionality in brain regions
subserving arithmetic and how MA is associated with this
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neural processing. This study represents an important investi-
gation into the brains and behaviors of HMA individuals,
giving us insight into how intensifying demands on executive
function will be associated with deficits in math computation
in increased math anxiety. We predict that variability in MA
will be associated with increased executive function demand,
disruption of these resources by increased anxiety, and re-
duced math computation in the brains of HMA individuals.
Furthermore, the pattern of behavioral results will add insight
into whether HMA individuals experience increased avoid-
ance when faced with mathematics in an increasingly difficult
scenario.

Method

Participants Fifty-three undergraduate participants were re-
cruited on the basis of their extreme scores on the MARS
(Suinn & Winston, 2003). Participants were drawn from a
subject pool composed of undergraduate students enrolled in
introductory psychology and neuroscience classes. Fifty-three
participants were recruited on the basis of their high and low
scores on the MARS (N = 488, 62% female, Mage=19.45
years, MMARS = 2.26, SDMARS = 0.56, MARS range: 1-5,
Extreme scores were ± 0.7 SD away from mean1, MARS–
LMA range = 1.00–1.84, MARS–HMA range = 2.66–4.67).
Math anxiety scores significantly differed between the high
and low groups, t(35.40) = 18.25, p < 0.0001. A total of five
participants were excluded from the analysis: one for a tech-
nical error during the first fMRI run, one for excessive motion
in the scanner (>4 mm absolute motion), one for claustropho-
bia, one for signal dropout, and one for accidental scan inval-
idation due to an alarm. The final sample included 48 subjects
(MMARS = 2.35, SDMARS = 0.85): 24 low math anxious partic-
ipants (LMA; LMA range: 1.0-1.83,MMARS = 1.53, SDMARS =
0.18, Mage = 20.13, 58% female) and 24 high math anxious
participants (HMA; HMA range: 2.70–4.46, MMARS = 3.11,
SDMARS = 0.38, Mage = 19.13, 71% female). Despite the
slightly unequal distribution across MA groups, there were
no average differences in self-reported MA between females
(MMARS = 2.42) and males (MMARS = 2.24), t(38.59) = 0.73, p
= 0.47. All were screened for MRI safety precautions, and all
experimental measures were approved by the Dartmouth
Committee for the Protection of Human Subjects (CPHS).
All participants provided written, informed consent, and

participants received either course credit or monetary compen-
sation for their involvement in the study.

Power Analysis. To estimate the sample size for this study,
we used a previous math anxiety experiment to estimate the
number of participants who would be needed for sufficient
statistical power for the behavioral analyses in this study, cal-
culated using G*Power 3.1 (Faul, Erdfelder, Lang, &
Buchner, 2007). A previous study examined behavioral dis-
engagement across levels of math anxiety (Pizzie & Kraemer,
2017). We used the behavioral effect size of ηp

2 = 0.08 (p.
103) as an estimate to examine the interaction between math
anxiety and behavioral disengagement in the present study.
Given this effect size (ηp

2 = 0.08, Effect size f = 0.295, α =
0.05, and estimated power = 0.80, and correlation among re-
peated measures = 0.2), we would expect to recruit 28 indi-
viduals to achieve 82% power for a repeated measures
ANOVA, estimating statistical power for a within- and
between-subject interaction (e.g., estimating math anxiety ef-
fects across 4 within-subject categories of stimuli). Because
our sample included 48 participants for data analysis, we ex-
pect that we have adequate statistical power to assess these
behavioral effects.

Task. Participants solved math and analogy problems while
in the fMRI scanner. Subjects completed 2 sets of 80 trials
each of math and analogies for a total of 160 trials over the
course of 2 fMRI runs. To evaluate task switching, trials were
presented in a pseudo-randomized sequence designed to pres-
ent trials in sequences of a minimum of two and a maximum
of eight of the same type of trial (either math or analogy) per
block (Fig. 1A). The overall order of trials in the experiment
included sequences of varying length of math and analogy
trials. This order was designed so that subjects could not an-
ticipate when a switch between math and analogy trials would
occur. The analogy and math sequences were counterbalanced
for difficulty (measured by accuracy in pilot data) across trial
types. In our exploratory analyses, math trial difficulty, mea-
sured by number of operands in the order of operations prob-
lems, also was counterbalanced across trial categories.

Each trial in the paradigm was designated as switch,
nonswitch, or null (Fig. 1A). “Switch” trials were defined as
initial trials of one type (math/analogy) immediately following
trials of the other type. Stated another way, switch trials are
defined as the first “different” trial in a sequence, or the initial
trial in a block. “Nonswitch” trials were designated as either
the fourth, fifth, or sixth of the same trial type (math or anal-
ogy) in a sequence (but were not the last trial). Nonswitch
trials allowed us to examine if trials later in a sequence dif-
fered from the initial trials. Null trials were defined as any
trials that were not designated as either switch or nonswitch:
the second and third trials, or the last trials, in any given
sequence of math or analogy trials. Null trials were not ana-
lyzed in the behavioral analysis and were accounted for as a
regressor of no interest in the fMRI analysis. A total of 15

1 These cutoffs were chosen to include approximately 10% of the population
of participants in the subject pool at either end of the range of MARS scores
(approximately 40 HMA and 40 LMA participants). This range also was
chosen because these scores would create groups of participants with MARS
scores that were significantly different from one another, and significantly
different from the mean of scores (comparing to a mean of 2.26, LMA:
t(487) = 16.56, p < 0.001; HMA: t(487) = 15.78, p < 0.001).
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math switch trials, 15 analogy switch trials, 24 math
nonswitch trials, and 24 analogy nonswitch trials was present-
ed to each participant. All participants received the same
pseudo-randomized order so that the number of switch and
non-switch trials could be balanced across math and analogy
conditions.

