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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic 

cancer, yet 80% of the patients are not eligible for curative surgical resection due to the 

tumor invasion into surrounding major blood vessels. Alternative treatment options, from 

conventional chemotherapy to more novel approaches such as immunotherapy, mainly rely 

on systemic drug delivery and intratumoral distribution. While the tumor 

microenvironment has been established as a key factor that affects drug transport 

efficiency, it is a challenge to obtain transport-relevant tumor information in clinical 

settings to assess therapeutic outcomes. This thesis focused on understanding the PDAC 

tumor microenvironment parameters that could be a surrogate for drug uptake and using 

low-dose photodynamic therapy (PDT) to modulate such parameters to improve tumor 

drug distribution. Preclinical findings along with early evidence from clinical CT scans are 

presented.   

The first aim of this thesis introduces an ex vivo imaging system that helps 

demonstrate the relationship between tumor stiffness heterogeneity and tumor collagen 

content, both of which are inversely correlated to drug uptake. This finding encourages the 

development of elastography as a feasible clinical imaging procedure that could predict 

treatment outcome. The second aim further improves the capability of this imaging system 

to visualize collagen distribution in fresh tissue samples by employing tumor staining and 

fluorescence imaging with ultraviolet excitation. The system is utilized in the third aim of 

this thesis which demonstrates that low-dose focal PDT treatment in PDAC mouse models 

could reduce desmoplasia and relieve stiffness heterogeneity. Such modulating effects of 

PDT makes this light treatment an effective neoadjuvant therapy to prime PDAC tumors 
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for subsequent chemo or immunotherapy. Lastly, the fourth aim of this work shows that 

tumor priming effects could be quantified from CT scans of PDAC patients receiving PDT 

treatment by texture analysis, emphasizing the promise of PDT when used in combination 

with more conventional therapies. 
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Chapter 1: Introduction 

1.1 Problem Statement  

Pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of pancreatic cancer,1 which 

has risen to be the fourth leading cause of cancer-related death.2 As the 5-year survival rate 

of all stages combined remains below 5% for the past decades due to late prognosis and 

poor resectability,3 research have identified PDAC as one of the most aggressive due to its 

drug-resistance biological hallmark.4,5 While the complexity of genetic modifications has 

been rigorously studied in the search for a predictive biomarker, more recent attentions turn 

towards the heterogeneity of the characteristic desmoplasia in the tumor microenvironment 

(TME) as another major cause of drug resistance. It has been reported that the TME does 

not only promote the compensatory molecular signaling pathways responsible for 

progression, but multiple TME factors are also recognized as physical drug transport 

barriers.6,7 More understanding of the PDAC biology and pathophysiology related to drug 

resistance has been widely established, yet clinical translation remains a challenge due to 

the lack of feasible methods to collect meaningful predictive information at the 

microscopic or sub-cellular levels. 

Consistent with the growing focus on the role of PDAC TME in tumor progression and 

drug resistance is the considerable efforts towards developing novel therapies. 

Combination treatment of a targeted regimen in conjunction with a more conventional 

therapeutic course appears to be the most promising approach. However, mixed results 

from clinical trials8,9 continue to stress on the unsolved problem of systemic and 

intratumoral transport efficiency, further underscoring the need to clinically characterize a 
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predictive measure of the highly compensatory signaling pathways and the extreme 

heterogeneous TME. Preclinical research findings and observations from such clinical trial 

outcomes have urgently called for a reliable and translatable marker of tumor drug transport 

efficiency.  

1.2 Overview of Research/ Specific Aims 

1.2.1 Overview of Research 

This research work mainly focuses on further understanding the role of the PDAC TME 

and exploring the use of photodynamic therapy (PDT) to modulate the TME with the 

ultimate goal of improving the tumor drug uptake. Realizing the characteristic 

heterogeneity as a major cause of drug resistance and the need for a relevant clinically 

translatable biomarker, the work specifically examines tumor stiffness heterogeneity 

imaging as such a potential indicator. Tumor stiffness heterogeneity and its relationship to 

the TME as well as intratumoral transport is studied with the purpose of employing 

predictive information in the evaluation of treatment responses, and in the context of 

potentiating elastography imaging in clinical PDAC treatment.  

1.2.2 Specific Aims  

While each following chapter is delegated to present a study whose main objective is 

aligned with the thesis central theme of imaging the PDAC TME heterogeneity and 

studying its role in intratumoral drug distribution, there are four primary Aims summarized 

below with relevant Chapters. These Aims have been established to specify the necessary 

tasks, consolidate the deliverables and are also used to organize the conclusion remarks in 

Chapter 8 which reevaluates the goals and the accomplished work from a macroscopic 
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view, discusses the limitations and suggests future directions.  

Aim 1: Image wide-field tumor stiffness heterogeneity at transport-relevant 

resolution to investigate the relationship between tumor stiffening, desmoplasia and 

drug transport 

Chapter 2 provides insights on the motivation of Aim 1 to examine tumor heterogeneity, 

leading to the study in Chapter 3 where an ex vivo stiffness mapping system was built to 

address Aim 1 objective. 

Aim 2: Visualize and quantify PDAC tumor collagen network from fresh samples 

using fluorescence imaging with ultraviolet illumination 

The development of the fluorescence imaging system to image collagen from fresh tissue 

samples and data quantification is fully discussed in Chapter 4.  

Aim 3: Evaluate collagen and stiffness modulation effects by photodynamic therapy 

treatment to enhance intratumoral drug uptake 

An attempt to modify the tumor stroma with angiotensin II receptor blocker is discussed in 

Chapter 5. Chapter 6 provides a more comprehensive study with conclusive results on 

the goal of TME modulation to enhance drug uptake using photodynamic therapy.  

Aim 4: Quantify photodynamic priming effects using radiomics analysis on clinical 

PDAC CT scans 

As results from the previous Aims underscore the role of tumor heterogeneity, Chapter 7 

involves a study to examine the heterogeneity effects in PDT-treated PDAC patients using 

texture analysis on the CT scans before and after treatment.  
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Chapter 2: Background 

2.1 PDAC Drug Resistance Mechanisms 

Despite the poor resectability due to involvement of major blood vessels 

surrounding the pancreas, drug resistance contributes significantly to the high mortality 

rate of PDAC. The nature of PDAC drug resistance is driven by two main mechanisms: the 

heterogeneity of genetic mutations and the desmoplastic TME. More than 165 genes have 

been found to be responsible for such molecular complexity, which results in the regulation 

of signaling pathways and overexpression of proteins associated with progression, invasion 

and metastasis.1 The ability to mediate different mechanisms allows PDAC tumors to 

rapidly develop resistance via compensatory pathways, which poses a big challenge to 

targeted therapies. Besides the complex genetic behaviors, the TME with characteristic 

desmoplasia have gained increasing attention since it is involved in cellular signaling as 

well as creating physical barriers to drug resistance. The TME provides structural support 

to different cell types along with the cancer cells, making it a hub for the development of 

cellular crosstalk that promotes invasion and metastasis.2–4 Furthermore, the dense stroma 

and abnormal vasculature form physical barriers that inhibit intratumoral transport with 

elevated total tissue pressure.5,6 Whether originated from genetic signaling pathways or 

physical barriers existed in the TME, PDAC drug resistance highlights extreme 

heterogeneity observed from macroscopic to microscopic levels. The heterogeneity of the 

TME components responsible for physical transport barriers will be examined in the scope 

of this thesis work.  
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2.2 Physical Transport Barriers in the PDAC Tumor Microenvironment 

It is widely accepted that the activated pancreatic stellate cells (PaSC) are 

responsible for the physical abnormalities occurring in the PDAC TME, often described as 

desmoplastic.7–10 In this section, these TME components are discussed in the context of 

their contributions to create physical transport barriers, and the nature of elevated total 

tissue pressure.6,11,12 The relevant relationships between tumor biology and tumor 

biomechanics are introduced. Specifically, three inhibiting phenomena are discussed: 1) 

Elevated solid stress due to the overproduction of TME macromolecules, 2) Elevated fluid 

pressure due to collapsing vessels and the lymphatic systems and 3) Extreme intratumoral 

heterogeneity further exacerbating these transport problems. 

2.2.1 Elevated solid stress by macromolecule accumulation 

Cancer-associated fibroblasts (CAFs) are believed to be responsible for the 

overproduction of macromolecules in the extracellular matrix during tumor progression13, 

which results in the accumulation of proteins such as collagens of different types and 

hyaluronans (HA). In the limited space, the overaccumulation of collagens creates a solid 

stress (SS) that exerts physical force upon nearby TME components. Compressed blood 

and lymphatic vessels lead to slow perfusion which directly affects tumor transport.5,14 

Furthermore, evidence has shown that the decreased blood flow due to high SS causes 

hypoxia, another significant and very well-studied phenomenon responsible for promoting 

tumor progression, inflammation, and invasion, all of which contribute to lower therapeutic 

efficacy.15 While growth-induced SS is partially attributed to cancer cell proliferation, the 

major contribution of the ECM components, mostly collagen, is well-established.16–18 
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2.2.2 Elevated interstitial fluid pressure by the abnormal vasculature and lymphatic 

system 

As the blood and lymphatic vessels are mechanically deformed due to SS, their 

dysfunction leads to fluid accumulation within the tumor which consequently results in 

elevated interstitial fluid pressure (IFP). While vessels are physically collapsed by the high 

SS, several other factors contribute to the vascular abnormalities of the PDAC TME. 

Angiogenesis, or the increasing growth and density of the microvasculature, is another 

hallmark of the TME. Several cancer metabolism pathways19 are responsible for the 

overgrowing of immature, tortuous and leaky micro-vessels as the tumor adapts and 

compensates for the hypovascularity due to desmoplasia. These abnormal vessels are 

tortuous which slows down the blood flow, and their leakiness causes fluid loss which 

increases viscosity.5 All of these changes in the vasculature significantly contribute to 

lower the tumor transport efficiency. Meanwhile, the dysfunctional lymphatic system 

results in no tumor drainage.20 As fluid accumulates in the tumor space, elevated IFP is 

observed. The increased IFP can flatten the pressure gradient thus limits convective 

interstitial transport. The combination of abnormal vasculature and lymphatic system 

regulates the IFP and thus directly affects intratumoral drug transport.11,21,22 

2.2.3 Heterogeneity further exacerbates intratumoral distribution  

Elevated SS and IFP, due to the desmoplastic TME, is further exacerbated by the 

inherent intratumoral heterogeneity. The heterogeneity of the PaSCs primarily responsible 

for the characteristic desmoplasia is observed within and across different tumor 

phenotypes.7 Studies have recognized that heterogeneity is correlated to tumor 

aggressiveness.23,24 Fundamental TME components that display extreme heterogeneity are 
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reported such as the PaSCs and CAFs, which creates a cascade of heterogeneity of different 

degrees to subsequent by-products such as the collagen content, blood vessels and immune 

cells, all of which directly affect intratumoral transport.  

2.3 TME Measurement Techniques  

This section discusses different measurement techniques developed to examine the 

TME components affecting tumor transport.  

2.3.1 Tissue pressure measurement techniques 

Interstitial fluid pressure measurement techniques 

Recognizing the elevated tissue pressure as a byproduct of the underlying molecular 

changes in the TME, some research has focused on developing techniques to validate this 

relationship between the tumor biology and the tumor biomechanics. One of the earliest 

methods to characterize the interstitial fluid pressure was based on the “wick-in-needle” 

concept.25,26 Introduced by Fadnes et al., the wick-in-needle technique was designed to 

have a side-hole near the needle tip which was filled with nylon fibers. After the needle 

was inserted into the measuring sample and the pressure from insertion was stabilized, the 

fluid pressure was determined by the compression or decompression of the fibers, which 

was recorded by a pressure transducer and an amplifier.25 More recent developments 

utilized a miniature pressure transducer that could be placed directly into the needle 

hole.27,28 While there has been debate over the comparative value of these, the operating 

mechanism has remained the same, i.e., a point-probe based mechanism.  

Solid stress measurement techniques 
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SS measurement techniques are limited and a few approaches to determine this parameter 

requires tissue excision. Proposed by Stylianopoulos et al., SS measurements are often 

conducted by estimating the amount of tissue deformation from being cut.15,29 A recent 

improvement of the technique was introduced by Nia et al., in which the excised tissue 

deformation was imaged using high resolution ultrasound, giving SS measurements in a 2-

dimensional map.29 As an attempt to measure both SS and IFP, Nieskoski et al. proposed 

an improved technique using a piezoelectric pressure transducer inserted into a needle, 

which operated in a similar manner to the aforementioned wick-in-needle technique.30 

While there has yet to be a gold-standard technique to characterize SS, IFP and the total 

tissue pressure, studies have a strong agreement on the considerable degree of 

heterogeneity observed in these measurements and its connection to the heterogeneous 

components of the TME such as collagen, hyaluronan and blood vessels.  

2.3.2. Vasculature imaging to characterize transport 

Vascular transport measurement techniques 

Drug transport in tumors could be classified into three different steps: vascular 

transport, transvascular transport and interstitial transport.5 Vascular transport describes 

the convective-diffusive delivery from the blood vessels into the tumor regions and is 

determined by perfusion rate q.  

𝑃𝑒𝑟𝑓𝑢𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑞 =  
𝑄

𝑉
=  

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒

𝑇𝑖𝑠𝑠𝑢𝑒 𝑉𝑜𝑙𝑢𝑚𝑒
 

The flow rate, drug concentration and tissue volume can all be measured in real 

time with fluorescence-based imaging techniques such as intravital imaging31 or 

multiphoton microscopy.32 Single vessel blood flow is made possible with multiphoton 
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laser scanning microscopy in which flow velocity can be determined by the frequency of 

line scanning along the vessel centerline.33 Red blood cell velocity calculation to 

characterize different flow rates between a normal and a leaky vessel could also be 

performed by tracking the fluorescence beads with fluorescence imaging.34 Vascular 

leakiness measurements also make use of fluorophore-tagged liposomes of different sizes. 

These liposomes are injected into the animal and microvascular extravasation is imaged 

using intravital imaging.  

Interstitial transport measurement techniques 

Interstitial transport or the delivery of small drug particles within the tissue space 

is defined mostly by diffusion, or the change in concentration with respect to time: 

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝛿𝐶𝑖

𝛿𝑡
= 𝐷∇2𝐶𝑖 

in which ∇2𝐶𝑖 represents the Laplacian of interstitial concentration and D is the diffusion 

coefficient. Similarly, imaging methods to calculate the diffusion rate are based on 

multiphoton microscopy with fluorescence imaging. One common technique is 

fluorescence recovery after photobleaching (FRAP) in which the spatial distribution of 

fluorophores is analyzed before and after photobleaching to estimate the diffusion 

coefficient.35 

Besides these in vivo fluorescence imaging methods, pathology staining provides a 

simple and effective way to determine function blood vessels by intravenously injecting a 

vascular marker such as lectin or dextran and analyzing images of thin tissue sections 

afterwards. While information from these thin sections does not capture the whole-tumor 
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vasculature profile, it is an efficient method to gain insights with whole-sample size field 

of view and microscopic resolution. 

2.3.3 Stiffness as a new biomarker to reflect TME changes related to drug transport 

Research interests focusing on understanding the PDAC complexity in either tuning 

genetic modifications or building a desmoplastic TME have had similar findings to link 

stromal stiffening as a physical properties regulating tumor agressiveness.36 Laklai et al. 

provided the first evidence to link tumor stiffness to both PDAC genotypes and 

desmoplasia.37 As tumor collagen content is identified as a significant component to the 

elevated solid stress that affects drug transport,38 the relationship between collagen 

deposition, alignment and crosslinking to tumor stiffness has also been demonstrated by 

multiple studies.39–42 These findings strongly suggest that further investigation of tumor 

stiffness could be a promising indicator of biological changes related to PDAC drug 

transport.  

2.3.4 Stiffness imaging feasibility for clinical adoption  

Stiffness imaging methods are developed primarily based on the concept of 

measuring stress at different levels of strains (or indentations) to estimate the Young’s 

modulus, or the stiffness of material. 

Young′s modulus E =  
σ

ε
=  

stress

strain
 

While strong evidence supports the relationship between tumor stiffening and the 

underlying biological changes related tumor progression, tumor stiffness information has 

been mostly acquired at the microscopic level. Conventional elastography imaging 
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modalities can determine stiffness values down to micron resolution with atomic force 

microscopy (AFM) or multi-photon microscopy (MPM), but the sample size is limited to 

smaller than 100 m. Optical coherence elastography (OCE) can offer microscopic 

resolution with a field of view up to hundreds of microns or even larger when coupled with 

a translational stage, but the technique is costly and complicated. Considering the diffusion 

distance of nanoparticles from the blood vessels is 100 m at maximum,43 elastography 

data reflecting transport profile should be capable of whole-sample imaging (a few cms) at 

resolution of at least a hundred microns. No such elastography imaging system is currently 

available, especially for the purpose of studying tumor stiffness with respect to intratumoral 

drug transport. However, moving towards this direction with promising developments to 

fulfill such imaging requirements are advances in ultrasound and magnetic resonance 

elastography. Ultrasound and MRI are conventional imaging modalities widely used in 

clinical assessment, and with current elastographic resolution of 1-mm, it is promising that 

near future clinical applications of these techniques will be realized in PDAC treatments 

as tumor stiffness heterogeneity becomes a reliable and practical indicator of transport.  

2.4 Overview of PDAC Treatment 

2.4.1 Conventional PDAC chemotherapy options and evolving targeted therapies 

For unresectable PDAC patients, chemotherapy remains the next best option. 