On each trial, participants were shown a question (either an
incomplete analogy or an order-of-operations math problem)
for 5 seconds (2 TRs; Fig. 1B). They were then presented with
a possible answer for 5 seconds. On the answer screen, par-
ticipants were given the task of indicating whether the answer
was correct or incorrect. Math trials were arithmetic problems
that could be solved by using an order of operations technique
(e.g., “(8 × 9) ÷ 3 × 9”) and were drawn from a random
problem generator (TheTeachersCorner.net worksheet
generator; incorrect answers that were presented were
produced by solving the problem “incorrectly” in a linear
fashion and ignoring the order of operations information).
Participants were asked to solve the problem for 5 seconds
and were subsequently asked to indicate whether a number
presented on the answer screen was the correct solution to
the problem. Response times and accuracy data were

recorded during this answer screen (which occurs after the
initial deliberation period of 5 seconds). For analogies,
participants viewed an incomplete analogy for 5 seconds
(e.g., “DEFERENCE :: RESPECT, affection ::”) and then
evaluated a word presented on the answer screen for 5
seconds to determine whether it correctly completed the
analogy. Analogies were drawn from previous examples of
problems used on the Graduate Record Exam.

Questionnaires. After completing the fMRI portion of the
experiment, participants completed a series of computerized
questionnaires assessing emotion regulation abilities and var-
ious types of learning anxieties. Questionnaires were complet-
ed on a computer using Qualtrics software (www.qualtrics.
com). In all of the questionnaires, subjects responded to
statements using a Likert scale. Positive and negative affect
was assessed using the Positive and Negative Affect Schedule
(Watson, Clark, & Tellegen, 1988). The Spielberger State-
Trait Anxiety Inventory was used to assess trait anxiety
(STAI; Spielberger, 2009). Test anxiety was measured using
the Test Anxiety Inventory (TAI; Spielberger & Spielberger,
1980). Writing anxiety was assessed with the Daly-Miller
Writing Apprehension Test (Daly & Miller, 1975). Emotion

a

b

Fig 1. Trial cadence and switching. A) Trial sequence including
“Switch,” “Nonswitch,” and null trials. “Switch” trials include the first
trial in a block of math (M) or analogy (A) trials. “Nonswitch” trials were
drawn from trials later in the block—the 4th, 5th, and 6th trials in a se-
quence of trials (but only if they were not the last trial in the sequence).
All other trials were “null” andwere not analyzed in the behavioral results

and were entered as a regressor of no interest in the fMRI analyses.
Participants completed 15 switch trials and 24 nonswitch trials for each
condition. B) Trial cadence indicating math (left) and analogy (right)
trials. Trials were shown in randomized blocks, creating sequences of
varying length, as depicted in A).
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regulation techniques, including emotional reappraisal and
suppression, were assessed using the Emotion Regulation
Questionnaire (Gross & John, 2003). Participants also provid-
ed basic demographic information including age, race, and
gender. Following administration of the surveys, subjects
were debriefed on the purpose of the study, thanked for their
participation, and compensated for their time.

Image Acquisition: fMRI Parameters. Participants were
scanned at the Dartmouth Brain Imaging Center in a 3T
Philips Intera Achieva MRI scanner with a 32-channel head
coil. A structural scan was performed using a T1-weighted
image (approximately 1-mm3 resolution). The Philips FFE
EPI sequence was used to acquire functional images covering
the whole brain, using 3-mm slice thickness for a total of 42
interleaved axial slices. This study used an 80- x 80-pixel
matrix in a 240 mm2 field of view (Flip angle = 90 degrees,
TE = 35 ms, TR = 2.5 sec). Due to the rapid nature of the task,
fixation was limited to periods at the beginning and end of the
task (7 TRs each). In functional runs, 332 TRs of functional
activity were collected during each of two runs, such that the
task took approximately 27 minutes to complete.

Analyses. Neuroimaging analysis was conducted using
standard practices in FSL v. 6.00 (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012). Neuroimaging prepro-
cessing involved motion correction and registration of func-
tional and structural data using FSL’s MCFLIRT and brain-
extraction of structural and functional data using bet2.
Functional data were filtered using a high pass filter (100
Hz), pre-whitened, smoothed using a 3-mm gaussian kernel,
and a slice timing correction was applied. Functional data
were registered to the standard MNI brain (2 mm) and were
convolved using a double-gamma hemodynamic response
function. Modeling of mixed and fixed effects models in
was done using FSL’s FEAT. Data were extracted from ROIs
using FSL’s FEAT. In whole-brain analyses, clusters of activ-
ity are corrected for multiple comparisons using FSL’s cluster
correction algorithm and have a threshold of z > 2.3. (p < 0.05,
corrected).

Behavioral analyses using linear mixed models and linear
models were completed using R and RStudio (https://www.r-
project.org/). Linear mixed models were completed
comparing a categorical fixed factor for stimuli, contrasting
math and analogy trials, as well as comparing a categorical
fixed factor for task-switching category. In behavioral analy-
ses, RT for all trials was used. Math anxiety was evaluated
using residuals from a regression between math anxiety
(MARS scores) and test anxiety (TAI), allowing us to examine
the effects of MAwhile accounting for test anxiety (MA-TAI
scores), which are used throughout these analyses. Although
previous research has controlled for trait anxiety when analyz-
ing math anxiety scores, here we chose to control for test
anxiety in our math anxiety scores (MA-TAI scores). Test
anxiety is closely related to the MARS, and these scores are

largely covaried with one another (Pizzie & Kraemer, 2019).
In a linear regression predictingMARS scores, TAI is strongly
associated with MARS scores, F(1,46) = 55.4, p < 0.0001,
adjusted R2 = 0.53. When we add trait anxiety to this model,
STAI-trait scores (beta estimate = 0.3, p = 0.18) are not a
statistically significant predictor above and beyond the vari-
ance accounted for by TAI (beta estimate = 0.90, p < 0.001),
F(2,45) = 29.14, p < 0.0001, adjusted R2 = 0.55. To further
illustrate this point, we compared the variance accounted for
by these two models predicting math anxiety (test anxiety, and
test anxiety + trait anxiety) using the Anova function in R.
This model comparison allows us to compare whether adding
trait anxiety to the model of test anxiety accounts for signifi-
cantly more variance than just utilizing test anxiety to predict
math anxiety. In predicting math anxiety scores, we do not
find that adding trait anxiety to the test anxiety model
predicting MA scores adds significant variance, F(1,45) = 1.
85, p = 0.18. As a result, we chose not to use a combined
model of test and trait anxiety, and instead chose to use the
residuals accounting for test anxiety in measuring math anxi-
ety. Although participants were originally recruited into high
and low math anxious groups, controlling for test anxiety
creates a continuous measure of math anxiety, and thus these
analyses are conducted measuring math anxiety as a continu-
ous factor. We refer to HMA and LMA individuals only as
signifier for individuals who tend to be at the higher and lower
ends of the MA spectrum. Additional analyses with raw
MARS scores, test anxiety, trait anxiety, gender, and MA con-
trolling for trait anxiety, were also conducted as exploratory
analyses but will not be discussed in this manuscript (see
Supplementary Material).

Analyses conducted with linear mixed models (LMMs2; R
packages: Bates, Mächler, Bolker, & Walker, 2015;
Kuznetsova, Brockhoff, & Christensen, 2017) were conduct-
ed by setting up a base model. This base model included
stimulus type (math, analogy) and switching category (switch,
nonswitch) as fixed factors. We evaluated the effects of these
factors accounting for random effects for each participant.
Then, to evaluate the full model, MA was added as an addi-
tional factor and compared with the basemodel to test whether
MA interacted with any of the other fixed factors and
accounted for additional variance in the model.

Results

We will first evaluate our main hypotheses with relation to
executive function and task switching. We investigated these
EF task-switching hypotheses in relation to behavior, includ-
ing both response time and accuracy data, and then evaluated

2 We did not correct across analyses for multiple comparisons, so p > 0.01
should be interpreted with caution.
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the brain data, first evaluating these hypotheses specifically
within an arithmetic network meta-ROI, and then using a
whole-brain analyses to address what other regions of the
brain might be active during these contrasts. Then, we evalu-
ated our WM load hypotheses (difficulty) using a similar se-
quence of analyses: first evaluating the behavioral effects of
increasing WM load in the math task, and then exploring how
increasing WM load affects brain data in the arithmetic meta-
ROI.

Executive Function: Task Switching

Task Switching We first evaluated how working memory
changes associated with math anxiety were exacerbated by
shifting and switching back and forth between sequences of
math and analogy trials. In this paradigm, we expect low math
anxious (LMA) individuals to show normative patterns of
behavioral responses as demand on EF resources is increased
by switching. For LMA individuals, increasing workingmem-
ory load should be associated with increased processing time
and increasing neural activity needed to address the increased
demand of the problem. During task-switching, we would
expect increased EF demand during initial trials in a sequence,
or “switch” trials due to adopting a new set. For LMA partic-
ipants who initially switch to a math trial, we would expect to
observe increased response time on these trials and increased
neural activity due to increased processing demands of
switching to a new task (Friedman & Miyake, 2017;
Liefooghe et al., 2008; Miyake & Friedman, 2012). For
HMA individuals, we expect that this normative pattern of
results should be altered, due to working memory changes
associated with increased anxiety, perhaps showing a pattern
of avoidant behavior. We would predict a three-way interac-
tion between math anxiety, task-switching, and stimulus type.
For HMA individuals, we would expect that switching into a
math task from the analogy task would create additional de-
mand on executive function resources due the increased anx-
iety experienced for math, but not necessarily for analogy
trials. Thus, we would expect that in addition to the demand
on executive function created by shifting to a new set, HMA
individuals might experience additional working memory de-
mand on these trials created by disruption created by increased
anxiety specifically about math. Over the course of a sequence
of trials, this initial anxiety might abate, and thus we predict
specific changes in behavior for “math switch” trials for HMA
individuals, due to increased demand on executive function
created by anxiety about that specific task.

In terms of the neural pattern, we would expect to observe
that brain activity during the switch and non-switch trials par-
allels the pattern of results found in behavior. For example, for
LMA individuals, we would expect increased activity in neu-
ral regions supporting arithmetic in the switch trials to reflect

increased executive function demand created by shifting.
However, for HMA individuals, because anxiety leads to
avoidance which disrupts math-related processing, we would
expect to see decreased neural activity especially in response
to an unexpected switch to math trials.

Executive Function: Task Switching—Behavioral
Analyses

Task-Switching: Response time For behavioral analyses, we
utilized linear mixed models (LMMs) to evaluate the impact
of stimulus type (2: analogy, math), switch category (2: switch
trials, nonswitch trials). For the base model, stimulus type and
switch category were evaluated as fixed factors, and random
intercepts were used to account for within-subject differences
(random effects). We consider this to be our base model. We
then evaluated how stimuli and switch category were associ-
ated with individual differences in MA by adding these fixed
factors to the base model.

We evaluated differences in response time, first examining
the effects of stimuli and switch category as the base model
(random effects for each participant; REML criterion at con-
vergence: 35.8). We find a main effect of stimuli, χ2 (1) =
78.23, p < 0.0001, such that participants responded more
slowly to the analogy task (M = 1.78 s, SE = 0.04) than the
math task (M = 1.52 s, SE = 0.04). There was nomain effect of
switch category, χ2 (1) = 0.72, p = 0.39, and no two-way
interaction between task and switch category, χ2 (1) = 1.00,
p = 0.32.