Gemcitabine alone44 or more recently, in combination with other agents such as nab-

paclitaxel45 or erlotinib46 have yielded positive clinical outcomes. FOLFIRINOX, a 

combination of four drugs, has been reported to have even better efficacy when compared 

to gemcitabine and the efficacy has been confirmed in multiple clinical trials.47,48 However, 
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the significant toxicity remains the limiting problem49,50 and there has yet to be a reliable 

biomarker to predict patient responses to these therapeutic regimens. While more 

combinations of chemo agents are being tested, molecular-targeted therapies have emerged 

as a new line of therapeutic options due to promising preclinical findings, one of these 

focus targets is the tumor stroma.51 Anti-stromal therapies attempting to improve the PDAC 

TME have approached this key element of tumor progression by targeting the angiogenesis 

or the fibroblasts via systemic delivery of drugs that inhibit growth factors.52–55 However, 

these approaches did not yield any improvements in survival as compared to established 

chemo regimens, and recent studies have speculated that PDAC physical transport barriers 

such as hypovascularity and desmoplasia might be the explanation.56 Therefore, it is 

necessary to identify an effective method to tackle the problem of drug delivery efficiency, 

i.e., a focal treatment course that does not fully rely on systemic delivery such as 

photodynamic therapy proposed in this thesis work.  

2.4.2 PDT in PDAC treatment and the promise of low-dose PDT 

Photodynamic therapy (PDT) is an FDA-approved treatment course in several types 

of cancers. The treatment efficacy is determined by the combination of three main factors: 

the photosensitizer uptake, the light fluence and the concentration of singlet oxygen.57 A 

photosensitizer is topically or systematically administered but photodamage only occurs at 

the regions where light is introduced to produce singlet oxygen, which results in tumor cell 

death. As a localized therapy using low-toxicity photosensitizer, PDT has been employed 

in combination with almost every conventional therapeutic regimens either before or after 

without compromising their efficacy.58 The ability to delivery light via a fiber optic has 

broaden the range of possible PDT applications, with recent studies investigating PDT as 
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part of combination treatment to improve PDAC outcome. PDT has been exploited due to 

its ability to target different components of the TME depending on the drug-light interval 

and is speculated to enhance subsequent drug delivery by producing transient vascular 

permeability.59,60  

While the concept of low-dose PDT has previously been introduced by Snyder et 

al.,61 preclinical findings recently have provided new insights on the feasibility of such 

approach to prepare the tumor for subsequent treatments. Evidence have showed that a sub-

lethal dose of PDT not only enhances vascular permeability62 but also displays promising 

results with collagen depletion,63 both of which could effectively target the prominent 

physical transport barriers of PDAC tumors. Furthermore, Huang et al. has reported the 

synergistic benefits of low-dose PDT in combination with irinotecan to target 

compensatory signaling pathways and minimize systemic toxicity.64 As more preclinical 

evidence elucidates the mechanisms in which PDT modulates the TME,65,66 it is a 

reasonable approach to evaluate the benefits of low-dose PDT in targeting PDAC physical 

transport barriers as well as the corresponding tumor biomechanical changes.  

2.5. Tumor heterogeneity information in clinical translation 

2.5.1 Radiomics as a tool to assess heterogeneity from clinical image data  

Overview of Radiomics Analysis Concepts 

As tumor heterogeneity within and across phenotypes becomes a significant factor 

in disease prognosis and more evidence suggests its relationship to treatment outcome, 

more methods are developed to characterize heterogeneity with a strong emphasis on the 

feasibility of clinical translation. The field of radiomics has emerged as a result of this new 
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research direction. Radiomics is defined as analysis performed on image data to extract 

information that cannot be appreciated by the naked eye. Algorithms have been developed 

to characterize image texture features of a region of interest (ROI). Radiomics data includes 

both basic, first-order morphological information such as an ROI’s size and shape, intensity 

histogram and relevant histogram-based parameters including skewness or kurtosis. 

Deeper data exploitation is often referred to as second-order analysis, which involves 

computations of spatially defined texture parameters such as contrast, variance, 

homogeneity and heterogeneity properties in multiple directions (on the x-y-z axes) and 

dimensions (2D vs. 3D), and with respect to a certain volume of neighboring pixels or 

voxels. Currently, radiomics analysis tools are applicable to a wide range of imaging data 

including CT, PET, MR and ultrasound, and they have become more ubiquitous with 

options for both open-source programming67,68 as well as free software packages.69,70 

Considerations Regarding the Interpretations of Radiomics Results 

The use of radiomics in medical imaging data has burgeoned due to its functionality 

in addition to the availability of existing data. Texture features are extracted from clinical 

scans and their correlations to certain medical conditions and biological factors are 

evaluated. Classification algorithms and modeling are often employed in such assessments 

to determine the clinical value of identified features. Since the process is mainly 

computational and conclusions are drawn based on statistical analysis, it is important to 

have access to a large amount of image data and a careful evaluation of systemic errors 

during image acquisition, data preprocessing such as voxel resampling or binning, and 

parameter settings for texture analysis.  

Two concerning problems regarding the authenticity and reproducibility of the 
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identified texture features involve the inherent variability of patient characteristics or image 

acquisition procedure, and the sensitivity of texture features with respect to image noise or 

computational parameter settings. Therefore, the rapid adoption of radiomics in medical 

imaging also brings along more attentions towards such quality control concerns. 

Normalization tools to account for multi-center image data collection are developed such 

as the ComBat Method proposed by Orlhac et al.71,72 More studies have been conducted to 

identify the effects of imaging parameters such as voxel size, number of gray levels or in 

the case of CT scans, tube current and voltage on the outcome of highly computational 

texture features.73–75 Trial and error still remains a reliable method to determine certain 

parameter settings for texture analysis. As heterogeneity calculation algorithms are 

developed based on either the variation of image intensity, spatial information or a 

combination of those two, choosing the adequate resampling voxel size, binning levels and 

the neighboring voxels will strongly affect the outcome.73 For example, too many gray 

levels (or too little binning) results in the possibility of reporting image noise as texture 

heterogeneity. On the other hand, too few gray levels (or too much binning) could end up 

over-smoothing the image data thus overlooking important texture features. Additionally, 

patient variability produces sources of variation that are both inevitable, making data 

normalization a challenging task. For instance, radiomics analysis on contrast CT scans is 

prone to the variation of patient metabolism rate, which could significantly affect the level 

of circulating contrast agent – a factor that determines the image intensity on CT scans. 

While the strength of radiomics lies in the robustness of algorithms that could account for 

the variation of biological factors, mostly by using large image data to prove its sensitivity 

and reproducibility, it is important to acknowledge possible sources of bias especially at 
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the early phase of a study with trial-and-error testing or algorithm training with a modest 

data set. Therefore, a clear understanding of the computation concepts of radiomics as well 

as keen insights on the biological factors being assessed is of paramount importance to 

researchers in this emerging field.  

2.5.2 Radiomics analysis in the context of PDAC 

Since tumor heterogeneity is a hallmark of PDAC cancer, an increasing number of 

studies have exploited radiomics analysis to evaluate clinical PDAC image data. Texture 

features are identified and employed in a wide range of applications such as classification 

of resection margin status,76 prediction of chemotherapy outcome or local control after 

radiation therapy,77,78 lesion stratification,79 or monitoring of chemoradiation treatment 

responses.80 The common features reported with significant clinical values are first-order 

parameters such as the mean and the standard deviation of CT intensity, histogram-based 

kurtosis, and second-order features extracted from the Gray Level Co-Occurrence Matrix 

(GLCM) to characterize texture heterogeneity.  
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Chapter 3: Relationship of Tumor Vasculature and Collagen Content to 

Verteporfin Distribution in PDAC tumors 

This chapter is derived from: 

P. Vincent, et al., “Verteporfin heterogeneity in pancreatic adenocarcinoma and the 

relationship to tumor vasculature and collagen distribution.” SPIE-Intl Soc Optical Eng. 

(2018) 10476, 45. https://doi.org/10.1117/12.2309291 

3.1 Introduction 

Over the past decades, cancer research has greatly improved the patient outcome 

for a majority of cancer types. However, patients who suffer from pancreatic 

adenocarcinoma have faced nearly the same outcome as of years ago. Compared to current 

breast cancer’s 5-year survival rate of more than 80%, the abysmal rate of 7% for PDAC 

have not changed considerably.1,2 Moreover, pancreatic cancer has risen to be the fourth 

leading cause of cancer death and is expected to be the second in the US in the next decade.3  

This alarming trend has called for monumental efforts in improving both treatment and 

diagnosis for PDAC. While active research fields contributing to PDAC treatments still 

preserve a heavy focus on conventional methods like surgery and chemotherapy, emerging 

research directions have investigated novel therapy regimens involving radiation therapy 

or ablative treatments. Among those, photodynamic therapy – a process that uses light to 

kill tissues – is a potentially promising solution due to its non-mutagenic and non-scarring 

nature.4,5 PDT has been widely used and FDA approved for some skin treatments, and the 

method is currently going under clinical trials for pancreatic cancer.6 

https://doi.org/10.1117/12.2309291
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Along with attempts to come up with novel treatment methods, it is also as important to 

improve current treatment efficacy. This study was conducted with the motivation to 

explore the issue of photodynamic drug-resistance in PDT for pancreatic cancer, 

specifically with verteporfin as the photosensitizer. Verteporfin is being used in clinical 

trials and could be injected intravenously with adequate accumulation time in tumors for 

PDT applications. However, similar to many other drugs, verteporfin also suffers from 

drug-resistance nature of tumors. Drug-resistance can be attributed to both inherent or 

acquired mechanisms.7 One inherent mechanism proposed by Provenzano et al suggested 

that the characteristic enhancement of desmoplastic reaction in PDAC in addition to 

reduced vascular patency resulted in limited drug uptake in the tumors.8 In a recent work, 

Nieskoski et al. observed extreme heterogeneity in solid stress within tumor tissue, which 

was found to be correlated with collagen, the main component of tumor stroma.9 These 

findings and similar others have fueled the drive to carry this study. With hopes to answer 

the question of poor drug uptake in pancreatic PDT, this study was established to examine 

tissue parameters at a microenvironmental level. Collagen and vascular patency were 

quantified to investigate their relationships with verteporfin uptake. It was hypothesized 

that highly dense and complexed stroma along with limited vascular patency were 

responsible for the verteporfin heterogeneity in PDAC.  

3.2 Materials and Methods 

3.2.1 Animal and Tumor Models  

All animal procedures were conducted under the protocol approved by the 

Dartmouth Institutional Animal Care and Use Committee (IACUC). Five female athymic 

nude mice between the age of 6 to 8 weeks were used in this study. Three mice were 
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injected with the human tumor cell line AsPC-1 (ATCC, Cat#CRL-1682) and the other two 

with BxPC-3 (ATCC, Cat#CRL-1687). The orthotopic implantation was done using 1x106 

tumor cells mixed in RPMI-1640 medium and Matrigel (BD Biosciences, San Jose, CA). 

Tumors were allowed to grow until they reached ideal imaging size of 10-15mm diameter. 

Growth time period was up to 3 weeks for AsPC-1 and 5 weeks for BxPC-3. The mice 

went on a purified diet to limit fluorescence from food consumption and thus better prepare 

them for fluorescence imaging. 

3.2.2 Verteporfin Preparation and ex vivo Fluorescence Acquisition 

The contrast agent investigated in this study was Verteporfin (USP, Rockville, MD, 

USA), which is commonly used in photodynamic therapy.10 Verteporfin was dissolved in 

Dimethyl Sulfoxide then intravenously injected at a concentration of 1mg/kg. Two minutes 

before sacrificing time, the mice were injected with Lectin (Vector Laboratories, Cat#FL-

1211) at a dose of 1mg/kg. Lectin acted as a fluorescent stain to mark vascular patency 

with more details described in the next section. The mice were sacrifice at 1 hour post 

injection for AsPC-1 and 30min post injection for BxPC-3. These time points were 

empirically determined as the optimal delivery time to yield high concentration of 

verteporfin uptake in pancreatic tumors for the two cell lines. Tumors were resected then 

thinly sliced into 3mm tissue sections for fluorescence imaging. Fluorescent signals were 

imaged by a flatbed scanner (GE Typhoon 9410) using a 633nm excitation source and 

685nm long-pass filter. White light images of tumor sections were also obtained to keep 

track of the sections’ orientation, which was useful in matching the corresponding 

pathology images. Fluorescence intensity was normalized by fluorescence signal from a 
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reference signal from blue foam material which was always constant. Normalization was 

calculated using the formula below:  

Normalized Fluorescence Signal = 
Sample signal – Background signal

Reference signal – Background signal
 

3.2.3 Pathology Images of Tissue Parameters  

After fluorescence imaging, the tumor sections were fixed in 10% formalin then 

embedded in paraffin. The sections were cut into 4um slices for Masson’s Trichrome 

staining which marked collagen content within the tumors. Lectin sections were cover-

slipped with DAPI material to facilitate the imaging process. High-resolution images of 

these stained sections were provided by a PerkinElmer Vectra3 slide scanner set at 10x 

magnification.  White light acquisition was performed to obtain Masson’s Trichome (MT) 

images while lectin samples required a FITC filter in fluorescent mode.  

3.2.4 Image Processing to Quantify Collagen and Vascular Patency  

Co-registration of all image data was performed using the function cpselect in 

MATLAB to obtain common points between the images. A selection of 4 to 7 points was 

used to do non-rigid transformation. Lectin and verteporfin images were registered to the 

MT image which acted as the reference. All co-registered image data was illustrated in 

Figure 3.1 below. For visualization purposes, collagen map, lectin and verteporfin images 

were enhanced and contrast adjusted.  
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MT images were analyzed in MATLAB to extract collagen content which was 

represented by the blue staining. The color segmentation algorithm was adapted from the 

MATLAB documentation page titled “Color-based segmentation using the L*a*b color 

space.”11 The RGB images were first converted to CIE-Lab color space. Three samples 

were selected to represent the main colors visualized in the images, one of which was the 

blue stain for collagen. These samples were calculated in Lab space and stored as the color 

markers. Pixel classification was performed based on the Euclidean distance between that 

pixel and each of the color markers. The pixel was determined to be of a color if the distance 

to that color was the smallest. Otsu’s global thresholding was used to obtain the total 

number of pixels in the image. The percentage of blue pixels over total image pixels 

determined the values for collagen content within a tumor section.  

Lectin image processing started with background subtraction. A mask of tumor 

tissue was generated by manually drawing regions of interest to exclude adipose tissues, 

 

Figure 3.1 All types of image data collected for this study as taken from pathology slices 

for Masson’s trichrome stain, and Lectin stain, while the Verteporfin fluorescence was 

taken from thick sections but at the same location. 
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pancreatic tissues, fluorescence edge effect and artifacts. The images were then thresholded 

at 0.15 for AsPC-1 and 0.25 for BxPC-3 under the assumption that blood vessels should 

fall in the range of 1-5% of total tissue area. Pixel ratio of lectin over total tissue area was 

calculated to yield the patent vessel area fraction percentage.  

3.3 Results 

3.3.1 Relationship between Verteporfin Uptake and Tissue Parameters 

The tissue parameters of interest in this study were collagen and vascular patency. 

Figure 3.2A and 3.2C showed the correlation between verteporfin fluorescence and blood 

vessel area fraction. It was noticed in both tumor cell lines that more blood vessels yielded 

 

Figure 3.2 The relationship of verteporfin uptake in pancreatic tumor to the collagen 

percentage and patent vessel area fraction. Each data point represented a whole tumor 

slice. Fluorescence signal were normalized with a blue foam material. 
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better drug uptake, which was reasonable since verteporfin was intravenously injected into 

the bloodstream. Data in Figure 3.2B and 3.2D however, showed that drug uptake was 

independent from collagen content within the tumors. Interestingly, verteporfin signals 

from AsPC-1 were generally higher than BxPC-3 (mean of 26.94 and 19.18, respectively) 

while the AsPC-1 collagen values were mostly less than 8% and BxPC-3’s were in the 8-

15% range. Although there was not any clear correlation for the relationship between 

collagen and verteporfin within each cell line’s data set, the values across the two sets 

suggested an inverse relationship between these two parameters. The idea of highly 

collagenated tumor tissue might be a limiting factor to drug uptake had been supported by 

various work. 8,9,12,13 Nieskoski et al. proposed that high collagen content in tumor resulted 

in elevated solid stress, which was proven to be extremely heterogeneous.9 The core of his 

work was based on regional measurements and analysis of pressure and collagen, from 

which this work differed. Therefore, while whole-slice tumor analysis of collagen 

distribution revealed some compatible observations to other related work, a future direction 

this study would like to pursue was the ability to do regional analysis on these tissue 

parameters. Further discussion on regional analysis was described in the next section.  

2.3.2 Regional analysis  

Figure 3.3 showcased two examples of the relationship between tissue parameters 

on a regional level. The examples were taken from the tumor sections with best matches of 

all image data. The first row (Figure 3.3a-c) highlighted the case in which fluorescence 

sample showed high regional verteporfin uptake (Figure 3.3c). This observation was 

supported by high lectin percentage which denoted large patent vessel area (Figure 3.3b). 

In contrast, collagen map obtained from Figure 3a displayed a lack of collagen tissue in 
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this region. One could visually see the corresponding differences in the second row (Figure 

3.3d-f). With high collagen content in Figure 3.3d, verteporfin uptake remained low 

(Figure 3.3f) with agreeable results from vascular patency in Figure 3.3e. These examples 

provided justifications for regional analysis of tissue microenvironment. They also 

confirmed the complexity nature of tissue parameters.  

This study’s initial approach was to pursue regional analysis on all types of image 

data. However, issues had arisen with the quality of image co-registration between 

fluorescence signal and pathology staining. High-resolution of 1um obtained from 

pathology images had not been fully exploited since fluorescence imaging of verteporfin 

only yielded a resolution on the order of 50um. This big mismatch resulted in high tissue 

 

Figure 3.3 Examples of pancreatic tumor tissues with complexed distribution of 

collagen and vasculature. 3a-c (low collagen – high lectin – high drug uptake) and 3d-

f (high collagen – low lectin – low drug uptake) were two of some regions displayed to 

not only highlight the heterogeneity within a tumor for all tissue parameters, but also to 

provide evidence for the potential of tissue microenvironment regional analysis.  
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deformation from low-res data or data loss from scaling down high-res samples. Therefore, 

in order to obtain meaningful and accurate localized information on tissue parameters, a 

better image transformation algorithm could be used to minimize aforementioned artifacts. 