We then evaluated how these factors interacted with MA,
using MA controlling for test anxiety (MARS residuals
controlling for TAI; MA-TAI) as an additional fixed factor
in addition to our base model. In this LMM (fixed factors:
stimulus, switch category, MA-TAI; random factors: partici-
pant; REML criterion at convergence: 49.0), we again find a
main effect of stimuli, χ2 (1) = 80.75, p < 0.00001.We find no
significant effect of switch category, χ2 (1) = 0.85, p = 0.35.
There was no main effect of MA-TAI on response time, χ2 (1)
= 0.004, p = 0.95. There was no significant interaction be-
tween stimulus and switch category, χ2 (1) = 0.90, p = 0.35.
There was no significant interaction between stimulus type
and MA-TAI on response time, χ2 (1) = 0.70, p = 0.40.
There was no significant interaction between switch category
and MA-TAI, χ2 (1) = 1.27, p = 0.26.

We find a three-way interaction between stimuli, switch
category, and MA-TAI, χ2 (1) = 5.20, p = 0.02 (Fig. 2).3

When examining this interaction, we observe that RTs are
longer overall for the analogy condition than for the math

3 Two outliers were removed from this analysis in the math condition because
these values were greater than 3 SD above the mean. The interaction remains
significant regardless of whether these data points are included: χ2 (1) = 4.44,
p = 0.04, or omitted: χ2 (1) = 5.20, p = 0.02.
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condition, but within the math condition, RT is determined by
switch category and level of MA. LMA individuals show
increased RTs during switch trials, and decreased RTs during
nonswitch trials, indicating that they spend more time com-
pleting initial math problems in a sequence, but that they at-
tenuate this switch cost over time, spending less time as the
sequence continues. This normative pattern is predicted by a
switch cost, such that initial trials in a sequence require more
EF and WM resources to complete, and result in longer RTs
(Friedman &Miyake, 2017; Liefooghe et al., 2008; Miyake&
Friedman, 2012). However, HMA individuals show the oppo-
site pattern. Individuals with increasedMA show reduced RTs
for math switch trials, indicating that they may speed through
these initial trials. These speeded responses are consistent with
previous research that suggests that HMA is associated with
speed-accuracy tradeoffs (Faust et al., 1996) or initial disen-
gagement behavior (Pizzie & Kraemer, 2017). Interestingly,
increased MA is associated with increased RTs in the math
nonswitch condition, indicating that these individuals may be
able to respond effectively to trials later in a sequence of math
problems.

Task-switching: Accuracy We additionally evaluated differ-
ences in task accuracy using the stimuli (2: analogy, math) x
switch category (2: switch, nonswitch) linear mixed model
with random effects for each individual (REML criterion at
convergence: −200.2). We find a main effect of stimuli, χ2 (1)
= 4.19, p = 0.041, such that mean accuracy is slightly higher in
the analogy task (M = 72.6% correct, SD = 0.13) than the math
task (M = 69.2% correct, SD = 0.15). There was nomain effect
of switch category, χ2 (1) = 0.68, p = 0.41, such that across

both analogy and math conditions, switch trials (M = 0.72, SD
= 0.15) did not differ from nonswitch trials (M = 0.70, SD =
0.13). There was no two-way interaction between these two
stimulus types and switch category factors, χ2 (1) = 2.19, p =
0.14.

When we examined MA-TAI as an additional factor that
might be associated with accuracy (in addition to base model;
REML criterion at convergence: −177.5), we do not find that
there was a significant effect of MA on accuracy, χ2 (1) = .98,
p = 0.32, MA-TAI did not interact with stimuli, χ2 (1) = 0.31,
p = 0.57, did not interact with switch category, χ2 (1) = .78, p
= 0.37, and there was no significant three-way interaction
between stimulus type, switch category, and MA-TAI on ac-
curacy, χ2 (1) = 0.35, p = 0.55. Overall, we find that math
anxiety seemed to moderate response time but was not signif-
icantly associated with accuracy on switch and nonswitch tri-
als across the math and analogy tasks. We find that overall,
accuracy and response time are not significantly related to one
another (please see Supplementary Material for this analysis),
and for further analyses, we focused on RT.

Executive Function: Task-Switching—Neuroimaging
Analyses

Task-Switching: Arithmetic meta-ROI To investigate more spe-
cifically how math anxiety correlates with mathematical pro-
cessing in the brain, we selected a network of brain regions
based on a meta-analysis generated by neural processing as-
sociated with arithmetic (Fig. 3A). Using a probabilistic map
created by Neurosynth (Yarkoni, Poldrack, Nichols, Van
Essen & Wager, 2011; www.neurosynth.org), we selected a
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Fig. 2. Response times moderated by stimuli, switch category, and level
of math anxiety (controlling for test anxiety). Three-way interaction of
MA-TAI x stimuli (analogy, math) x switch category (switch, nonswitch).
Individuals with increased MA speed through initial math problems
(math switch trials) and spend more time on problems in the math

nonswitch trials. The opposite is true for those who have low MA, such
that they spend more time on initial math trials, but attenuate this switch
cost for later trials (math nonswitch trials), spending less time on these
trials. As expected, both high and low MA individuals show similar RT
patterns for the analogy condition.
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network of regions of the brain associated with the search term
“arithmetic” (data from 70+ studies, z > 6.0 set as a
conservative threshold). Voxel clusters of this arithmetic
network are listed in Table 1. This ROI is representative of
bilateral activations in IPS, a region of the brain commonly
associated with arithmetic processing and magnitude
estimations (Dehaene, 1997; Dehaene, Spelke, Pinel,
Stanescu, & Tsivkin, 1999; Nieder & Dehaene, 2009;
Piazza, Pinel, Le Bihan, & Dehaene, 2007), as well as other
areas in frontal cortex (Fig. 3A). Using FSL’s FEAT to
(Jenkinson et al., 2012) to generate a t-map for each partici-
pant using the contrast of math switch >math nonswitch trials,
we extracted the mean activity in this arithmetic meta-ROI for
each participant. Using a linear regression at this ROI, we
again examined how MA is associated with neural activity

during math switch trials compared to nonswitch trials (Fig.
3B). Importantly, we find a negative relationship between
MA-TAI and neural activity during math switch trials com-
pared to nonswitch trials,F(1,46) = 4.85, p = 0.03, adjustedR2

= 0.08. We observed that HMA individuals were not able to
sufficiently recruit math-related regions during initial switch
trials. Conversely, LMA individuals were quickly able to re-
cruit math-related brain regions immediately upon beginning
a sequence of math trials. This pattern was not observed for
HMA individuals.

In order to further unpack this comparison, we compared
parameter estimates in each condition compared to baseline
fixation (present at the beginning and end of the runs).
Although this comparison could be driven by activity in the
nonswitch trials, when we compared parameter estimates
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Fig. 3. Activity in the Arithmetic ROI is associated with MA. A)
Network of regions from Neurosynth meta-analysis of 70+ studies gen-
erated by the query, “arithmetic” (in red). Activity pictured from the
reverse-inference map is displayed at a conservative threshold of z > 6,

indicating a high probability that activity found in these regions is asso-
ciated with arithmetic processing. B) Activity in arithmetic meta-ROI is
inversely correlated with math anxiety during switch trials, F(1,46) =
4.85, p = 0.03, adjusted R2 = 0.08.

Cogn Affect Behav Neurosci (2020) 20:309–325 317



during math switch trials to baseline, we find a similar effect,
such that low levels of MA are associated with increased ac-
tivity in the arithmetic network and HMA individuals show
lower levels of brain activity in this network, F(1,46) = 3.40, p
= 0.07, adjusted R2 = 0.05. Thus, LMA individuals show
increased recruitment of brain regions that support mathemat-
ical cognition during initial math trials, and these regions
show differential activity for HMA individuals later in the
sequence of math trials.

Furthermore, to explore this relationship, we examined
how brain activity during these trials was correlated with be-
havior during these trials. We correlated activity during this
contrast with a difference score betweenmath switch trials and
math nonswitch trials. Increased scores on this measure would
be interpreted as increased RTs during the switch trials, indi-
cating increased time taken on the switch trials compared to
the nonswitch trials, which would be expected for a normative
switch cost. We would hypothesize that a positive relationship
would suggest increased activity in this network would be
indicative of increased mathematical processing. We find a
weak, positive correlation between math switch cost differ-
ence score and neural activity during the switch trials in the
arithmetic network, r(46) = 0.26, p = 0.07. This relationship is
not significant and should be interpreted with caution.

Task Switching: Whole Brain Analysis To further examine our
hypothesis regarding neural changes associated with task
switching and math anxiety, we examined the effects of math
anxiety on brain processes related to math and analogy pro-
cessing across trial categories. Using FSL’s FEAT (Jenkinson
et al., 2012), we conducted a whole-brain GLM analysis using
MA-TAI as a parametric regressor to explore what other re-
gions would be activated by task-switching in relation to MA.
Clusters of activity are corrected for multiple comparisons
using FSL’s cluster correction algorithm and have a threshold

of z > 2.3. (p < 0.05, corrected). When examining math trials,
we compared activity in a contrast of math switch trials to
math nonswitch trials. We find an inverse relationship be-
tween MA-TAI and activity during math switch trials com-
pared to math nonswitch trials (Fig. .4). As MA decreases,
more activity is observed in the intraparietal sulcus (IPS),
and a region of the lateral prefrontal cortex, as well as other
regions (Table 2). Activity in this region of the IPS has been
associated with mathematical processing (Dehaene, 1997;
Dehaene et al., 1999; Nieder & Dehaene, 2009). That we
observe this activity associated with low MA during initial
trials indicates that these participants are able to quickly re-
cruit neural regions associated with mathematical processing
when a sequence of math trials begins.

Overall, the network of regions highlighted as substrates of
arithmetic processing show differential activity on the basis of
MA-TAI.4 When comparing initial math trials to problems
completed later in the sequence, individuals who have low
levels of MA are able to quickly recruit neural regions that
underlie this processing. Comparing this to the behavioral
results, low MA also is associated with longer RTs for switch
trials, suggesting that LMA individuals are better able to rally
the neural computational resources necessary to perform these
math computations when EF demand is increased due to task-
switching, exerting more effort on these problems to complete
these math problems successfully. Conversely, HMA individ-
uals’ neural and behavioral responses fit a pattern of disen-
gagement and avoidance, such that they speed through initial
switch trials and show reduced neural activity during these
trials.

4 In investigating the specificity of this effect, we also examined a whole-brain
analysis utilizing MA-TAI as a continuous predictor, this time investigating
brain activity during analogy switch trials compared to non-switch trials. In
this analysis, no clusters of brain activity survived cluster correction.

Table 1. Clusters of activity from meta-ROI for arithmetic network

Peak MNI Coordinates (mm)

Cluster Location Cluster Size (voxels) X Y Z

Right intraparietal sulcus/superior parietal lobule 113 28 60 44

Left intraparietal sulcus/superior parietal lobule 38 -32 52 46

Left superior parietal Lobule (posterior) 35 -30 64 46

Right Postcentral Sulcus/inferior parietal Lobule 9 46 36 42

Right occipitoparietal cortex 7 56 62 32

Right dorsolateral Prefrontal cortex 6 22 -22 2

Right internal capsule/white matter 5 26 -10 54

Right dlPFC 2 32 66 30

Right occitoparietal cortex 2 30 66 38

All clusters reported for meta-ROI created using Neurosynth. Using a probablistic map created by Neurosynth (Yarkoni et al., 2011; www.neurosynth.
org), we selected a network of regions of the brain associated with the search term “arithmetic” (data from 70+ studies, z > 6.0 set as a conservative
threshold)
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Working Memory: Increasing Difficulty

To unpack how math anxiety impacts WM and performance in
these exploratory analyses, we investigated howmath difficulty
is associated with math performance as a component of EF. Just
as task switching has an impact on EF resources (Liefooghe
et al., 2008; Menon & Uddin, 2010; Wylie & Allport, 2000),
we also explored how math task difficulty would be related to
task performance and a neural network supporting mathemati-
cal computation (arithmetic meta-ROI). In this exploratory
analysis, we only analyzed math trials, using the number of
operands in the order of operations problem to determine the
level of difficulty of each math problem: easy (3-operand),
moderate (4-operand), and hard (5-operand). Although using
the number of operands does not account for the kinds of op-
erators used or the overall accuracy, accounting for the number
of operands serves as a proxy for the amount of WM demand

required to complete the problems, as each increasing operand
and operator make the problems increasingly difficult.