More importantly, fluorescence image quality improvement would be extremely 

beneficial. The current low resolution of verteporfin imaging was attributed to large tissue 

thickness from fresh cuts and time sensitivity of verteporfin. It would be a big improvement 

to overcome these two inherent characteristics of verteporfin imaging. 

3.4 Conclusion 

Research work on tumor microenvironment have shown considerable impact on the 

understanding of drug-resistance in cancer treatment, and towards solving the delivery 

problems. Pancreatic cancer tumors are characterized by its dense stroma resulting from 

fibro-inflammatory response. This study has showed that PDAC, especially BxPC-3, can 

display high collagen contents of up to 20%. The collagen percentage difference between 

AsPC-1 and BxPC-3 was reflected by the corresponding overall average drug uptake across 

the data sets (26.9 vs. 19.2). Although whole-slice analysis within each tumor type referred 

to verteporfin uptake and collagen independence, this observation gave ground to our 

future work of regional analysis. This future direction will also involve exploring novel 

imaging methods for verteporfin in fresh tissue cuts. Linear correlation between verteporfin 

uptake and vascular patency was supported with data from both AsPC-1 and BxPC-3. It 

would be beneficial to improve lectin imaging protocol so that less imaging processing 

would be required to exclude imaging artifacts. Further assessments of verteporfin 

perfusion within the tumor could be accomplished if verteporfin was imaged at a higher 

resolution and better co-registration across all image data. In summary, tumor stroma at 
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microenvironmental level had considerable influence on photosensitizer uptake, which 

occurred with heterogeneous characteristics.   
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Chapter 4: Relationship of Tumor Stiffness to Tumor Collagen and Using 

Stiffness as a Surrogate for Drug Delivery Assessment 

This chapter is derived from:  

P. Vincent, et al., “High-resolution ex vivo elastography to characterize tumor stromal 

heterogeneity in situ in pancreatic adenocarcinoma.” IEEE Trans. Biomed. Eng. Vol. 67, 

no. 9, pp. 2490-2496. (2020) doi: 10.1109/TBME.2019.2963562. 

4.1 Introduction 

Poor vascular perfusion leading to low drug penetration persists as a major problem 

in solid tumor cancer therapeutics1 and is especially prominent in pancreatic 

adenocarcinoma (PDAC). When surgical resection is limited by tumor invasion into 

surrounding major blood vessels, almost all therapeutic options rely upon delivering 

systemic pharmacologic drugs into the tumor. Understanding and improving tumor drug 

transport efficiency therefore will benefit chemotherapy, immunotherapy and 

combinations of any targeted therapies2 in this aggressive disease. The inherent drug-

resistant nature of PDAC stems from two well-studied phenomena: the heterogeneity of 

genetic mutations and desmoplastic tumor microenvironment.3 Therapies targeting cancer-

associated genetic pathways yield mixed results4–6 since the complexity of molecular 

signaling mechanisms could lead to upregulation of compensatory pathways. Meanwhile, 

the dense stroma characteristic of PDAC results in elevated total tissue pressure7 that 

damages tumor vasculature8 and the lymphatic system.9 Active research on the 

multifaceted origin of poor tumor transport has not only improved our understanding on 

the underlying biological mechanisms but has also emphasized the clinical need for a 
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biomarker that could reflect drug transport efficiency, and the resulting therapeutic 

response. The daunting search for such a biomarker faces an intrinsic dilemma of spatial 

size scale mismatch: the micron-scale associated with meaningful genetic and/or biological 

tumor information versus the clinical need to acquire this data on the centimeter-scale 

relevant to whole tumor size.  

Fortunately, recent findings from both ends of the aforementioned spatial scale 

range have reported that tumor stiffness could be a potential tool to address drug transport 

and therapy response. Laklai et al. (2010) provided the first direct evidence that linked 

tumor genotype with desmoplasia, the two constraints of PDAC drug-resistant nature.10 In 

this study, tumor stiffness was obtained by atomic force microscopy and data from both 

clinical and preclinical samples confirmed the potential of elastography to reflect tumor 

biology changes related to cancer progression and aggression. On the mesoscopic scale, 

 

Figure 4.1 Tumor biomechanics and relevant biology information are actively studied at 

different spatial scales: sub-microscopic10, microscopic12 and mesoscopic13. Current 

elastography tools offer either biologically relevant spatial resolution or clinically relevant 

field of view, none exists that could meet both requirements. Stiffness information as a clinical 

application to evaluate drug transport brings most benefit when whole tumor stiffness is 

assessed at inter-capillary distance spatial resolution. 
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Harada et al. (2017) echoed the linear relationship between tissue stiffness and fibrosis 

content by showing ultrasound elastography and pathology data from a single patient.11 

Ultrasound elastography was also used by Wang et al. (2018) to obtain wide-field stiffness 

information, which was linearly correlated with tumor collagen but inversely correlated 

with PDAC tumor drug distribution.14  While these findings underscore the potential use 

of stiffness imaging, current experimental elastography tools15 do not meet the two 

requirements of having biologically meaningful spatial resolution and a clinically relevant 

field of view. Fig. 4.2 illustrates basic elastography tools with atomic force microscopy 

(AFM) and multiphoton microscopy harmonic imaging (MPM) being widely explored to 

characterize very small regions of tissue. Optical coherence elastography (OCE) or 

ultrasound elastography (UE) are non-invasive, however OCE has a small field of view (f 

< 1 mm, up to 5mm with a translation stage) with high spatial resolution (r ≈ 0.01 mm) 

while UE has a higher field of view (f ≈ 10 mm) but limited spatial resolution (r ≈ 1 mm).  

In order to study PDAC tumor stiffness at a clinically relevant size scale with 

biologically meaningful spatial resolution, we developed a novel, cost-effective ex vivo 

elastography (EVE) mapping system. EVE equipped by a translation stage was able to map 

tumor stiffness at 300-micron resolution in pancreatic xenograft tumors with 1-cm 

diameter. This spatial resolution is sufficient to study tumor drug distribution, since 

intratumoral transport primarily relies on diffusion between blood vessels.1 Additionally, 

our previous studies have showed that the spatial scale of relevant variation in tumor solid 

stress is hundreds of microns, matching the known intercapillary distances.16 Stiffness of 

the tumor also appears to be linked to the complexity16 and thickness10 of the collagen 

grown within the desmoplastic tissue. Therefore, EVE provides an adequate spatial 
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resolution and field of view so that elastography information could be assessed globally 

and regionally, compensating for both microscopic and mesoscopic elastography tools 

(Fig. 4.1). In this study, the methodology for whole-tumor stiffness mapping was 

developed and verified with data from two orthotopic PDAC xenograft models.  The 

relationship between stiffness and tumor microenvironment was examined by quantifying 

tumor collagen from pathology images to provide direct visualization of stiffness and 

stroma variations in whole-tumor size. Finally, tumor transport parameters such as patent 

vessels and drug distribution via fluorescence imaging were investigated to determine the 

spatial relationship between stiffness, perfused vasculature and resulting drug penetration. 

 

Figure 4.2 Current experimental techniques for assessing features related to tumor 

stiffness. Common elastography assessment tools and their positions in the field include 

AFM:  atomic force microscopy, MPM: multi-photon microscopy harmonic imaging, 

OCE: optical coherence elastography, UE: ultrasound elastography, MRE: magnetic 

resonance elastography. Ideal elastography imaging tools should be placed in the 

overlap between microscopic resolution region and whole-tissue FOV region. Since no 

current imaging tool could meet these requirements, ex vivo elastography (EVE) 

mapping was developed to study PDAC stiffness at relevant biological size scales, with 

300-micron spatial resolution and a field of view that would cover a whole PDAC 

tumor. 
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4.2 Materials and Methods 

4.2.1 Ex vivo Elastography (EVE) mapping system 

The system consisted of a fiber optic pressure sensor FOP-M260 (FISO, Quebec, 

Canada) coupled with a three-dimensional motorized translation table (Velmex, 

Bloomfield, NY) illustrated in Fig. 4.3A. The x-y dimension (table part# MAXY4009, 

stepping motor part# PK266-03A) was responsible for tracking the spatial coordinates 

across the tumor surface, and the z-dimension (table part# MA4006, stepping motor part# 

PK266-03B) controlled the compression displacements applied to determine strain and 

corresponding pressure values. The pressure sensor operates based on Fabry-Perot 

interferometer technology (Fig.  4.3C). This pressure sensor has been utilized in both 

preclinical and clinical settings.17–19 In this application, the pressure readings were 

converted into electrical signals in the range of 0-5V using the FISO signal conditioning 

module (part# FPI-LS, FISO, Quebec, Canada). The analog was input to LabVIEW via a 

data acquisition device USB-6008 (National Instruments, Austin, TX). Pressure data had a 

resolution of 0.02 kPa and accuracy of 0.13 kPa. The pressure detection range is  40 kPa 

relative to atmospheric pressure. The pressure sensor and the motorized xyz table were 

controlled by LabVIEW and a simplified flowchart on data acquisition is illustrated in Fig. 

4.3E. Mapping grid size was adjustable based on the tumor size. On an average tumor 

surface of 10 x 10 mm, imaging with the 300-μm resolution probe resulted in a grid size of 

35 x 35 points. 
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EVE validation testing was carried out with agar phantoms to ensure the system 

could detect relative changes in pressure readings under tumor tissue measuring condition 

illustrated in Fig. 4.3A. Given that the mouse tumor sample thickness was on average 5 

mm (Lo), 100-μm total deformation yielded a maximum of 2% strain ensuring tissue linear 

elasticity. At least three pressure measurements were required to generate a stress-strain 

 

Figure 4.3 Ex vivo elastography (EVE) system and sample preparation. A) Overall 

system consists of an xyz- motorized table and a commercial fiber optic pressure 

sensor. B) Sample preparation procedure includes a tumor embedded in 10% gelatin. 

Metal pins are inserted to provide markers for image coregistration with pathology 

data. C) Pressure sensor operates based on Fabry-Perot interferometer technology. 

The cavity deformation due to external force is calibrated to give a corresponding 

pressure reading. D) Young’s modulus calibration curve between UE and EVE 

established by phantom measurements at different concentrations and temperatures. 

E) A simplified flow chart illustrates important steps of stiffness measurement, which 

includes tumor surface identification and 3-step compression testing.  
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curve whose slope was used to determine stiffness, therefore, three indentations (L) were 

selected to be 30, 60 and 90 μm. At each location, relative stiffness readings were 

calculated by measuring the slope of the stress-strain curve. For each of 6 varying 

concentrations of agar phantoms (1%, 1.2%, 1.5%, 1.6%, 1.8% and 2% agar), 21 relative 

stiffness measurements from 3 samples were obtained. Results from this test showed that 

EVE was able to detect the linear relationship between increasing agar concentration 

phantoms and increasing stiffness (R2 = 0.98). There was no significant difference in 

phantom measurements obtained with and without the beaker confinement illustrated in 

Fig. 4.3A-B. More importantly, stiffness readings obtained from a flat phantom surface 

(273.0 kPa) and from a 15o inclined surface (272.4 kPa) were consistent. This test 

provided evidence that EVE is sufficient to measure stiffness from samples with a high 

surface irregularity, an inherent characteristic of fresh tissue with high stiffness such as 

solid pancreatic tumors. Tumor surface detection thus was extended and largely 

contributed to the average imaging time of 2 hours per tumor. 

To convert from relative stiffness measurements to absolute Young’s modulus 

values, EVE system was calibrated by a UE system. The UE system consisted of a Vantage 

64 Ultrasound Scanner (Verasonics Inc.) and an L7-4 (Phillips Healthcare) linear 

transducer array. UE data was collected by using a 400-s, 7-kHz push pulse to induce 

shear waves. Young’s modulus calculation for this system is described in Wang et al. under 

“Modulus estimation.”13 A series of gelatin phantoms was fabricated to determine the 

calibration factor between the EVE relative stiffness measurements and absolute Young’s 

modulus in kPa generated by UE. The calibration curve between two systems is illustrated 

in Fig. 4.3D. The feasibility of EVE system to produce correct stiffness maps is verified 
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by measurement data from murine organs such as pancreas and spleen tissue. Validation 

results from this experiment is further discussed in Section IIIA. 

4.2.2 Animal and Tumor Model 

All animal procedures were conducted under the protocol approved by the 

Dartmouth Institutional Animal Care and Use Committee (IACUC). 27 athymic nude mice 

between the age of 6-8 weeks were used in this study. 13 mice were injected with human 

tumor cell line AsPC-1 (ATCC, Cat# CRL-1682) and the other 14 with BxPC-3 (ATCC, 

Cat# CRL-1687). The pancreas was exposed and tumor cells were injected with a 1:1 ratio 

of Matrigel. AsPC-1 and BxPC-3 required 2-4 weeks and 5-7 weeks, respectively, for 

tumors to reach ideal imaging size of 1 cm in diameter. The mice were on purified diet to 

reduce autofluorescence from food consumption. 

4.2.3 Tumor Sample Preparation 

After the tumors reached imaging size, the mice were anesthetized and sacrificed. 

The resected tumor was then embedded in gel. The gel block consisted of 10% gelatin, 1% 

cornstarch and 89% water designed to be just stiff enough to hold the bulk of the tumor. 

The gelatin phantom was sliced in half to provide a flat imaging surface for stiffness 

mapping (Fig. 4.3B). Three metal pins were inserted into the tumor to provide fiducial 

markers20 for image co-registration between the stiffness map and pathology data. A layer 

of PBS was applied on the tumor surface to maintain proper hydration. Stiffness 

measurements from both gelatin and tumor samples confirmed no dehydration problem 

existed.  
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4.2.4 Drug Uptake Quantification via Fluorescence Imaging 

Verteporfin or BPD (USP, Rockville, MD, USA) was dissolved in dimethyl 

sulfoxide at 1 mg/ml then diluted with PBS to obtain a final concentration of 0.1 mg/ml. 

Lectin (Vector Laboratories, Cat#FL-1211) at a concentration of 2 mg/ml was used as 

vascular patency marker. BPD (1 mg/kg) and lectin (2 mg/kg) were injected intravenously 

one-hour and 2-minutes, respectively, before sacrifice. Seven out of 13 AsPC-1 mice and 

7 out of 14 BxPC-3 mice received these injections. After slicing the gel to expose the tumor 

surface, fluorescence imaging was immediately performed on fresh tissue by a flatbed 

scanner (GE Typhoon 700) using a 473 nm excitation source with a 670 nm LP filter. 

Vascular patency was determined by fluorescence imaging of lectin using a PerkinElmer 

Vectra3 slide scanner with a FITC filter. 

4.2.5 Tumor Biological Parameter Identification 

After stiffness mapping, the tumors were fixed in 10% formalin and sectioned at 4-

micron thickness. H&E staining was used to identify tumor tissue while Masson’s 

Trichrome (MT) identified collagen fibers by blue staining. All image data was co-

registered to MT image (Fig. 4.4A) using a rigid transformation in MATLAB. The blue 

collagen map was segmented from the MT image by converting from RGB to HSV color 

space and thresholding for blue pixels (0.5 < hue < 0.7, saturation > 0.5 for BxPC-3 and 

saturation > 0.3 for AsPC-1, value > 0.7). Different saturation cutoffs for each tumor line 

was necessary to make sure segmented maps truly reflect collagen content within the 

tumors. Collagen percentage was obtained by finding the ratio of blue pixels over the total 

tumor tissue area. H&E image was used to identify and exclude non-tumor tissue from 

analysis. Fig. 4.4B showed an example of a tumor sample with pancreas and spleen tissue 
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attached. ROIs for these regions were manually drawn and subtracted out. Regions of 

necrosis or dead tumor cells were also excluded. All pathology data procedures 

aforementioned were confirmed with an animal pathologist. 

4.2.6 Statistical Analysis 

Statistical analysis was done for determining differences between groups with a 

Student’s t-test performed in MATLAB with a two-tailed analysis and  = 0.05. Linear 

regression and exponential fit of data was done in Excel for data sets with these apparent 

trends.  

 

Figure 4.4 Image data and tissue parameter identification process. A) Top row from 

left to right: fresh tumor surface in gel with inserted metal pins, BPD fluorescence, 

stiffness map. Bottom row: Masson’s Trichrome staining, lectin fluorescence, 

segmented collagen map from MT staining. All images are co-registered to MT staining 

data. B) Average stiffness detected from spleen (4.00.3 kPa) and pancreas (2.30.3 

kPa). These regions are excluded from tumor analysis by manual ROI drawn on 

pathology data.  
 



 

  

4.3 Results 

4.3.1 EVE system detects tumor stiffness heterogeneity and differentiates between 

tumor, spleen, and pancreas tissue  

Fig. 4.4 shows that EVE can detect stiffness heterogeneity as well as distinguish 

non-tumor tissue and necrotic regions. It is clearly visible from the MT histology image 

that pancreas tissue (top left) is stained in dark purple, necrotic regions (bottom right) in 

light pink and viable tumor tissue in darker pink. While it is virtually impossible to identify 

tumor from pancreas tissue in the white light images, Young’s modulus (YM) maps 

obtained from EVE can distinguish this difference. Both pancreas and necrotic regions 

were much softer than tumor tissue. Fig. 4.4B illustrates the average YM detected from 

spleen and pancreas tissue, found in 8 samples to be 4.00.3 kPa and 2.30.3 kPa, 

respectively. This data set provided validation results for EVE’s feasibility to produce 

correct stiffness maps as these values agree with previously reported YM of murine organs. 

Yu et al. (2018) showed spleen’s YM of rats to be 3.90.6 kPa while Rice et al. (2017) 

reported mouse pancreas stiffness ranging from 1 to 4 kPa as PDAC progressed in 

genetically engineered mouse models.21,22 Even though these tissues are excluded from 

tumor analysis in this study, the measurements help to confirm the feasibility of using EVE 

in tumor stiffness mapping.  

4.3.2 EVE system has the resolution necessary to study extracellular matrix (ECM) 

heterogeneity in PDAC tumors as compared to ultrasound elastography 

A comparison between UE and EVE is carried out with the result displayed in Fig. 

4.5. Ultrasound B mode and elastography map were constructed using an established 

technique14. After that, EVE was used to measure tumor stiffness and a side-by-side 
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comparison is illustrated in Fig. 4.5A. Generally, both UE and EVE agree on the level of 

stiffness heterogeneity in the tumor as well as the location of high stiffness. However, EVE, 

with the ability to resolve better spatial resolution, reveals a more refined stiffness map that 

displays similar patterns to the collagen profile in Fig. 4.5B. Expanded regions in Fig. 4.5C 

again show that stiffness information at a sufficient spatial resolution can reflect the 

collagen distribution within tumors.  

 

Figure 4.5 Comparison between UE and EVE stiffness map. A) Elastography 

imaging data from both systems are displayed to highlight similar pattern of stiffness 

heterogeneity. B) Stiffness map obtained from EVE system with better spatial 

resolution allows for direct comparison between stiffness and collagen pattern in the 

tumor. C) Expanded images of different ROIs highlight the correlation between 

stiffness and collagen percentage in PDAC tumors 
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4.3.3 Collagen content in PDAC tumors is correlated with reported Young’s 

modulus values, both of which display extreme heterogeneity  

 

Figure 4.6 Stiffness and collagen content in PDAC tumors are highly correlated both 

globally and regionally. A) Visualization of stiffness, collagen and the overlay between two 

parameters show a good correlation in both AsPC-1 and BxPC-3 tumor lines. B) AsPC-1 

tumors contain 9.62.7 percent collagen and average stiffness of 3211 kPa. As for BxPC-3, 

collagen percentage is averaged at 133 percent and stiffness measured at 4624 kPa. Both 

of these quantities are statistically significant between AsPC-1 and BxPC-3 tumors. C) 

Regional analysis to examine high stiffness and low stiffness regions demonstrates a linear 

correlation between Young’s modulus and collagen profile with R2 = 0.59. For each tumor, 

two high-stiffness and two low-stiffness regions were chosen (AsPC-1: n = 13, ROIs = 52; 

BxPC-3: n = 14, ROIs = 56). 
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Tumor analysis, both globally and regionally, shows a strong correlation between 

stiffness and tumor collagen. Fig. 4.6A visually represents the high heterogeneity observed 

in both stiffness and collagen maps for AsPC-1 and BxPC-3 tumors. The overlay of 

stiffness and collagen information illustrates the agreement of higher stiffness regions with 

denser collagen regions. Fig. 4.6B reports the global average collagen content of AsPC-1 

(n = 13) and BxPC-3 (n = 14) tumors to be 9.62.7 percent and 133 percent, respectively. 

Average AsPC-1 tumor stiffness is also lower than BxPC-3 values, 3211 kPa and 4624 

kPa. Both of these measurements are statistically significant. Regional analysis to 

investigate both lower stiffness and higher stiffness regions in each tumor shows a linear 

relationship between Young’s modulus values and collagen percentage in tumors, as 

showed in Fig. 4.6C with R2 = 0.59. Regional analysis also suggests that collagen content 

in the tumors could reach up to 25% and tumor stiffness in between 5 and 150 kPa.  

4.3.4 The inverse relationship between stiffness and drug distribution in PDAC 

tumors suggests the potential of elastography as a surrogate for tumor drug uptake 

Whole tumor drug distribution and Young’s modulus map are displayed in Fig. 

4.7A to demonstrate the potential of stiffness as a surrogate for drug uptake globally in 

PDAC tumors. Fig. 4.7B provides regional information to highlight the inverse relationship 

between drug uptake and tumor stiffness. Less drug is accumulated in ROI 1 which is stiffer 

and contains more collagen while more uptake is observed in ROI 2 which is softer and 

has less collagen. In addition, more vessels are recorded in ROI 2 as compared to ROI 1. 

In Fig. 4.7C-D, the inverse relationship of stiffness to both drug uptake and patent vessels 

is highlighted in both tumor lines. Young’s modulus and BPD fluorescence intensity data 

is a linear fit for both AsPC-1 and BxPC-3 with R2 = 0.66 and R2 = 0.59. More drug is 
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accumulated in AsPC-1 tumors based on the average fluorescence intensity in Fig. 4.7C. 

 

Figure 4.7 PDAC tumor stiffness is inversely correlated with drug uptake and patent vessel 

data. A) Whole-tumor visualization of BPD fluorescence distribution and stiffness 

heterogeneity obtained from EVE. B) Close-up regions of low and high drug uptake reveal the 

inverse relationship with stiffness and collagen distribution. C) Tumor YM is inversely 

correlated to BPD distribution in AsPC-1 and BxPC-3, with higher uptake in AsPC-1 tumors. 

D) Tumor YM limits patent vessels which explains the limited drug penetration. For each tumor, 

two high-stiffness and two low-stiffness regions were chosen. There were 3 ROIs omitted since 

the vessel density percentage was essentially zero, and those ROIs had stiffness values greater 

than 100 kPa. (AsPC-1: n = 7, ROIs = 27; BxPC-3: n = 7, ROIs = 26). 
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Patent vessel density drastically reduces as stiffness increases for both tumor lines as 

illustrated in Fig. 4.7D. 

4.4 Discussion 

This study demonstrates that ex vivo stiffness mapping at 300-micron resolution 

could accurately represent the entire tumor-wide stiffness heterogeneity in both AsPC-1 

and BxPC-3 xenograft models. The range of variation in stiffness values is visualized by 

EVE for the first time, to match the same level of variation of collagen network within a 

tumor (Fig. 4.5B-C). In our previous work, Nieskoski et al. (2017) generated a prediction 

of total tissue pressure maps with profound heterogeneity due to the strong correlation 

between point-probed solid stress measurements and surrounding collagen area fraction in 

PDAC tumors.16 This work has confirmed that tumor stiffness is also strongly correlated 

with stroma variation. Understanding PDAC tumor physical and biological connection is 

crucial because the practicality of stiffness imaging surpasses other tissue biomechanics 

quantities due to its non-invasive potential. Meanwhile, this finding emphasizes the need 

for resolution improvement of wide-field elastography systems such as UE and MRE to be 

at least on the resolution scale of 100’s of microns to truly reflect biological variations in 

the tumor microenvironment. Furthermore, if imaging of stiffness is not achieved on this 

small spatial resolution scales, it is conceivable that highly inaccurate stiffness values may 

be obtained by partial volume averaging of the true values.   

When analyzed region by region, the linear relationship between stiffness and 

collagen content (Fig. 4.6C) not only corroborates similar findings measured by UE,14 but 

also resonates with clinical data from Harada et al. (2017) in which a patient’s pancreatic 

stiffness was correlated with fibrosis percentage (R2 = 0.58).23 Another clinical study,24 in 
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which advanced pancreatic cancer patients were treated with nab-paclitaxel to target tumor 

stroma, came to the conclusion that elastography should be further investigated as data 

suggested the link between tumor stiffness and stroma modification. The study pointed out 

that even though the number of activated cancer-associated fibroblasts (CAF) did not 

change for treated and untreated cohorts, overall tumor stiffness measured by UE decreased 

for those with treatment responses. This finding is in agreement with the results presented 

by Laklai et al. (2010) that tumor stiffening could be a better indicator of stroma 

modification than bulk collagen abundance or total collagen proteins, especially when 

dense fibrosis is a product of both physical and genetic changes.10 These findings 

underscore the potential use of elastography in explaining controversial results25,26 of anti-

stromal therapies. 

Despite the complexity and ongoing controversy underlying PDAC ECM 

remodeling, it is important to recognize that tumor stiffening is a universal physical 

phenotype to reflect PDAC transformation, with high potential for prognostic imaging or 

use in assessment of response or lack of response. However, appreciation of the value of 

the heterogeneity and spatial resolution can only motivate the need for further 

understanding of how this affects therapeutic delivery and response. Data from Fig. 4.7 

showcases the possibility of exploiting stiffness information as a surrogate for drug 

penetration. Fig. 4.7A illustrates drug distribution and stiffness map from a global view 

whereas Fig. 4.7B displays two samples in which stiffer, collagen-denser region results in 

lower drug uptake and limited patent vessel area. Fig. 4.7C demonstrates the linear 

relationship between drug uptake and stiffness measurements in both AsPC-1 and BxPC-

3. AsPC-1 tumors have higher BPD fluorescence intensity which aligns with information 
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showed in Fig. 4.7B that on average AsPC-1 tumors are softer. The exponential fit between 

patent vessel area and regional stiffness corroborates the idea that growth-induced solid 

stress compresses blood vessels and CAF-depleted tumors had larger vessel diameters.27 

Considering it is widely accepted that functional blood vessels play a vital role in solid 

tumor interstitial transport, elastography imaging with an attempt to study the effect of 

tumor biology on drug transport should achieve a spatial resolution matching the capillary 

spacing, or hundreds of microns. Only then, tumor mechanics information will truly reflect 

biological changes with respect to transport efficiency. 

This study has three main limitations. With pancreatic xenograft models implanting 

AsPC-1 and BxPC-3, the immunodeficient mice may not fully recapitulate the immune 

response promised by genetically-engineered mouse models.28 For the purpose of 

demonstrating the potential of high-resolution elastography information in studying PDAC 

tumor microenvironment, current orthotopic xenograft models have proven to be adequate. 

It is necessary to acknowledge the mismatch between fresh and fixed tissue geometries, 

which compromises the accuracy of the image co-registration process. Inserting metal pins 

significantly facilitate this process of providing fiducial markers, to allow alignment and 

reasonable spatial match for this study. Furthermore, improved image co-registration 

process could allow for analysis of whole-tumor with ideal spatial resolution of hundreds 

of microns. Another limitation comes from the edge effect of slicing the tumor embedded 

in gel and tissue stress relaxation, both of which result in tissue deformation. The stiffness 

values obtained from the tumor boundary would take into account the soft gel beneath 

therefore reported YM would be lower than actual values at these locations. However, 
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tumor stiffness heterogeneity across the tumor area is an apparent observation despite 

peritumoral errors.  

4.5 Conclusion 

This study has demonstrated that with higher quality of elastographic imaging, 

stiffness information and its heterogeneity provide more spatial detail into how tumor 

mechanics could reflect changes in tumor biology and phenotypes. However, the fact that 

the spatial resolution required to allow biologically meaningful and accurate imaging is 

higher than what can be achieved with any diagnostic method suggests that further 

improvements in imaging tools must be developed before this can become a routine tool.  

The images in this work provide the core rationale for developing diagnostic imaging 

systems that might capture this level of spatial information in a non-invasive manner.  

Additionally, this existing system can be used as an ex vivo assay of response to anti-

stromal therapies or acute invasive treatments such as irreversible electroporation29 or 

photodynamic therapy.30
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Chapter 5: Imaging Tumor Collagen from Fresh Tissue 

This chapter is derived from: 

P. Vincent, et al., “Visualization and quantification of pancreatic tumor stroma in fresh 

tissue via ultraviolet surface excitation.” J Biomed Opt. 2021 Jan;26(1):016002. doi: 

10.1117/1.JBO.26.1.016002 

5.1 Introduction 

The microenvironment of pancreatic adenocarcinoma (PDAC) is well recognized 

as a highly complex cellular-molecular-stromal milieu that hinders therapeutic response.1,2 

The hyperdense desmoplastic nature of PDAC has been associated with drug resistant3 

cancer progression,4 prompting a major direction of targeted therapies focusing on stromal 

depletion.5 However, attempts to alleviate the effects of dense stroma have yielded mixed 

results,6,7 and it may be that systemic molecular therapies may not be the ideal way to deal 

with the type of desmoplasia in PDAC. While major mechanistic efforts have elucidated 

the pathobiological relationship of pancreatic stellate cells with other tumor 

microenvironment components,8,9 recent findings have called for more attention towards 

the spatial orientation of particular biomarkers such as immune cells10 and fibroblasts.11 

The study of these components and contributors to the desmoplasia is challenging to 

examine because of how dynamic the microenvironment is and how hard it is to examine 

molecular signals and morphology in fresh tissues. In this study, a methodology to image 

and quantify stroma and some molecular signals in fresh PDAC is examined. 

Existing approaches to retrieve quantitative stromal information include traditional 

histology, immunofluorescence staining,12 and optical imaging methods such as second 

harmonic13 or birefringence imaging.14 These techniques are subject to extensive sample 
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preparation and/or limited specimen size, which inhibits the capability of capturing whole 

tissue heterogeneity. Fortunately, advancements in fresh tissue optical imaging have shown 

how it is possible to image intact whole specimens while mapping at the microscopic level. 

Microscopy with ultraviolet surface excitation (MUSE) developed by Fereidouni et al 

exploits UV excitation at wavelengths shorter than 300 nm to provide image contrast when 

imaging bulk tissues with just thin slice excitation at the surface.15 In MUSE, exogenous 

stains excited at 280-nm illumination are applied to highlight different tissue components 

as well as to overcome intrinsic autofluorescence, all of which utilizes a very simple and 

cost-effective optical design. While it was reported that stromal components have not yet 

been well-studied using this imaging technique,15 its potential capability of imaging stroma 

directly from fresh tissue provides an ideal tool for studying the tumor microenvironment 

heterogeneity, and changes to this from response to targeted therapies.  

Therefore, this study developed the capability to use UV-fluorescence imaging in 

stromal imaging from fresh tissue of PDAC tumors, which yields strong collagen signals.  

The work examined BxPC-3, a human-derived tumor cell line orthotopically implanted in 

xenograft mouse models for analysis of the stromal network of PDAC. Previous studies 

have confirmed the micro-heterogeneity of collagen in this tumor type, and that the 

collagen density is strongly correlated to the tumor biomechanical stiffness and inversely 

with vascular perfusion.16,17 The current study examined if equivalent collagen information 

could also be visualized and quantified directly from fresh tissue imaging as compared to 

traditional pathology stained fixed tissues. Furthermore, assessment of viable tumor cells 

and necrotic areas was examined in the same setting from UV-fluorescence signal of 

Hoechst staining. If successful, this technique could provide a fast assay platform for in 
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situ investigation of therapeutic effects from interventional targeted therapies in a way that 

does not require pathology processing and post imaging registration.  One of our primary 

goals was to use this tool as an assay of PDAC reaction to photodynamic therapy18,19 to 

examine the subtle changes that can occur with sub-lethal photodynamic therapy, 

sometimes referred to as “photodynamic priming” for adjuvant therapies.20 

5.2 Materials and Methods 

 

Figurer 5.1 UV-fluorescence imaging system setup. A) A schematic of the imaging system 

with camera tube lens and either 7.5X or 10X objective lens. Illumination sources were 2 UV-

LEDs mounted symmetrically. B) The imaging field of view and spatial resolution test are 

shown.  C) The illumination spot size generated by the UV-LEDs is shown with irradiance 10 

mW/mm2. D) Emission spectra of UV-excited staining dyes when illuminated at 275-nm 

covered the detection range of the RGB camera. 
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5.2.1 Infinity-corrected Imaging Setup 

The system utilized the simplicity of infinity-corrected optics and the versatility of 

a commercial RGB camera (Fig. 5.1A). Fluorescence signals were focused by a long 

working distance objective (Mitutoyo, Kawasaki, Japan) onto a 200-mm tube lens (#TTL-

200A, Thorlabs, USA) which were captured by a commercial Electro-Optical System 

(EOS) color camera (EOS 60D, Canon, Japan). Camera settings were initialized by the 

native EOS Utility, including exposure time, ISO levels and image output format. The 

objective was able to fill up the Advanced Photo System type-C (APS-C) sensor size of 

the camera, given a field of view of approximately 1.94 x 2.93 mm. The imaging system 

was able to resolve Group 7 Element 6 on the USAF 1951 resolution target. The modulation 

transfer function (MTF) was computed, and resolution was found to be 0.5 m at 10% 

contrast (Fig. 5.1B). Raw image data was obtained by LabVIEW software readout and 

control. 

5.2.2 Ultraviolet Illumination Source 

Open-faced, dark-field illumination was exploited using two 275nm UV-LEDs 

(#M275L4, Thorlabs, USA) mounted symmetrically to provide a more uniform light 

distribution. The LED emission was collimated by a 20-mm fused silica ball lens to provide 

an irradiance of 10 mW/mm2, covering an area of approximately 13  16 mm (Fig. 5.1C). 

The LED drivers (#LEDD1B, Thorlabs, USA) provided a current of 700mA to each LED 

as well as a trigger signal for hardware synchronization. The LEDs functioned in trigger 

mode to minimize photobleaching and ensure temperature control. The short 50-s LED 

rise time as compared to 50-ms exposure time in addition to a couple seconds of moving 
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the translational table to a new spatial location provided adequate “off” time for the LEDs 

to avoid heading and any significant spectral changes. 

5.2.3 Animal Models and Tumor Sample Preparation 

All animal procedures were conducted under the protocol approved by the 

Dartmouth Institutional Animal Care and Use Committee (IACUC). A total of 5 athymic 

nude mice between the age of 6-8 weeks were used in this study. They were injected with 

human tumor cell line BxPC-3 (ATCC, Cat# CRL-1687). The pancreas was exposed, and 

tumor cells were injected with a 1:1 ratio of Matrigel. BxPC-3 required 5-7 weeks for 

tumors to reach ideal imaging size of 1cm in diameter. The mice were on purified diet to 

reduce autofluorescence from chlorophyll-based food consumption. After the tumors 

reached imaging size, the mice were anesthetized and sacrificed. Dextran Texas Red 

(Thermo Fisher Scientific, Cat# D1864) was intravenously injected 1-hour before sacrifice 

to demonstrate the capability of perfusion imaging using the same imaging setup. Tumors 

were resected, embedded in 2.5% agar and sliced in half. A layer of PBS was applied on 

the tumor surface to maintain proper hydration.  