To analyze these factors, we used LMMs for behavioral
analyses with number of operands and math anxiety as fixed
factors, and random effects for each individual subject and for
each trial number (all models were run using individual trials
instead of aggregate means as in the previous analysis, but
these item-level effects were accounted for with random ef-
fects). Please see Supplementary Material for discussion of
difficulty and additional discussions of amygdala ROI results.

Working Memory: Increasing Difficulty—Behavioral
Results

WM Load: Response time We first evaluated a base model of
response time using a LMM with fixed effect for math prob-
lem difficulty, and accounting for random effects for each

Fig.4. Math anxiety is associated with decreased activity in IPS and other
regions during math switch trials.GLM results indicating brain regions in
which higher levels of math anxiety were associated with lower levels of
activity during initial math trials (“switch” trials) compared to the later
math trials (“nonswitch” trials). Similar to what was observed in the ROI
analysis (Figure 3), HMA individuals were not able to initially recruit

regions of the brain that might subserve successful mathematical process-
ing (i.e., regions of the parietal lobe such as the left IPS). Clusters of
activity are corrected for multiple comparisons using FSL’s cluster cor-
rection algorithm and have a threshold of z > 2.3. (p < 0.05, corrected) and
projected on a cortical surface using AFNI’s SUMA.

Table 2. Clusters of activity from whole brain regression using MA scores controlling for test anxiety for the contrast of Math Switch trials > Math
Nonswitch trials

Peak MNI Coordinates (mm)

Cluster location Cluster size (voxels) P X Y Z Max Z

Right Dorsal motor/Lateral parietal cortex 1172 6.33E-10 44 -30 56 4.03

Left intraparietal sulcus 795 2.38E-07 -28 -58 48 4.3

Left Cerebellum/ Inferior occipitotemporal cortex 612 6.91E-06 -32 -66 -26 3.91

Superior cerebellum 410 0.000386 10 -58 -14 3.73

Right cerebellum 351 0.00141 30 -52 -24 3.76

Right dorsolateral prefrontal cortex 237 0.0213 36 46 14 3.74

All clusters isolated by FSL cluster algorithm with a threshold of Z > 2.3 (p < 0.05, correct). All anatomical localizations for cluster locations were verified by
searches with the peak coordinates from each cluster usingNeurosynth (www.neurosynth.org) tomatch associations withmeta-analysis maps for each location
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individual subject and individual trials (REML criterion at
convergence: 4092.5).5 In this LMM, we find a main effect
of difficulty (number of operands), χ2 (2) = 32.95, p < 0.0001,
such that RT increases as difficulty increases, for easy (3-op-
erand,M = 1.07 s, SE = 0.10), moderate (4-operand,M = 1.59,
SE = 0.09), and hard (5-operand, M = 1.75, SE = 0.10) trials.
We then evaluated the base model with the addition of mea-
sures of math anxiety as additional fixed factors.

When we add MA to our base model, we find a similar
effect for MA-TAI scores and difficulty evaluated as fixed
factors (random effects for participants; REML criterion at
convergence: 4093.5). We again find a main effect of difficul-
ty, χ2 (2) = 32.42, p < 0.0001, no main effect of MA-TAI, χ2

(2) = 1.84, p = 0.17, and a significant interaction between
difficulty and MA-TAI, χ2 (2) = 9.06, p = 0.01 (Fig. 5). We
find that the moderate and hard trials are roughly equivalent
across the range of math anxiety but that RTs increase as MA
scores increase for easy trials (similar results with alternate
measures of MA are presented in the Supplementary
Material).

WM Load: Accuracy We first evaluated a base model,
assessing the effect of number of terms on accuracy
(LMM with number of operands, i.e., difficulty, as a fixed
factor, random factors accounting for participant and trial
number). We find that the number of terms had a signif-
icant effect on accuracy, χ2 (2) = 21.65, p < 0.0001
(REML criterion at convergence: 1967.3).

We then evaluated this model including MA-TAI as an
additional fixed factor (LMM with number of operands—dif-
ficulty—and MA-TAI as fixed factors, random factors for
participant and trial number; REML criterion at convergence:
1976.4).We find a main effect of difficulty on accuracy, χ2 (2)
= 21.65, p < 0.0001, such that accuracy decreased from three-
term problems (M = 0.87, SE = 0.02) to four-term problems
(M = 0.68, SE = 0.01) to five-term problems (M = 0.62, SE =
0.02), as predicted. The number of terms did interact withMA
controlling for test anxiety, χ2 (2) = 7.03, p = 0.03 (Fig. 6). As
observed in Figure 6, for easy (three-term) and difficult (five-
term) problems, we observed an expected negative relation-
ship between MA and math task performance, such that in-
creased MA is associated with poorer performance. However,
we do not observe this relationship with the moderate (four-
term) problems, and instead observe that MA has a weak,
positive relationship with task performance.

WM Load: Neuroimaging Analyses

For our imaging analyses, we examined how task difficulty
was related to trial categories in arithmetic network. Using
FSL’s FEAT, we generated brain activity scaled for task diffi-
culty using the math switch trial > math nonswitch trial con-
trast. We extracted average activity from this map using the
meta-ROI reverse-inference map representing activity associ-
ated with arithmetic (see previous). In this case, increasing
percent signal change extracted for these analyses represents
increased neural processing associated with increased difficul-
ty. Therefore, a negative relationship between scores in this
network and MA-TAI would indicate decreased neural activ-
ity underlying increased difficulty, which is associated with
increased math anxiety. In this exploratory analysis, we exam-
ined how activity in the arithmetic network responds to addi-
tional demands on working memory associated with increas-
ing problem difficulty and how this interacts with MA.