5.2.4 Photodynamic Treatment 

Two out of five mice were injected with 0.5 mg/kg Visudyne photosensitizer (one 

hour before Photodynamic therapy (PDT) treatment with 690-nm laser at a dose of 75 J/cm2 

and irradiance of 100 mW/cm2. The light was given by a fiber optic cable at the exposed 

tumor site. The mice were sacrificed two days after the treatment.   

5.2.5 Tumor Staining 

Conventional pathological fluorophores such as Hoechst 33342, Eosin and 

Rhodamine B (Sigma) were used as exogeneous stains on fresh and fixed tissue samples. 
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Theses fluorophores could be excited by a deep UV illumination to highlight tissue 

 

Figure 5.2 Schematic of primary image processing steps. A) At each location, an image stack 

was acquired by moving tissue samples on a motorized translation stage. High-pass filtering 

was applied to reduce out of focus information. Depth of field correction was then applied. 

Scale bar = 100 m. B) Nuclei and collagen were identified by color segmentation in HSV 

space. Fiber analysis was done on segmented collagen to yield information such as fiber 

length, thickness, orientation and crosslinking profile. UV-fluorescence images were also 

color-map transferred to mimic the color palette of Masson’s Trichrome staining (blue 

collagen, dark purple nuclei and light pink cytoplasm). The color remapping process was 

executed in L*a*b space, utilizing the mean and standard deviation of each channel to create 

a color scaling factor. C) Image stitching was performed with 10% overlap to create a whole-

tumor view. Rigid image co-registration was performed on the whole-tumor size UV-fluor 

images, histology images and brightfield photos of freshly resected tumors to facilitate 

comparison across imaging modalities. Scale bar = 2 mm. 



63 

morphology (Fig. 5.1D). In this study, a combination of Hoechst 33342 (0.5 mg/mL in 

PBS), Eosin (1 mg/mL in PBS) and Rhodamine (0.2 mg/mL in PBS) was adequate for 

PDAC stromal imaging. The tissue sample was submerged in this dye combination for 30 

seconds then washed off by PBS for a minute.  

5.2.6 Image Acquisition, Depth of Field Correction and Stitching 

Image acquisition was automated by LabVIEW to allow for synchronization of 

illumination sources, camera shutter and a motorized 3-dimensional stage. At each x-y 

coordinate, a series of images taken at seven 6.3-m vertical increments provided an image 

stack for DOF correction (Fig. 5.2A). While 6.3-m step size was the limit of our current 

vertical stage, smaller vertical step-size and more acquisitions for each location would 

result in higher image quality. Due to the high stiffness nature of PDAC tumors, tissue 

surface irregularity became a significant issue. Therefore, optical sectioning at multiple z-

locations was necessary to maximize the number of in-focus pixels. Then, the DOF 

correction algorithm21 written by Aguet et al was executed in MATLAB. Image stitching 

was implemented by Microsoft Image Composite Editor software with 10% overlap to 

produce a whole tissue sample field of view (Fig. 5.2C). After imaging, the tumors were 

formalin fixed and prepared for staining with Masson’s Trichrome to visualize collagen 

and Hematoxylin and Eosin to verify necrosis areas, which was essential for tumors that 

were treated with photodynamic therapy to evaluate treatment effects. Both the UV-

fluorescence data and the Masson’s Trichrome data acquired for collagen analysis were 

imaged with a 10x magnification lens. 

5.2.7 Tumor Parameter Identification 
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 Structural segmentation 

Color segmentation in HSV space was used to distinguish nuclei and collagen (Fig. 

5.2B). Image data was histogram stretched, then segmented in MATLAB. Hue (h), 

saturation (s) and value (v) cutoffs for purple nuclei were (0.449<h<0.770, 0<s<1, 

0.656<v<1) and for green collagen (h>0.750 or h<0.464, 0<s<1, 0.341<v<1). Vacuoles 

which appear as round black holes in UV-fluorescence data were also segmented (h>0.773 

or h<0.113, 0.475<s<1, 0< v <0.477). The distinctive color cutoffs produced no overlays 

between structures. Any segmented regions which contained fewer than 200 pixels were 

considered part of the cytoplasm since their sizes were considerably smaller than a nucleus, 

a collagen fiber or a vacuole. These criteria for classifying structures in the HSV space 

were exclusively selected for pancreatic tumor samples, thus further modifications should 

be considered for other tissue structures. 

 Collagen analysis 

Collagen analysis was performed in Matlab. The binary mask of segmented 

collagen in the previous step was refined prior to collagen analysis. In cases in which nuclei 

were positioned on top of a collagen, their superficial position severely interfered with 

skeletonization and crosslinking analysis, therefore they needed to be removed initially by 

using function bwareaopen.m to perform hole removal on the collagen binary mask. After 

that, collagen thickness map was computed using the function bwdist.m, which calculates 

the distance of all positive pixels to their nearest background pixel (Fig. 5.3A). 

Thresholding was applied to the UV-fluor collagen thickness map for two purposes: 1) to 

eliminate small collagen areas that were the cross-sections of long strands due to the 

orientation of tissue cuts and 2) to reduce the blur effect due to out of focus pixels that 
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could inaccurately clump the nearby strands together. After these refinements, 

 

Figure 5.3 Demonstration of collagen segmentation and quantification methods for UV-

fluor data with validation testing on Trichrome data, summarized in 3 main steps. A)  Step 1 

generated collagen thickness maps using the matlab function bwdist.m performed on 

segmented collagen in HSV space. B) Step 2 resulted in skeletonized maps of collagen in 

combination with thickness maps. Necessary refinements on UV-fluor data were highlighted. 

A thresholding value was applied on the UV-fluor collagen thickness map to eliminate 

inaccurate connections of clusters and small cross-sections of collagen due to tissue cut 

orientation. Skeletonization using bwskel.m and cluster breakdown using bwconncomp.m 

yielded individual collagen strands. C) Fiber analysis in Step 3 was performed on each 

collagen strand to measure the length, thickness and orientation. Statistical analysis to 

compare fiber analysis between UV-fluor and Trichrome data was conducted to validate the 

feasibility of using UV-fluor imaging data to obtain quantified collagen information. 
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skeletonization was performed on the collagen thickness map using bwskel.m. Intersections 

of collagen strands were identified using ‘branchpoints’ operation with bwmorph.m, and 

these intersection points were used to break down the collagen network into separate 

individual strands (Fig. 5.3B). For each collagen strand, average fiber thickness was 

determined by twice the average distances of all pixels of the skeletonized centerline to 

their nearest background pixel. Calling regionprops.m with relevant measurement 

properties provided analysis for fiber count, length and orientation (Fig. 5.3C). The whole 

algorithm was applied to Masson’s Trichrome (MT) data as validation testing to ensure 

accurate fiber analysis on UV-fluorescence (UV-fluor) data. Manual segmentation and 

quantification of fibers were performed on a panel of 10 test images for both UV-fluor and 

MT image sets, which were chosen to cover a wide range of collagen fiber lengths, 

thicknesses and orientations. After the algorithm was validated, auto-segmentation was 

performed with manual checking of key intermediate results such as the collagen thickness 

maps and skeletonized maps, for all ROIs reported in the Results section. 

5.2.8 Color Remapping 

After structural segmentation described in the previous the step, color remapping 

was implemented to adjust from UV-fluorescence color palette to a more conventional 

color scheme of Masson’s Trichrome staining. The color transfer process described in 

Reinhard et al22 was executed in Matlab. Image data was converted to L*a*b space (L for 

lightness, ‘a’ for red to green color values and ‘b’ for yellow to blue color values). For each 

structure (collagen, nuclei or cytoplasm), the mean and the standard deviation of each color 

channel were computed to create a scaling factor between the UV-fluorescence and the MT 

data sets (Fig. 5.2B). Output images resembled the color scheme from MT staining.  
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5.2.9 Statistical Analysis 

A two-sample student’s t-test was employed in Matlab without the assumption of 

equal variances between the tested samples to determine the difference in means using a 

two-tailed analysis and  = 0.05. 

5.3 Results 

5.3.1 Stromal Content of Fresh PDAC Tumors can be Visualized Microscopically 

and Macroscopically Using UV-fluorescence Imaging 

Fig. 5.4A illustrates the contrast enhancement of illuminating samples at below 300 

nm. For the same tissue specimen, 275-nm excitation reveals morphological features that 

are undetectable at 340-nm excitation. Collagen strands in yellow-green color at both 

peritumoral and intratumoral regions are observable, suggesting that UV-fluorescence 

imaging is capable of detecting thin collagen strands with diameters down to 5 m. Since 

image acquisition required optical sectioning of the specimens at different depth, the data 

after being depth of field corrected also yielded semi-3D morphology (Fig. 5.4B). 

Structural components such as blood vessels, collagen crosslinking and collagen bundling 

can also be visualized with this imaging technique. Due to rapid imaging, a translation 

stage coupled with the imaging system could produce whole-specimen images with 

microscopic resolution. The stitching algorithm provides macroscopic image data, from 

which regions of necrosis could be easily identified as observed in Fig. 5.4C. The light 

yellow/orange regions in the UV-fluorescence images are well-aligned with regions of 

necrosis inferred from H&E staining. A closed-up look at the images revealed collagen 

content in the tumors, as illustrated in Fig. 5.4D. Side-by-side comparison of UV-

fluorescence data and corresponding Masson’s Trichrome staining from the same 
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specimens shows great agreement of where tumor collagen is located and the complexity 

of collagen network. 

 

Figure 5.4 UV-fluorescence imaging is capable of capturing stromal content in PDAC 

tumors. A) Deep UV-illumination below 300 nm provides excellent image contrast, revealing 

morphology at the microscopic level. Collagen content from peritumoral and intratumoral 

regions are illustrated, scale bar = 100 m. B) Optical sectioning and depth of field correction 

provides semi-3D depth information, which highlights 3D structures such as vessel, collagen 

crosslinking and bundling. C) Rapid imaging allows tumor visualization at macroscopic level, 

scale bar = 2 mm. D) Demonstration of strong yellow-green collagen signal was obtained from 

an RGB camera of fresh tissue imaging, and this is compared to Masson’s Trichrome staining 

data. 
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5.3.2 UV-fluorescence Image Data with a 3-dye Staining Technique can Mimic 

Masson’s Trichrome Staining 

Image data acquired by UV-fluorescence imaging shows that collagen network and 

viable tumor cells are distinct from each other, due to different emission peaks of Hoechst 

33342 and Eosin.  Fig. 5.5A highlights the feasibility of converting UV-fluorescence data 

into Masson’s Trichrome equivalent color scheme, i.e. collagen as blue, nuclei as dark 

purple and cytoplasm as light pink. In Fig. 5.5B, color remapping process was described 

for each main structure, i.e. collagen and nuclei. The “L” channels for those structures were 

 

Figure 5.5 Color remapping of UV-fluorescence images allows visualization using Masson’s 

Trichrome staining color scheme. A) UV fluorescence image after color remapping showed 

collagen in blue and nuclei in dark purple, similar to Masson’s Trichrome staining results, 

scale bar = 30 m. B) Illustration of color remapping in L*a*b color space, based on structural 

segmentation. Corresponding histograms of reference, input and output images show that the 

distribution of color intensities and hues was preserved.  
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inverted to reflect the color intensity inversion, so the bright purple nuclei in the original 

UV-fluorescence data appear dark just as depicted in MT staining. As for collagen, all of 

the channels were flipped to reflect not just the inversion in intensity, but also the hues to 

truly reflect the color transition in MT staining. The histograms of each channel (L, a and 

b) in the L*a*b color space show that the distribution of intensity and hue information was 

preserved after the remapping process. 

5.3.3 Classification of Stroma in PDAC Tumors is Feasible in Fresh Tissue via UV-

fluorescence Imaging 

Heterogeneity of collagen formation in PDAC tumors was captured and classified 

in Fig. 5.6. Collagen fiber visualization general agreement between UV-fluorescence and 

Trichrome data was visualized in Fig. 5.6A. Exact matching between two data sets was not 

expected due to tissue deformation and tissue changes due to pathology staining process to 

create trichrome-stained samples. However, direct comparison of the same tissue regions 

confirms the capability of UV-fluorescence imaging to visualize collagen in ex vivo 

samples. Quantification of the fluorescence signals also shows a strong agreement with 

results obtained from trichrome data. Fig. 5.6B illustrates the outputs of the fiber strand 

analysis based on fiber thickness maps for both data sets. 

The same algorithm was showed to work well for both. The distribution of collagen 

fibers in terms of length, thickness and orientation was displayed in Fig. 5.6C for both data 

sets to validate the feasibility of extracting quantitative information from UV-fluorescence 

imaging on fresh tissues. Results from statistical analysis in Fig. 5.6D shows that there was 

not a significant difference in means between the two data sets in terms of collagen content 

percentage, collagen fiber length and orientation. 20% difference in means (UV =18.8% 
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vs. MT = 15.6%) reported from comparing collagen content data was largely due to the 

differences in fiber thickness analysis (UV = 15.9 m vs. MT = 7.9 m), which could be 

 

Figure 5.6 Quantification of collagen content in PDAC tumors. A) Different types of collagen 

observed in both Trichrome and UV-fluorescence data sets. B) Quantification of collagen 

fibers. C) Distribution of fiber length, fiber thickness and fiber orientation obtained from both 

data sets D) Statistical analysis was performed to show that there is no significant difference 

in means in terms of tumor collagen content, fiber length and fiber orientation between UV-

fluorescence and Trichrome data. However, there was a statistical difference between two data 

sets for fiber thickness. Mean and standard deviation of UV vs. Trichrome data, respectively, 

for each category are 18.8  4.2 vs. 15.6  8.1 (collagen content %), 15.9  7.8 vs. 7.9  7.3 

(collagen thickness in m), 48.5  36 vs. 49.3  47 (collagen fiber length in m), 2.53  51 vs. 

-0.85  51.3 (collagen fiber orientation in degrees). Data was analyzed for 5 tumors, necrosis 

areas were excluded, 50 ROIs were randomly selected with ROI size of 0.6 x 0.4 mm each, total 

collagen strands from UV data = 6442, from Trichrome data = 6606. 
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largely attributed to the difficulty of accurate segmentation and separation of fibers from 

imaging bulk tissue. Another reason for thickness inconsistency was the thresholding 

applied on the collagen thickness map mentioned in the Methods section. Better image 

quality with minimized out-of-focus pixels would significantly minimize the inaccuracy 

from thresholding and close the gap of fiber thickness reported by these two imaging 

modalities.  Total count of collagen strands from both data sets is less than 3% different 

(6442 strands from UV data and 6606 strands from Trichrome data). Fiber length on 

average is accurately reported with a discrepancy of less than 2% (UV = 48.5 m vs. MT 

= 49.3 m) while orientation shows a difference of 3.4 degrees on average. 

5.3.4 UV-fluorescence Imaging could be Utilized as an Assay Platform to Evaluate 

the Effects of Photodynamic Priming on Collagen Modulation 

Fig. 7 showcases additional features of UV-fluorescence imaging in fresh tissues 

that can be utilized in targeted therapy response assessments. Fig. 7A illustrates the 

capability of imaging perfusion using the same simple imaging optics. Emission from 

Texas Red (TR) excited by 275-nm illumination was captured by the red channel on the 

RGB camera. Dextran-perfused samples could then be stained to obtain structural 

information without interference from TR signals. In Fig. 7B, yellow outline was drawn to 

identify the tissue imaging surface while red outline locates the regions of necrosis due to 

photodynamic priming effect. This illustration highlights the capability of visualizing 

necrosis areas in fresh tissues, which normally is hard to delineate in brightfield images 

therefore in need of pathological confirmation. Furthermore, the capability of imaging 

collagen in situ demonstrated in this study could be utilized to assess the collagen 

modulation effect as an outcome of acute photodynamic priming,23 as reported in Obaid et 
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al. Preliminary data acquired by UV-fluorescence imaging has showed possible reduction 

in desmoplasia for PDAC treated tumors in Fig. 5.7C, which suggests that collagen content 

was reduced by 13%.  

 

Figure 5.7 UV-fluorescence imaging as a fresh tissue assay platform to evaluate 

photodynamic priming responses. A) Perfusion imaging of dextran tagged with Texas Red in 

kidney samples. UV-excited Texas Red shows perfused dextran in kidney samples (middle) as 

compared to endogenous fluorescence without any dextran injection (left). Dextran-perfused 

tissues could then undergo pathological staining (right) to obtain structural information, scale 

bar = 500 m. B) Tissue imaging surface was outline in yellow. Necrosis outlined in red is 

hard to distinguish in brightfield image (left), but observable under UV-fluorescence imaging 

(middle) which is confirmed by trichome staining (right), scale bar = 1 mm. C) A comparison 

of collagen content in control and PDP treated tumors. Collagen modulation effect was 

observed, in which the PDP treated tumors show a 13% reduction in collagen content (n = 2 

animals per group, control ROIs = 23, treated ROIs = 19), scale bar = 100 m. 
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5.4 Discussion 

This study was designed to test the feasibility of using UV-fluorescence imaging to 

extract quantitative morphological information from fresh PDAC tumors in xenograft 

models, at both microscopic and macroscopic levels. The combination of PDAC tumor’s 

desmoplastic nature, collagen-eosin fluorescence enhancement, and superficial optical 

sectioning of deep UV illumination have made stromal imaging in fresh tissue feasible. 

Results from Fig. 5.4 and Fig. 5.6 show the high fidelity of imaging PDAC stroma using 

this technique, with quantitative information comparable to Masson’s Trichrome staining 

data. Collagen fibers were found to be in the range of 5-30 um thickness, with the majority 

of lengths to be under 50 um and organized in a chaotic orientation. This is the first time 

that PDAC tumor stroma was visualized and quantified directly from fresh tissues under 

UV excitation light. Microscopy with UV surface excitation has been used on a variety of 

tissues and organs to demonstrate its capability of replacing H&E staining,24,25 however, 

stromal signals have not been a major focus. PDAC tumors have inherent desmoplasia, 

often consisting of thickened, heavily cross-linked collagen fibers. This abnormally high 

content of stroma and its direct, well-established relationship to progression and drug 

transport resistance makes this study particularly useful to assess the responsiveness of 

PDAC tumors to experimental therapies. Image data to showcase fresh collagen imaging 

from BxPC-3 tumors in this study suggests that future directions to study other pancreatic 

tumor types would be beneficial. It has been observed from other pancreatic tumor studies 

that the collagen fiber shape varies with different tumor types. One of our previous studies 

showed that more pronounced stiffness heterogeneity was linked to tumors with thicker 

collagen strands, which inversely affects drug perfusion17. 



75 

Studies since the 1960s have observed the enhancement of collagen fluorescence especially 

when introduced to Eosin staining,26 and there are many speculations on the mechanism of 

why collagen signals are enhanced by Eosin.  Despite the lack of a clear mechanism, the 

fact that Eosin is excited by deep UV and produces strong emission has been part of the 

realization that imaging collagen in fresh tissue would be possible without fixation. Our 

empirical results show that while Rhodamine helped stain the cytoplasm, Eosin enhanced 

the collagen fluorescence in PDAC tumors. This approach provides a very flexible and 

cost-effective tool for thin section imaging of surface exposed tissues, instead of relying 

solely on collagen autofluorescence. Perhaps the most important factor in this is that this 

approach provides high resolution images, that can be achieved without fixation or thin 

section cutting, nor any post imaging registration of the images for analysis.  This study 

also demonstrated color transfer with the goal of remapping UV-fluorescence to a 

conventional color scheme like Masson’s Trichrome. While UV-fluorescence imaging 

intrinsically acquire data at a larger axial thickness as compared to Masson’s Trichrome, 

better image quality especially in image contrast will help improve fiber segmentation and 

collagen strand analysis so that errors in fiber thickness could be reduced. Future studies 

will involve improvements in these aspects. 

The potential of imaging collagen using UV-fluorescence is even more prominent 

due to the capability of wide-field imaging to capture whole-specimen field of view. Due 

to the highly irregular tissue surface, collagen visualization with this technique does not 

provide the same image contrast as would be expected from other collagen imaging 

methods such as second harmonic imaging. However, the short exposure time (50ms per 

frame) allows image acquisition of whole specimen within minutes. Wide-field imaging at 
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microscopic resolution of tumor cells and collagen content offer an efficient tool for 

assessment of macroscopic targeted therapy responses, in terms of collagen modulation, 

tumor necrosis and tumor perfusion. Fig. 5.7 illustrates additional features of this imaging 

tool besides stromal identification. Perfusion imaging was demonstrated by intravenously 

injecting dextran tagged with Texas Red in the mice. Kidney samples in Fig. 5.7A showed 

Texas Red emitted strongly when excited with 275-nm light source. That same tissue 

sample then could be stained as fresh tissues and/or fixed, sectioned and stained to reveal 

structural information. The selective staining of nuclei using Hoechst allowed necrosis 

assessment as displayed in Fig. 5.7B. With preliminary data in Fig. 5.7C showing possible 

reduction in desmoplasia due to acute PDP, a future application of this imaging technique 

aims to evaluate treatment responses of photodynamic priming on PDAC tumors, a targeted 

therapy that was proven to cause necrosis and modulate collagen,23 which resulted in better 

drug delivery.20  

5.5 Conclusion 

This study has demonstrated that high-resolution wide-field collagen imaging is 

feasible in fresh PDAC tumor tissues, with the employment of conventional pathology dyes 

and deep UV-illumination. Collagen quantification obtained from this UV-fluorescence 

imaging can be as quantitatively useful as data from Masson’s Trichrome stained thin 

sections, but can be taken without the need for fixation, cutting and post processing for 

registration. Additional features such as perfusion imaging and necrosis assessment make 

this simple imaging tool an attractive technique to evaluate targeted therapies such as 

photodynamic therapy. 
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Chapter 6: Modifying PDAC Tumor Stroma with Angiotensin II 

Receptor Blockers to Improve Verteporfin Delivery  

This chapter is derived from: 

P. Vincent, et al., "Modifying pancreatic tumor stroma with angiotensin II receptor 

blockers to improve verteporfin delivery." Proc. SPIE. (2019) 10860. 

https://doi.org/10.1117/12.2508796 

6.1 Introduction 

The nearly constant 5-year survival rate of 7% for pancreatic cancer1 over the past 

few decades has called for more active research especially in novel treatment therapies. 

Besides traditional practice of surgical resection and chemotherapy, targeted therapies have 

emerged as a promising field. In pancreatic cancer, the tumor microenvironment has 

become a strong candidate for targeted therapies due to its involvement with systemic drug 

delivery.2 It is well-established that PDAC stroma contains dense fibroblasts.3-5 This 

desmoplastic reaction results in an overproduction of extracellular matrix macromolecules 

such as collagen and hyaluronan. The excess of these macromolecules creates a high solid 

stress which is hypothesized to collapse nearby vessels, leading to limited drug uptake. 

Therefore, targeting the tumor microenvironment to reduce the interstitial pressure could 

improve systemic delivery.  

To alleviate the pancreatic stroma reaction, our study focused on inhibiting the 

production of CAFs by using losartan - an angiotensin II receptor currently in clinical trials 

for pancreatic cancer6. Previous studies have shown the normalizing effect of losartan on 

tumor vasculature and collagen synthesis inhibition which improved chemotherapy drug 

https://doi.org/10.1117/12.2508796
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delivery7,8. In this study, losartan was administered to a mouse xenograft model bearing 

human-derived AsPC-1 pancreatic cell line to evaluate photodynamic therapy treatment 

efficacy in terms of photosensitizer uptake enhancement.  Biological tissue parameters 

such as collagen content, vascular patency and regional stiffness were obtained at high 

resolution over a whole tumor section. This set of data allowed analysis on both a large 

scale of millimeters and smaller scale of hundreds of microns to examine losartan effect on 

the tumor microenvironment. Evaluating image data on different scales would provide 

more insights on stroma heterogeneity and drug penetration relationship in PDAC.  

6.2 Materials and Methods 

6.2.1 Animal Tumor Model 

All animal procedures were conducted under the protocol approved by the 

Dartmouth Institutional Animal Care and Use Committee (IACUC). 6 female athymic nude 

mice between the age of 6 to 8 weeks were used in this study. All mice were injected with 

human-derived pancreatic cell line AsPC-1 (ATCC, Cat#CRL-1682). Approximately 

1x106 tumor cells were mixed with Matrigel (BD Biosciences, San Jose, CA) and RPMI-

1640 medium then orthotopically implanted into the mouse pancreas. The tumors were 

grown for 2 weeks then randomized into 2 groups: control (n = 3) and losartan (n = 3). All 

mice were confirmed of tumor growth by palpation before treatment started. 

6.2.2 Drug Preparation 

Angiotensin inhibitor losartan (TCI America, Portland, OR, USA) was purchased 

in the form of powder. Losartan was dissolved in purified water at a concentration of 4 

mg/ml.  
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Photosensitizer verteporfin (USP, Rockville, MD, USA) was dissolved in dimethyl 

sulfoxide at 1 mg/ml concentration and was diluted with PBS to obtain final concentration 

of 0.1mg/ml. Fluorescein labeled lectin (Vector Laboratories, Cat#FL-1211) at 2 mg/ml 

concentration was purchased as a marker for vascular patency. 

6.2.3 Drug Delivery 

Two weeks post-implantation, losartan was administered intraperitoneally (ip) each 

day for 7 days at 40 mg/kg. The control groups were ip injected with PBS correspondingly. 

Verteporfin (1 mg/kg) was intravenously injected one hour before sacrifice and lectin 

(1mg/kg) was also iv injected two minutes before sacrifice. 

6.2.4 Verteporfin Fluorescence Imaging  

Verteporfin was used to quantify drug uptake in this study. Verteporfin (1mg/kg) 

was iv injected one hour before animal sacrifice. After resection, the pancreatic tumor was 

embedded in 10% gelatin then sliced in half. Fluorescence imaging was performed by a 

flatbed scanner (GE Typhoon 7000) using a 473nm excitation source and 670nm long-pass 

filter. Fluorescence intensity was normalized by a reference material and calculated by the 

formula below: 

Normalized Fluorescence Signal = 
Sample signal – Background signal

Reference signal – Background signal
 

 

6.2.5 Tumor Stiffness Mapping 

Ex vivo tumor stiffness was determined by compression testing with 3-step loading 

at a maximum of 5% strain. The fiber optic pressure sensor (FISO, Quebec, Canada) was 

coupled with an xyz motorized table to perform compression testing at 300-micron 

resolution on the tumor surface. The sensor measured pressure at each of the 3-step loading 

using a micro-opto-mechanical system (MOMS) built in the sensor while the motorized 
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table kept track of the x-y coordinates and z-displacement. This mapping procedure 

provided regional stiffness information of AsPC-1 tumors.  

6.2.6 Pathology Images of Tissue Parameters 

Tissue parameters of interest such as collagen content (Masson’s Trichrome 

staining/white light imaging) and confirmatory tumor tissue (H&E staining/white light 

imaging) were obtained from 4-um thick tumor sections after being fixed with 10% 

formalin and embedded in paraffin. All tissue slides were scanned using a PerkinElmer 

Vectra3 slide scanner at 10× magnification.  

6.2.7 Image Processing for Tumor Identification and Collagen Content 

All image data was co-registered to Masson’s Trichrome image using cpselect in 

MATLAB to obtain common points. H&E images were used to eliminate non-tumor 

tissues and imaging artifacts by manual ROIs. This step was crucial to make sure relevant 

biological parameters were extracted on tumor tissue only. Complexed tumor margins with 

normal pancreas or spleen tissue were discarded. Figure 6.1A showed that pancreas and 

 

Figure 6.1 Tumor image data (A) Fresh tumor tissue was embedded in 10% gelatin with metal 

pins inserted to provide common points for image coregistration. (B) H&E staining of the 

corresponding tumor section provided markers for tissue identification (more details explained 

in section 2.7). (C) Masson’s Trichrome staining highlighted collagen fibers in blue from which 

a systemic segmentation was performed to extract collagen content of tumor tissue. (D) 

Stiffness map of tumor tissue was coregistered to pathology data to assess regional stiffness of 

the tumor. 
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tumor tissues were indistinguishable in appearance. Therefore, it was likely that tumor 

resection process would also include normal pancreas tissue. In some cases, spleen tissue 

was also attached to the tumors. Therefore, manual ROIs were drawn for each tumor 

section to ensure artifacts were eliminated. Figure 6.2 highlighted the tumor identification 

process. Arrows in different colors showed artifacts such as pancreas, spleen and necrosis 

 

Figure 6.2. Tissue identification from H&E staining was a first crucial step in assessing 

tumor biological parameters from pathology data. (A) On the left tissue, green arrows 

indicated normal pancreas tissue which was stained dark purple. On the right tissue, the red 

arrow showed the necrosis area which should be excluded from tumor analysis since this area 

mostly contained dead cells. The yellow arrow pointed out the spleen tissue which was often 

attached to the resected tumor in mouse models. Spleen tissue was also excluded before 

implementing any tumor analysis. (B) The two images on this second row represented the tissue 

samples after eliminating non-tumor artifacts such as pancreas tissue, spleen tissue and tumor 

necrosis. 
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tissue. Necrosis areas were excluded because they only contained dead cells. Figure 6.2A 

illustrated H&E staining on two tumor sections and figure 2B highlighted only the tumor 

tissue of interest. Artifact elimination ensured accurate assessment of photosensitizer 

uptake and collagen profile. 

Collagen content was segmented from white light images of Masson’s Trichrome 

staining. The raw images were first converted to HSV color space in which each channel 

contained information on hue, saturation and value coordinates. All tumors were 

segmented with 0.5<h<0.7, s>0.3 and v>0.7 which accounted for all shades of blue 

representing collagen fibers. 

6.3 Results 

6.3.1 Photosensitizer uptake and vascular perfusion enhancement in AsPC-1 tumors 

treated by angiotensin inhibitors 

Preliminary data on control (n=3) and treated (n=3) AsPC-1 bearing mice showed 

verteporfin enhancement in mice treated with losartan. Vascular perfusion was slightly 

increased in the treated group. Statistical analysis was not performed due to the small 

 

Figure 6.3 Normalized verteporfin uptake in control and treated AsPC-1 bearing mice (n = 

3 per group). Error bars indicate one standard deviation. Preliminary data showed 

photosensitizer uptake enhancement in treated mice. 
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number of mice per group. Large variation within the treated group indicated that the 

treatment was more effective in some mice than others. Since AsPC-1 tumor cell line often 

displayed heterogeneous morphology, it was expected that treatment effects would not be 

uniform and easily explained. However, drug uptake enhancement and vascular perfusion 

was clearly observed in some mice, giving a ground for more testing on a larger set of 

mice. Specifically, under the assumption of alpha = 0.05 and power = 0.8, 13 animals 

would be needed to observe a 25% difference in mean between the control and the treated 

group. 

6.3.2 Modification of collagen structure and tumor stiffness heterogeneity reduction 

observed in treated mice 

 

 

Figure 6.4. Collagen structure modification in treated mice was observed. (A) In the control 

group, collagen structure appeared to be made of thick bundles which included randomly 

oriented strands. (B) In the treated group, collagen structure was comprised of singular 

strands organized into thinner bundles. 
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While angiotensin II receptor blockers are known for their effects on collagen 

synthesis inhibition9, this study found no significant decrease in collagen production based 

on the analysis of tumor section as a whole. A closer look at regional collagen profile 

revealed an interesting observation on collagen structure modification between the control 

and treated groups. Figure 6.4 displayed Masson’s Trichrome staining data with collagen 

profile segmented by extracting blue pixels. In Figure 6.4A, the collagen structure 

consisted of thick bundles, which were comprised of thinner strands in no order. 

Meanwhile, collagen profile obtained from losartan treated mice showed thinner strands 

with less bundling. This observation was aligned with the finding from Diop-Frimpong et 

al. in which losartan treated tumors destabilized the mesh-like collagen structure.9 

Quantitative confirmation of this observation would require more texture analysis in future 

studies. The fact that collagen profile was obtained from high resolution images of 

pathology data which showed a whole slice of tumor enabled the opportunity to assess the 

drug effect on tumor both on a larger scale of millimeters as a whole section and on a 

smaller scale down to micron resolution to examine regional heterogeneity. 

6.3.3 No effect on tumor shrinkage and future improvement of treatment protocol 

This study did not find any improvement on tumor shrinkage between the control 

and treated mouse groups. With the fact that AsPC-1 is an extremely malignant tumor line 

with short tumor growth time, it was hypothesized that angiotensin II receptor blocker 

treatment could yield a better result if the treatment start time was optimized. Given that 

pancreatic tumors are deep-seated, tumor palpation on mice was not adequate to confirm 

early tumor growth. Therefore, another method to confirm tumor growth in mice such as 
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ultrasound imaging would be crucial to exploit the narrow treatment window for AsPC-1 

tumors.  

6.4 Conclusion 

This study has showed that losartan could be used to increase photosensitizer 

delivery in AsPC-1 tumor bearing mice. Collagen structure modification was observed in 

treated group which required more texture analysis to quantify the morphology based on 

high resolution data available. Future analysis methods include fractal dimension, 

lacunarity, collagen strand thickness assessment and clustering to quantify the size of 

collagen bundles. More mice would be needed to confirm the enhancement effect of 

photosensitizer uptake and vascular perfusion. The treatment protocol will be optimized 

with additional imaging method to confirm tumor growth, which is crucial for malignant 

tumors with fast growth rate like AsPC-1. The effect of losartan on fibroblast synthesis will 

also be examined with other PDAC tumor lines whose collagen structures are different than 

AsPC-1.  
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Chapter 7: Stiffness Heterogeneity as an Indicator of Drug Delivery 

Enhancement by Photodynamic Priming in Pancreatic Adenocarcinoma 

This chapter is on-going work in preparation for submission: 

P. Vincent, et al., “Stiffness heterogeneity as an indicator of drug delivery enhancement by 

photodynamic priming in pancreatic adenocarcinoma.” In preparation. 

7.1. Introduction 

A total of 80% of pancreatic cancer patients are diagnosed with pancreatic ductal 

adenocarcinoma (PDAC), and these patients have an abysmal 5-year survival rate of 8% 

that has been unchanged for the past 30 years.1 The disease is commonly diagnosed at a 

late stage, and so has only a 20% rate of tumor resectability2,3.  This situation calls for more 

premeditated research efforts into finding alternative treatment regimens that work for 

these advanced stage tumors. Besides conventional options such as surgery and 

chemotherapy, targeted therapies have emerged to offer novel approaches to PDAC 

treatments.4,5 While there are more options, tumor drug transport remains the governing 

mechanism to determine treatment efficacy. As more evidence is revealed to support the 

role of the tumor microenvironment (TME) on the pathophysiology that affects drug 

transport6–8, recent combination treatment have focused on using a neoadjuvant therapy to 

target the TME followed by a more conventional option such as chemo or 

immunotherapy.9,10 Alongside with this growing trend, photodynamic therapy (PDT) has 

been studied as a method of preparing the tumor for subsequent chemotherapy. 