WM Load: Arithmetic meta-ROI Using a linear regression, we
find that MA-TAI was negatively associated with neural ac-
tivity reflecting increased task difficulty during math switch
versus nonswitch trials within the arithmetic meta-ROI,
F(1,46) = 3.65. p = 0.062, adjusted R2 = 0.05. This relation-
ship is not statistically significant at the α = 0.05 level. Thus,
we do not find strong evidence to suggest that increased MA-
TAI is associated with decreased activity in the arithmetic
meta-ROI underlying increased problem difficulty.
Therefore, further study is required to explore these associa-
tions regarding working memory load and MA, because these
results are neither robust nor reliable.

Discussion

In this experiment, we examined how two different sources of
demands on executive function— task-switching and WM
load—were related to math performance in individuals with
varying levels of math anxiety. Our results indicate that in a
network of regions associated with arithmetic processing, we
can observe EF-related changes in HMA associated with
switching and increased demand on WM. Overall, our results
suggest that HMA individuals show a pattern of disruption,
suggesting that increased math anxiety is associated with a
decrease in RTs for switch trials, and decreased neural activity
observed during math switch trials. Increased MA is associat-
ed with speeding through initial trials that have increased de-
mand on EF resources. Individuals with increasedMA show a
decrease in neural activity associated with math computations.
Activity in this arithmetic network supports more advanta-
geous mathematical computations in LMA individuals com-
pared with those high in MA. Increasing EF demand

5 We also ran an additional model that included problem difficulty and switch
category (switch/nonswitch) as fixed factors, and random effects for each
participant. Similar to the results reported here, we find a main effect of diffi-
culty, but no main effect of switch category, χ2 (1) = 0.35, p = 0.55, and no
interaction between switch category and difficulty, χ2 (2) = 1.56, p = 0.46.
Thus, we omitted switch category as a factor in the base model and following
analyses and instead focus on difficulty.
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(switching) is associated with increased neural activity in
LMA individuals.

Executive Functioning: Task Switching

We find that switching is associated with disruption in re-
sponse times and neural activity for HMA individuals.
These individuals show abnormal disengagement behavior
on initial switch trials. HMA individuals show decreased
RTs during switch trials, suggesting an initial disengagement

(Pizzie & Kraemer, 2017) by speeding through trials (Faust
et al., 1996). HMA individuals disengage from initial math
problems as evidenced by their speeded responses. The
resulting decrease in brain activity during these trials indicates
that these avoidant behaviors undercut the ability of HMA
individuals to complete these math problems successfully.
LMA individuals do show differences associated with
switching. For example, they show a normative switch cost
on initial switch trials and attenuate their responses to later
nonswitch trials. LMA individuals show an advantageous
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strategy during switch trials: slowing their response times dur-
ing initial math trials to allow adequate processing for the
increased EF demands due to switching set. Eventually,
LMA individuals attenuate their responses to the new set
and speed up throughout a sequence of trials. LMA individ-
uals do not experience additional decrements associated with
EF demands created by anxiety. However, HMA individuals
slow for later trials, perhaps showing increased engagement
on math trials presented later in a sequence (nonswitch trials).

During switch trials, LMA individuals show increased ac-
tivity in regions of the brain associated with mathematical
processing compared to HMA individuals. This is evidenced
by increased activity in a meta-ROI specifically selected to be
associated with arithmetic processing. Our results suggest that
LMA individuals can more effectively recruit computational
neural resources on initial trials. Our results suggest that neu-
ral resources may be diverted away from the arithmetic net-
work for HMA individuals (see supplementary results for
results related to amygdala reactivity).

Overall, we observed that HMA individuals show process-
ing decrements in conditions associated with increased EF
demand created by switching and fail to recruit neural sub-
strates of mathematical computation that would help them
effectively solve the problem. This supports the idea that in-
creased MA is associated with disruption of cognitive re-
sources that would otherwise be associated with math compu-
tations, but are instead distracted by intrusive thoughts, or
disengaged in avoidance. On the other hand, LMA individuals
are able initially to devote adequate cognitive resources to
solving math problems, and show increased neural activity
supporting increased mathematical processing.

WM Load: Increased Difficulty

In this exploratory analysis, we examined how additional de-
mands placed on EF by increased WM load (i.e., updating),
here indexed by increasing problem difficulty, were associated
with math anxiety. Our results indicate that increased WM
load created by increased difficulty exacerbates anxiety-
related differences. The hypothesis that HMA individuals
show increased demands on EF andWM associated with anx-
iety is evident when we examine response times for increasing
difficulty across math trials. HMA individuals show exagger-
ated responses to the easy math problems across the sequence
of trials and show increased RTs. This response is perhaps
indicative of increased WM load even for easy problems,
whereas LMA individuals are able to quickly solve them.
This pattern was somewhat counterintuitive, as we hypothe-
sized based on previous work (Ashcraft & Kirk, 2001;
Ashcraft & Krause, 2007b; Faust et al., 1996; Hopko et al.,
1998) that the differences between MA groups would emerge
as difficulty increased. Instead, this result indicates that unlike
LMA individuals, who are able to quickly solve the easy

problems, this increased processing time for HMA individuals
is indicative of increased WM load across all levels of math
problems, even easy problems. These WM-related deficits
occur either through task-irrelevant distraction or by using a
more WM-intensive strategy, creating demands on EF func-
tion and WM demand (Beilock, 2008).