Traditionally, PDT as a localized treatment is very effective in killing tumor cells via 

necrosis. Recent preclinical findings, however, have showed that low-dose PDT could 
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prepare the tumors efficiently by targeting the TME parameters associated with drug 

transport. Huang et al provided evidence for the benefits of low-dose PDT in enhancing 

vascular permeability while Obaid et al highlighted the possibility of tumor collagen 

depletion.11,12 While early data supports the use of low-dose PDT as an effective method 

to normalize the TME for subsequent treatments, positive treatment effect confirmation 

requires sample collection and analysis at a cellular level and/or with additional pathology 

and immunohistochemistry staining, both of which come as costly and challenging for 

clinical adoption. 

In this study, the low-dose PDT effects upon the TME was investigated using an orthotopic 

mouse model implanted with BxPC-3, a human-derived tumor cell line with particularly 

dense and thick stroma as observed in characteristic PDAC patients. Besides collagen 

modulation and the corresponding enhanced drug uptake as treatment effects, the study 

specifically focused on establishing the relationship between such microscopic-level 

changes with tumor stiffness, a relevant biomechanics parameter that could be imaged 

wide-field at a resolution adequate for drug transport evaluation. Tumor stiffness 

heterogeneity was measured from fresh, ex vivo samples using a previously established 

high-resolution mapping system.13 Whole-tumor assessment was conducted to evaluate the 

low-dose PDT effects on the tumor collagen, vascular patency and drug uptake as well as 

the feasibility of using stiffness information to indicate such changes in the TME. Since 

recent elastography imaging advancements show reasonably promising progress towards 

clinical use with the capability of wide-field imaging (tens of mms) at an improved spatial 

resolution, the ability to confirm apparent changes in stiffness and how it might be 
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indicative of drug delivery and treatment responses would signify a critical step towards 

clinical PDAC treatment.  

7.2 Materials and Methods 

7.2.1 Orthotopic mouse model  

All animal procedures were conducted under the protocol approved by the Dartmouth 

Institutional Animal Care and Use Committee (IACUC). A total of 12 nude mice ranging 

from 6-8-week-old were used in this study. The mice were orthotopically injected with the 

BxPC-3 tumor cell line (ATCC, Cat# CRL-1687) in the pancreas. 1x106 tumor cells were 

mixed with Matrigel at a 1:1 ratio to a total of 50-L injection volume. Tumors were 

allowed to grow for 5-7 weeks until approximately 10-mm diameter, as assessed by 

external palpation.  

7.2.2 Photodynamic priming treatment 

The 12 mice were randomized into a control group of 5 mice and a treated group of 7 mice. 

The control group did not receive any drug injection or light treatment. The mice in the 

treated group were intravenously injected with BPD 0.5 mg/kg (Visudyne, NJ). One-hour 

after the injection, the pancreas was exposed and light treatment was given via a 690-nm 

fiber optic cable at a dose of 75 J/cm2 and irradiance of 100 mW/cm2. After light treatment, 

the pancreas was closed and the mice were sacrificed 48 hours after. Dextran (Thermo 

Fisher Scientific, Cat#D1830) was intravenously injected 1-hour before sacrifice as a 

marker for drug uptake while Lectin (Vector Laboratories, Cat#FL-1171-1) was injected 

2-min before sacrifice to mark vascular patency. 

7.2.3 Imaging of biological parameters 
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Dextran fluorescence imaging as drug uptake marker 

The tumors were harvested for ex vivo imaging of interested biological parameters 

including dextran (drug uptake), stiffness and collagen, all of which were performed on the 

fresh tumor tissue. Dextran fluorescence was imaged by a flatbed scanner (GE Typhoon 

700) using a 532-nm source and a 580-nm long pass filter.  

Tumor stiffness heterogeneity imaging 

The tumor stiffness was then collected by a point probe stiffness mapping system as 

described in Vincent et al.13 In brief, the system scanned through the whole tumor surface 

at 300-micron resolution steps. At each location, three pressure values corresponding to 

three indentations were collected to calculate the Young’s modulus, or stiffness in kPa. A 

map of tumor stiffness heterogeneity was generated to visualize the stiffness as a image 

that could be spatially correlated with pathology images.  

Pathology staining and imaging of necrosis and vascular patency 

The tumors were then prepared for pathology staining to identify collagen (Masson’s 

Trichrome), and necrosis or cell death (H&E), by formalin fixation followed by paraffin 

embedding and slicing at 4 microns. The pathology slides were imaged at 10x 

magnification using a PerkinElmer Vectra3 slide scanner. Vascular patency was 

determined by lectin fluorescence also at 10x magnification.  

7.2.4 Image processing  

All images were co-registered to Trichrome image in matlab using rigid transformation. 

Collagen content extracted from Trichrome images were determined by calculating the 
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percentage of segmented blue pixels over the total pixels representing tumor tissue. The 

color segmentation was performed in hue-saturation-value space with cutoff values as 

followed: 0.5 < hue < 0.7, saturation > 0.5 and value > 0.7. Necrosis area was manually 

identified from H&E images, then an area percentage of necrosis over tumor tissue was 

calculated. These manually drawn necrosis ROIs, along with spleen and pancreas tissue 

ROIs, were used to exclude corresponding regions from the rest of the image data, so that 

PDP effects were assessed only on tumor regions with viable tumor cells. Dextran 

fluorescence intensity was calculated with a normalized threshold of 0.2. Background 

subtraction was necessary for lectin image data followed by a normalized threshold of 0.25 

with a control checkpoint that blood vessels typically fell in the range of 1-5% of tumor 

tissue area. 

7.2.5 Texture analysis 

Texture analysis was performed on stiffness data by first creating the gray-level co-

occurrence matrices (GLCMs) using the graycomatrix functions in matlab. GLCM texture 

features were generated with no data binning. The gray limits were the absolute minimum 

and maximum stiffness value collected from the 12 tumors. GLCM texture features such 

as homogeneity, contrast, correlation and energy (or uniformity) were calculated by the 

matlab function graycoprops.  

7.2.6 Statistical analysis 

Student’s t-test performed in matlab was used to evaluate the difference in means between 

the control and the treated tumor groups, with no assumption of equal variance and alpha 

= 0.05. 
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7.3 Results  

7.3.1 PDP relieved overall stiffness and collagen density, more vascular patency and 

enhanced delivery  

 In Figure 7.1A, the average tumor size for the control and the treated groups are 422 mm3 

and 469 mm3, respectively. A student’s T-test with p = 0.65 suggested that there is no 

statistically significant difference in the size, indicating that tumors were harvested at the 

same growing stage so the collagen profile was apparently unaffected by tumor 

progression. Therefore, changes in collagen content between the two groups are due to the 

treatment effect. Figure 7.1B displaying the marked difference in necrosis area percentage 

between the control and the treated groups (7% and 19%, respectively) was reported to 

confirm that PDT treatment was given successfully in the treated group. The 7% necrotic 

area observed in the control group also suggests that the tumors had inherent necrosis as 

part of their progression. Figure 7.1C-F summarizes the PDP treatment effect 

observations, in which the treated group resulted in 20% more dextran uptake (p = 0.011), 

28% more vascular patency (p = 0.073), 30% reduction in collagen percentage (p = 0.001) 

and 21% decrease in overall tumor stiffness in kPa (p = 0.008). These changes are reported 

with the exclusion of all necrosis areas, and also with the exclusion of 1 treated mouse that 

displayed unusually high collagen and stiffness profile.  
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7.3.2 Tumor stiffness could be used to predict tumor drug uptake and treatment 

response  

Visualization of the PDP effects on tumor collagen, stiffness and drug uptake as compared 

across the control tumor (n = 5), treated tumors (n = 7) including an outlier highlighted in 

Figure 7.2A. Besides the marked difference in all three parameters between the control 

and the treated, this visual panel is displayed to show the dense stroma observed in the 

 

Figure 7.1 PDAC Tumor Microenvironment Modulation Effects from Photodynamic Priming 

Treatment A) Tumor size measured after resection showed no statistical difference between the 

control and the treated group (p = 0.65), implying that tumors were harvested at the same 

growing stage which eliminated potential for collagen proliferation variations due to different 

tumor progression time. B) There was a statistical difference in necrotic areas after PDT, as 

identified from H&E staining between the groups (p = 0.018). The control group had inherent 

necrosis due to the nature of tumor progression and the treated group resulted in 2-fold of 

necrosis, confirming successful PDT treatment. C) Normalized dextran fluorescence intensity 

was used to evaluate drug uptake. There was a 22% increase in drug uptake from the treated 

group (p = 0.011). D) Lectin fluorescence was quantified to show that vascular patent area 

increases by 28% in the treated tumors (p = 0.073). E) Collagen content percentage calculated 

from Masson’s Trichrome staining showed a 30% decrease as a result of PDT treatment (p = 

0.001). F) Average tumor stiffness was decreased by 21% as compared to the control group (p 

= 0.008). Control group n = 5, treated group n = 7 (Figure A-E) and n = 6 (Figure 1F). 
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outlier tumor. Despite a large necrosis area as evidence of treatment given, this tumor had 

dense collagen and an unusually high overall stiffness was measured. Correlations between 

parameters relevant to tumor drug delivery are illustrated in the plots of Figure 7.2B. A 

high correlation between vascular patency and the amount of dextran fluorescence uptake 

was expected (R2 = 0.79), which remains true across all tumors in the study. While the 

 

Figure 7.2 PDP relieves overall stiffness and collagen density which allowed more dextran 

delivery in treated tumors A) A panel of tumors divided into three categories is presented 

(control = 5 tumors, responding = 6 tumors, outlier = 1 tumors). Visualization of collagen 

distribution as blue staining from Trichrome data is displayed in the first column. Necrosis 

areas are identified by the red dotted line to confirm that treatment was given. The middle 

column shows stiffness heterogeneity with values ranging from 0 to 150 kPa. The last column 

highlights dextran fluorescence as tumor drug distribution. B) For all the tumors in this study 

(n = 12), dextran uptake and vascular patency are strongly correlated (R2 = 0.79). Average 

stiffness is inversely correlated to drug uptake (R2 = 0.71) but is correlated to tumor collagen 

content (R2 = 0.58). The linear regression generated with stiffness data in the last two plots 

excluded the outlier tumor (blue dot) due to its unusually high stiffness value. 
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outlier tumor with very high stiffness value was excluded from the two plots below, both 

the control tumors (n = 5) and the responding tumors (n = 6) validate the inverse 

relationship between stiffness and dextran uptake (R2 = 0.71) and the proportional 

relationship between average stiffness and tumor collagen (R2 = 0.58). The results in this 

section corroborate the idea of using tumor stiffness as an indicator of drug delivery 

efficiency and corresponding treatment responses for PDAC tumors.  

 

Figure 7.3 Texture Analysis of Tumor Stiffness Shows Homogeneity as an Indicator of 

Treatment Response A) Results of GLCM texture analysis on tumor stiffness data is 

demonstrated. Homogeneity and Energy (or Uniformity) of stiffness values are found to be 

increased after PDT treatment (p = 0.013 and p = 0.017, respectively), while GLCM contrast or 

variation is decreased after treatment (p = 0.046). B-C) GLCM Homogeneity is correlated with 

dextran uptake in both control and treated tumors (R2 = 0. 62) and is inversely correlated with 

collagen content (R2 = 0.67), indicating that this texture feature could be used to predict 

treatment outcome. D) Visualization of stiffness homogeneity in control and treated tumors with 

their corresponding GLCM Homogeneity scores.  
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7.3.3 Tumor heterogeneity is reduced after PDP treatment, as measured by texture 

analysis.  

Texture analysis features from the GLCM package are reported in Figure 7.3A for the 

control and the treated tumors. The three texture features are in agreement that after 

treatment, the tumors became more homogenized (Homogeneity p = 0.013, 

Energy/Uniformity p = 0.017). The contrast within the tumors in the treated group is 

reduced (Contrast p = 0.046). More interestingly, the GLCM Homogeneity feature 

obtained from stiffness data also shows a strong correlation with dextran uptake (R2 = 0.62) 

and the tumor stroma (R2 = 0.67), as illustrated in Figure 7.3B-C. It is noticeable that the 

outlier tumor with very high mean stiffness (blue dot) has a very low Homogeneity score. 

A visual comparison of stiffness values between a low and a high Homogeneity score of is 

displayed in Figure 7.3D. The texture analysis results in this section suggested that tumor 

stiffness homogeneity could be a reliable indicator of tumor treatment responses as it 

reflects the stroma and the resulting drug uptake for all the tumors in this study.  

7.4 Discussion 

PDT treatment of solid tumors can target multiple cell death pathways14,15 and enhances 

vascular permeability16–18, making this therapeutic regimen an effective acute mechanism 

for combination therapies when combined with a systemic regimen. While evidence 

suggests that PDT offers additive and synergistic effects to chemotherapy and 

immunotherapy, little is known about the possibility of stroma modification. This study 

was motivated by recent findings that advocate for the use of PDT in modulating tumor 

collagen, a well-established hindering factor of intratumoral drug distribution. Li et al 

reported a significant reduction of cancer-associated fibroblasts followed by a decrease of 
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tumor collagen and an enhancement of nanoparticle uptake in 4T1 tumors after PDT 

treatment.19 Obaid et al showed evidence for collagen photomodulation in mice receiving 

PDT treatment with their optimized nanoconjugate.12  In this study, BxPC-3 tumors in an 

orthotopic mouse model were employed to examine the stromal modulating effects of this 

treatment, as BxPC-3 recapitulates very dense stroma with thick collagen fibers often 

observed in PDAC patients. Accordingly, results from Figure 7.1 and 7.2, the treatment 

caused a reduction of 30% in collagen content and consequently a 20% enhancement in 

dextran fluorescence. The study exploited treatment-induced necrosis information only to 

confirm when positive treatment was given, since significant necrosis is well-documented 

as a PDT effect. By only analyzing the TME factors from the non-necrotic tumor areas, the 

study provided strong evidence for the use of PDP as a neoadjuvant scheme to prepare the 

tumor for subsequent therapeutic options that depend on a systemic drug delivery.  

The need for a reliable, clinically translatable biomarker that could indicate the TME 

pathophysiology relevant to tumor drug distribution, either with or without treatment, is a 

significant problem that this study was motivated to address. Tumor stiffness information 

and its relationship to the stroma and the drug uptake has been established as such a 

biomarker in this study. While Figure 7.1F suggested a 21% reduction in overall average 

stiffness between the control and PDT treated groups, a correlation between tumor stiffness 

and other parameters of interests was established in Figure 7.2. The inverse correlation 

with drug uptake (R2 = 0.71) and the proportional relationship with collagen content (R2 = 

0.58) were reported to be consistent throughout both the control and the treated tumors, 

indicating that stiffness information was a reliable surrogate for tumor drug delivery 

efficiency and also PDT treatment efficacy in this case. The visualization and the plots 
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provided in in Figure 7.2 also highlight the one tumor that received treatment, showed 

clear treatment-induced necrosis but no changes in dextran uptake or collagen profile. 

Interestingly, the average stiffness measured for this tumor was three times higher than the 

rest of the tumors in the study (outlier = 94 kPa, remaining treated group = 30 kPa). 

Correspondingly, the collagen profile illustrated an extreme desmoplasia with the highest 

density located at where necrosis occurred, i.e., where maximum light treatment was given. 

It is hypothesized that such particular collagen density hindered the priming effects of PDT, 

therefore, no dextran uptake enhancement was observed in the remaining viable tumor 

region. 

Since tumor heterogeneity promoting selective drug resistance at the cellular level has been 

corroborated by both preclinical and clinical studies20–23, this study focused on the TME 

heterogeneity specifically.  There was also an attempt to investigate the intratumoral 

stiffness variations as a possible surrogate for tumor drug uptake at a macroscopic level. 

With the emphasis on finding a clinically translatable marker, heterogeneity information 

was collected at whole-sample field of view (tens of millimeters) and transport-relevant 

resolution (hundreds of microns) to capture the changes within the whole tumor. Stiffness 

homogeneity calculated by the well-established GLCM approach was found to have a 

strong correlation with dextran uptake (R2 = 0.62) and tumor collagen (R2 = 0.67) for all 

tumors in this study. It is noticeable from Figure 7.3B-C that the outlier tumor with 

unusually high mean stiffness was among the tumors with the lowest GLCM Homogeneity 

score, suggesting that stiffness heterogeneity could potentially be a reliable marker to 

predict PDAC tumor drug uptake regardless of absolute stiffness measurements. With 

current wide-field stiffness imaging techniques such as ultrasound or magnetic resonance 
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elastography capable of producing 1-mm resolution mapping, it is encouraging to 

recognize not only the significance of elastography information with respect to 

intratumoral drug delivery, but also the feasibility of employing elastography in a clinical 

setting.   

Perhaps most importantly, the observation of this one outlier tumor indicates the necessity 

to longitudinally image tumors before and after PDT treatment, to properly assess the pre-

existing conditions of necrosis and stiffness, such that differences from a baseline can be 

established.  This was not possible in this ex vivo analysis study, but would potentially be 

possible with diagnostic imaging methods.  

7.5. Conclusion 

Results from this study support the use of low-dose PDT to target PDAC tumor stroma as 

an effective approach of normalizing the TME and thus enhancing the intratumoral drug 

uptake. Furthermore, tumor stiffness information from both the control and the treated 

tumors is demonstrated to reflect the collagen content, and stiffness shows a strong inverse 

relationship with drug distribution. Imaging of absolute stiffness along with texture 

analysis on the stiffness spatial variations at transport-relevant spatial resolution shows the 

fundamental validations needed to consider the eventual feasibility of clinical elastography 

data to be used as a surrogate biomarker of intratumoral drug delivery in PDAC.  
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Chapter 8: Radiomics Analysis on CT Scans of Patients Receiving PDT 

Treatment to Quantify PDP Effects  

The following manuscript will be submitted to Physics in Medicine and Biology: 

P. Vincent, et al., “CT radiomic features of photodynamic priming in clinical pancreatic 

adenocarcinoma treatment.” Prepared for Submission. 