Experimental Limitations and Considerations The results of
this study should be considered in light of some important
limitations. First, we specifically chose to recruit individuals
who were specifically high and low in self-reported math anx-
iety (Suinn & Winston, 2003) in order to focus on these more
extreme patterns of behavior. Indeed, our “low math anxious”
group of participants may be considered to be a non-math anx-
ious population, as these participants have extremely low
scores, and are generally characterized by having more positive
feelings toward mathematics. Indeed, these participants may
have utilized entirely different techniques to solve these prob-
lems, such that these LMA participants may have developed
“shortcuts” in order to adapt to the demands of the problems,
and may have developed strategies to solve these problems that
capitalized on the answer that was presented on the response
screen. This LMA group should not be considered a normative
sample becausewe believe a normative populationwould likely
include moderate levels of math anxiety. Although when we
control for other aspects of anxiety (e.g., test anxiety) this cre-
ates a continuous range of scores, it is important to note that this
study has excluded the mid-range of MA scores, and we there-
fore are limited in understanding the behavioral and neural
response patterns in individuals withmoderate levels of anxiety.

Related to our considerations about the population of math
anxious individuals, in this particular math task, participants did
not demonstrate overall anxiety-related accuracy deficits in
mathematics. Instead the behavioral differences we observed
related to math anxiety were in response times and neural re-
sponses. Indeed, it may be the case that this population of indi-
viduals is relatively “high-functioning” math anxious individ-
uals, who are still able to perform mathematics with an im-
proved level of accuracy, despite differences in response times
and neural responses. Furthermore, we do not observe differ-
ences in accuracy across the switch and non-switch trials uti-
lized for these analyses; however, when all trials are included in
the analysis (see Supplementary Material), we do observe that
highmath anxious individuals have lower accuracy on the math
task than low math anxious individuals, replicating previous
work on math anxiety (Ashcraft, 2002; Ramirez et al., 2018).
Indeed, the anxiety-related performance deficits observed on
this math task may have been more subtle, or HMA individuals
may have relied on some compensatory strategies (Sharp et al.,
2015), and given the population of students included in this
research, we should utilize caution in determining how these
results may generalize to other populations of math anxious
individuals.
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In addition, although our tasks were pilot-tested to be
roughly equivalent in accuracy to one another (n = 12) such
that pilot participants had roughly equivalent accuracy in the
math (Mmath = 75.6%, SDmath = 0.16) and analogy conditions
(Manalogy = 75.5%, SDanalogy = 0.22), we did find a main effect
of stimulus condition on accuracy in the larger sample, such
that all participants overall had higher accuracy in the math
condition compared to the analogy condition. Although we
observe differences between the two tasks in this population,
as another measure to bolster our confidence that these tasks
are roughly equivalent from the pilot data, pilot participants
also rated the difficulty of the analogy and math tasks, and
mean difficulty ratings (on a 1-5 scale) were similar across the
two tasks. These similar ratings in difficulty further illustrate
that although we may have observed slightly different means
in the larger sample of participants, the difficulty of task de-
mands are perceived to be roughly similar across both tasks. In
addition, although the tasks were determined to be of relative-
ly similar difficulty, it is possible that more highly math anx-
ious individuals may have used different techniques and strat-
egies than the low math anxious individuals, especially in the
math task. This may have resulted in differences in meta-
cognitive strategy (Anderson, Betts, Ferris, & Fincham,
2011), which could be related to performance and potentially,
brain activity on the basis of math anxiety. Further research
could explore differences in strategy use across the spectrum
of math anxiety.

The present study addresses two components of execu-
tive function in math anxious individuals: task switching,
and WM load—a concept that may be considered to be
closely related to updating (St Clair-Thompson and
Gathercole, 2006; Friedman & Miyake, 2017). However,
there is another component of working memory, inhibition,
that is also likely to be impacted by anxiety (Mogg &
Bradley, 1998) and math anxiety (Hopko et al., 1998).
We hope that future work will continue to address all three
of these components of executive function and how they
may be impacted by math anxiety. Although this study was
designed to measure two components of executive function
based on a prominent model of working memory (Miyake
& Friedman, 2012; Miyake et al., 2000), there are addition-
al models of executive function that may result in different
conceptualizations or interpretations of these results. For
example, we might look to the expected value of control
theory (Shenhav, Botvinick, & Cohen, 2013) to generate
further hypotheses about how cognitive control plays a role
in math anxiety, integrating ideas about the processes of
regulation, specification, and monitoring when math anx-
ious individuals are presented with mathematical
information.

Additionally, the present manuscript was not able to ad-
dress other potential mediators of the effects of math anxiety
on performance of mathematics, which may have been related

to our results. For example, perceived math ability, spatial
thinking, and math self-concept are all important consider-
ations when studying the associations between math anxiety,
math outcomes, and brain activity. We hope that future work
will examine the relationship with these mediator variables on
individual variation within math anxiety.

Conclusions

The purpose of this study was to better understand how math
anxiety is associated with additional factors that exacerbate
WM load and demands on EF. We utilized a novel task-
switching paradigm to examine how EF changes would be
associated with MA. We investigated how behavioral and
neural responses during initial and later problems in the se-
quence would be related to added cognitive difficulty. HMA
individuals show a pattern of avoidance, initially disengaging
from sequences of math problems, and showing a reduced
ability to recruit neural networks that would effectively sub-
serve mathematical computations. We found that individuals
with low MA can quickly and effectively recruit a network of
regions associated with arithmetic processing. The results of
this study support the idea that EF and WM changes associ-
ated with mathematics are a significant contributing factor in
MA. These results illustrate that brain networks that support
mathematical computation are sensitive to changes in EF de-
mand created by task-switching and exacerbated by problem
difficulty. These results provide further evidence for a pattern
of avoidant behavior in HMA individuals. This work extends
our knowledge about how math anxiety is related to neural
processing of arithmetic and shows that disengagement and
avoidance impact neural computations in HMA individuals.
In conditions where EF and WM may be taxed by task-
switching or increasing problem difficulty, this study provides
important insight into how mathematical computations in the
brain are moderated by math anxiety.
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