8.1 Introduction 

Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all 

pancreatic malignancies1 with an abysmal 5-year survival rate of 8%.2 Limited treatment 

options, with only 20% of the patients surgically resectable,3,4 have fueled a drive towards 

developing and advancing alternative PDAC treatments that combine ablative technologies 

with systemic therapies. Along with this effort, photodynamic therapy (PDT) has been 

studied as a promising localized and well-tolerated focal treatment option for solid 

tumors.5–7 A light-activated drug is systemically introduced into the body but only at the 

regions treated with light will singlet oxygen be generated to cause cell death. Beyond focal 

treatment effects, recent studies in murine models have reported that a lower dose of PDT, 

termed “photodynamic priming” (PDP), could prove beneficial as a neo-adjuvant method 

to prime or alter the tumors to enhance chemotherapy or immunotherapy.8–10 Pre-clinical 

data have showed that PDP effectively relieves the physical tumor drug delivery barriers 

by targeting protein expressions responsible for drug resistance11 and modulating 

desmoplasia,12 allowing for a lower dose of chemotherapy to achieve the same efficacy. 

However, while PDT effects could be observed by identifying necrotic areas on a patient’s 

CT scan,13 PDP effects are more difficult to discern and often require ex vivo imaging 
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techniques or further pathology staining, both of which are not clinically feasible with 

PDAC treatment.  In this study, the CT scan alterations seen in clinical treatments were 

examined in a pilot cohort, to assess the potential of detecting successful PDP outcomes.  

Radiomics has recently emerged as an effective method to obtain further 

information from clinical image data.14–16 PET, CT and MRI are widely used to assist 

doctors in both diagnosis and therapy, yet only a limited amount of image data is extracted. 

For example, CT scans are acquired to identify tumor stages, but quantitative data reported 

remains on first-order parameters such as tumor size and average CT density value in 

Hounsfield Units (HU). Texture analysis with the goal of extracting further information 

indiscernible to simple inspection has offered a tool to provide quantitative data that are 

proven to be clinically valuable. In the field of pancreatic cancer, a few studies have been 

conducted using texture analysis to evaluate treatment effects,17 predict survival 

outcomes18 or stratify different types of cystic lesions.19 Since PDAC has significant 

stromal components20–22 often leading to lack of perfusion and high heterogeneity, texture 

 

Figure 8.1 Overview of texture analysis in assessment of photodynamic therapy treatment 

on PDAC patients. Each patient received a pre-treatment and a post-treatment CT scan. 

Pancreatic tumor segmentation was performed, and texture analysis was carried out to extract 

underlying features that showed significant differences after the treatment.  
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analysis is speculated to be of potential utility. Furthermore, biopsy is typically avoided in 

PDAC so diagnostic information from CT can be particularly valuable as CT imaging is 

perhaps the most widely used tool to assess tumor status.  

This study was carried out with the objective of using texture analysis to examine 

CT scans before and after photodynamic light treatment to assess the underlying effects 

(Figure 8.1). LIFEx software, a widely used Radiomics package,23 was used to segment 

regions of interest and perform texture analysis. The first aim of the study focused on 

comparing tumor regions that responded to light treatment with focal necrosis (termed PDT 

regions).  The second part of the study was to analyze areas that did not show apparent 

necrosis but were suspected to be within the treated tumor (termed PDP regions). This 

second aim to employ texture analysis for evidence of PDP was done by comparing pre-

treatment and post-treatment CT scans to identify differences that would show 

underappreciated texture-based changes in the images.  

8.2 Materials and Methods 

8.2.1 Patient population 

Locally advanced PDAC patients were recruited at the Mayo Clinic (Rochester, 

MN) for the photodynamic therapy trial. There were 7 patients receiving treatment in this 

pilot study and their pre-treatment and post-treatment CT scans were used. All scans were 

fully anonymized prior to access and analysis. A summary of patient characteristics is 

provided in Table 8.1. Most patients were in T3 stage with tumor site located at the 

pancreatic head. The initial tumor volume range was 23 ± 17 cm3. The patients received a 

pre-treatment CT scan to identify the tumor site around one week before the treatment 

occurred (with the exception of Patient 06 whose pre-treatment scans were 20 days before). 
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One hour before the light treatment, Visudyne (Novartis, East Hanover, NJ) at 0.4 mg/kg 

body weight was intravenously injected. Light treatment with endoscopic ultrasound 

guidance was performed using a 690-nm light source (Model PSU-FC, Changchun New 

Industries Optoelectronics Technology Co. Ltd., Jilin, China) at 40 J/cm. The light source 

fiber was inserted via the duodenum into the tumor. 48 hours after the treatment, a post-

treatment CT scan was acquired to evaluate the treatment effects.  

8.2.2 Image Acquisition and Segmentation  

All CT scans were acquired by a Siemens Force DS/129 scanner with the tube 

voltage in the range of 100-120 kVp, the tube current in between 97-166 mAs, the pixel 

spacing varying between 0.742 – 0.859 mm and the slice thickness of 1mm. Non-ionic 

contrast media iohexol (Omnipaque 300 mg I/mL, GE Healthcare Ireland, Cork, Ireland) 

with bolus tracking was used in the image acquisition process. Scans were acquired post-

injection at 35 seconds for late arterial phase and 90 seconds for portal venous phase. 

Texture analysis was performed on the portal phase of the scans.24–26 Also, previous 

studies27,28 have reported that the tube current variation does not affect tissues with high 

level of texture such as tumorous tissues.  

Pancreatic tumor segmentation was performed by a clinical radiologist from the 

Department of Radiology at Dartmouth-Hitchcock Medical Center (Lebanon, New 

Hampshire). The radiologist was informed that the CT scans were acquired for a PDT 

 

Table 8.1 Summary of patient characteristics 
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treatment at the pancreatic tumor site and received a 1-hour training on how to perform 

ROI segmentation in the software LIFEx. Slice-by-slice delineation of tumor boundary was 

manually drawn on the tumors of all patients. The basis of tumor boundary delineation was 

determined based on the late arterial scans since they provided a better tumor margin 

visualization.  Additionally, for patients that showed a treatment-induced necrosis, those 

areas were also specified. A trained graduate student then complete the ROI filling based 

on the specified tumor boundaries. Air, dense calcification and large blood vessels were 

excluded from the ROIs. The complete tumor ROIs were then reviewed by the radiologist 

before texture analysis.  

8.2.3 Texture Analysis 

Texture analysis was performed using a software called LIFEx with built-in first 

and second order texture features.23 The CT portal venous phase scans were first resampled 

to a voxel size of 1mm, and absolute boundaries using the minimum and maximum CT 

numbers of the ROIs were used. 2D texture analysis was used with no binning. The ROIs’ 

CT density values in HU were referred to as “CT number” in LIFEx. 

To account for the effects of the patient-by-patient variations and evaluate any 

possible inconsistencies in the imaging acquisition process, a few normalization and 

control testing steps were performed. Physical tumor size change before and after light 

treatment was reported with no considerable changes to ensure a fair comparison between 

the baseline CT scan and post-treatment scans as ROI sizes could affect texture analysis. 

Recommended resampling to 1mm voxel size was done on all scans which previously had 

a range of pixel spacing in between 0.742 and 0.859 mm. The time differences between the 

two scans with respect to the nature of PDAC tumor progression were considered as 
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mentioned in Section 8.2.1 and the Discussion section. Contrast media concentration 

variation was tested by examining the liver and the spleen ROIs from the pre-treatment and 

post-treatment scans. Mean and standard deviation of CT numbers for these organs were 

reported in Figure 8.4 and the changes before and after treatments were less than 7% for 

most patients (except for Patient 06). This average change (6.6 ± 2.6%) was considerably 

smaller than the average changes observed in the tumor regions (14 ± 7.3%), which 

confirmed that in the tumor regions, treatment-induced changes were dominant. Patient-

by-patient variations were accounted for in the statistical analysis. ROC analysis with 

leave-one-out cross-validation and the generated ROC curve for combined classifiers 

provided evidence for PDP effects in most patients despite Patient 01 as an inherent outlier, 

which was discussed in the Discussion section. 

8.2.4 Statistical Analysis 

A student’s t-test was used to compare the differences in means without the 

assumption of equal variance using the two-tail analysis with  = 0.05. Combined 

classifiers to classify pre-treatment vs post-treatment CT images were then developed using 

the statistically significant radiomic features. Radial basis function support vector machine 

(RBF-SVM) classifiers were optimized and evaluated using leave-one-patient-out cross 

validation. A custom Python script to perform model optimization and receiver operating 

characteristic (ROC) analysis was developed using Scikit-Learn.29 Briefly, the dataset was 

organized by CT image with the previously identified statistically significant radiomic 

features. Additional parameters were the patient ID which was assigned after anonymizing 

and randomizing patient data, and a binary label for pre vs post-treatment image. Iterating 

over the data by patient, RBF-SVM models were fit to all but the one patient withheld for 



111 

testing. After fitting, the model was used to predict the binary label all the images of the 

test patient. The probability output for each image alongside the ground truth labels were 

used to calculate an ROC curve for each patient. An average ROC curve was calculated by 

taking the mean and standard deviation at point on the curve across all patients. Area under 

the curve was calculated for each patient with the mean and standard deviation across all 

patients also reported. 

8.3 Results 

8.3.1 Post-treatment CT scans show a reduction in mean and standard deviation of 

tumor region values, suggesting a decrease in tumor density. 

Figure 8.2A reports tumor size as a result of slice-by-slice segmentation on pre- 

and post-treatment CT scans. The tumor size ranges from 8 to 54 cm3, but there was not a 

significant change in size after treatment (paired t-test with p-value = 0.36). This finding 

is consistent with the patient’s radiology reports. More interestingly, the average and 

standard deviation of CT number both show a statistically significant decrease after PDT 

treatment with the largest reduction of 33% in average HU and paired t-tests with p-values 

of 0.01 and 0.04, respectively (Figure 8.2B-C). Such reductions are good indicators that 

the tumor homogeneity is increased. The range of CT number maximum and minimum per 

tumor is also reduced in 5 out of 7 patients, again suggesting the intratumor variation has 

been decreased after PDT treatment. The overview of these first-order parameters shows a 

consistent trend suggesting a possible correlation between tumor density changes and PDT 

treatment effects, which could be quantified by texture analysis. 
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8.3.2 Texture analysis of pre-treatment CT scans can predict tumor areas that are 

pre-disposed to PDT induced necrosis response 

From post-treatment CT scans, 40 tumor slices with a visible necrotic area as a 

result of photodynamic therapy treatment were identified (Figure 8.3A). For each tumor 

slice, manual segmentation performed by the radiologist separated the necrotic area in pink 

(PDT region) from the remaining of the tumor tissue in yellow (PDP region). These ROIs 

were then re-mapped back onto the pre-treatment CT scans in which texture analysis was 

performed. Results showed in Figure 8.3B provided the texture features that were 

 

Figure 8.2 Overview of PDT-induced changes observed between pre- and post-treatment CT 

scans. A) Tumor size measured from 3D segmentation of tumors shows no significant change 

(paired t-test, p-value = 0.36). B) All patients show a reduction in mean tumor CT number, 

indicating the tumor density has decreased after PDT treatment (paired t-test, p-value = 0.01). 

C) 6 out of 7 patients show a reduction in standard deviation of tumor CT number, suggesting 

that the intratumor variation has decreased after treatment (paired t-test, p-value = 0.04). D) 

Range of CT number is decreased for 5 out of 7 patients which indicates the reduction of 

intratumor variation after PD (paired t-test, p-value = 0.47).  
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statistically significant between PDT and PDP regions. Those features included the tumor 

mean and standard deviation, GLCM contrast, dissimilarity and entropy, and GLRLM 

gray-level non-uniformity (paired t-test, p < 0.001).  

 

Figure 8.3 Treatment-induced necrosis areas could be predicted by texture analysis in the 

Pre-Tx scan. A) Visualization of tumor in Post-Tx (top row) and Pre-Tx (bottom row) CT scans. 

Observable necrosis area (PDT) in pink and remaining tumor region (PDP) in yellow are 

delineated in Post-Tx scans, which were then mapped onto Pre-Tx scans for texture analysis. 

GLCM Contrast feature for both regions in the Pre-Tx scans is illustrated to show that necrosis 

occurred at the area with lower contrast. B) Other first-order texture features that are found 

to be statistically significant when comparing the PDT and the PDP regions in Pre-Tx scans 

(n = 40 tumor slices). 
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8.3.3 Changes between pre-treatment and post-treatment CT scans in PDAC tumors 

indicate treatment effects, as referenced by other organ values. 

 

Besides visible necrotic effects observed in some patients, it was noticeable that in 

patients without tumor necrosis, there was a significant reduction in mean CT number 

between pre-treatment and post-treatment scans (Figure 8.4). This decrease in CT number 

was shown to be significant when compared with that of neighboring normal organs such 

as liver and spleen. While changes in the liver and spleen across 6 out 7 patients were 5.6 

± 1.3% and 7.7 ± 3.3 %, respectively, the decrease in non-necrotic (or PDP) tumor regions 

 

Figure 8.4. Percentage of changes after light treatment between pre-treatment and post-

treatment scans in the PDP regions of tumors, as compared to the normal liver and spleen 

values. For each patient, the percentage change in CT mean was reported for the non-necrotic 

regions of PDAC tumor, liver and spleen. Mean CT number decreased in all ROIs from all 

patients, with the tumor regions consistently expressing the biggest reduction in CT number. 

This observation suggested that there were treatment-induced effects on the tumor CT 

numbers across the patient cohort. 
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on average was 14 ± 7.3%.  In some cases, the change in the tumor was more than doubled 

the changes in the liver and the spleen. It was important to realize that all ROIs from Patient 

06 displayed more than 20% difference between the pre- and post-treatment scans, which 

was likely due to the 20 days elapsed before the acquisition of post-treatment scans as 

compared to within a week for other patients. Therefore, the differences observed in Patient 

06 partially account for the rapid disease progression characteristic of PDAC. Overall, for 

most patients, the considerable difference in tumor CT number before and after treatment 

implies changes that are dominant by treatment effects and not just inherent variations in 

between different CT image acquisitions. 

8.3.4 PDP effects could be quantified with texture analysis of pre- and post-treatment 

CT scans 

Texture analysis was performed on non-necrotic tumor regions across all patients 

to study the underlying intratumoral changes as a result of PDT light treatment. Figure 

8.5A illustrates the differences between pre-treatment and post-treatment CT scans. The 

first panel identified the ROIs in dotted yellow lines with corresponding histograms that 

showed a skewness to the left, indicating the decrease in mean CT number after treatment. 

A visualization of three GLCM parameters, homogeneity, contrast and dissimilarity, was 

also highlighted in Figure 8.5A to showcase the differences between pre-treatment and 

post-treatments scans that are not appreciated in a conventional CT scan evaluation. Figure 

8.5B reported the six most statistically significant texture features when compared between 

pre- and post-treatment scans with 5 out of 6 features showing a p-value of less than 0.001. 

In Figure 8.5C, an ROC curve with corresponding AUC value for each of the six texture 

features was generated. The ROC curves accounted for all patients but Patient 01. This 
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patient was excluded from the classification process due to the large tumor volume, i.e., 

130% larger than mean tumor size with tumor diameter reaching 5 cm. This considerably 

large tumor volume was convinced to not fully receive light treatment, therefore it was 

very unlikely to benefit from any PDP effects. Overall, Figure 8.5C with overlaid ROC 

curves for all radiomic features as single classifiers showed that second-order GLCM 

 

Figure 8. 5 PDP effects after light treatment are seen with texture analysis. A) A visualization 

of intratumor changes due to light treatment quantified by GLCM texture analysis. Means of 

tumor CT number before and after treatment are 74 ± 23 HU and 67 ± 17 HU, respectively. 

Tumor homogeneity is increased, while levels of contrast and dissimilarity are decreased, 

indicating a more uniform tumor attenuation profile. B) Texture features that showed a 

statistical significance between Pre-Tx and Post-Tx scans are reported (n = 235 tumor slices)  
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features provided a better indicator of treatment effects as compared to tumor mean or 

standard deviation, emphasizing the need for texture analysis in this case.  

Figure 8.5D displays the ROC curves for combining all six texture features into a 

classifier using the SVM model.  Compared to using each feature as a single classifier with 

AUC value in the range of 0.75 to 0.80, a combination of all six yielded a better 

performance with a reported AUC value of 0.93 ± 0.07. Furthermore, an attempt to validate 

this classification method is also reported using the leave-one-patient-out cross validation 

approach as described in Section 2.4. Each of the thinner ROC curves in Figure 8.5D was 

generated to evaluate this classification method given the limited patient data. The shaded 

area displaying ± 1 standard deviation was plotted to visualize the effect of patient-by-

patient variation on the classification. While Patient 01 was excluded as explained 

 

Figure 8.6 Classification for each feature and a combined classifier by SVM model A) Mean 

ROC curve for each reported feature calculated for all patients except for Patient 01, showing 

AUC values in the range of 0.75 to 0.80. B) Mean ROC curve of combined classifiers using 

SVM model in blue yielded a better performance than any single classifier (AUC value is 0.93 

± 0.07). Leave-one-patient-out cross validation ROC curves are showed for all patients except 

Patient 01, and the shaded area indicated the ± 1 standard deviation of this cross validation.  
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previously, the remaining patient cohort demonstrated a convincing classification with 

high AUC values in the range of 0.84 to 1.00. The ROC analysis in Figure 8.5D provided 

evidence that identified texture features could be of great use when combined as a single 

classifier to evaluate the subtle intratumoral changes as a result of photodynamic therapy 

treatment on non-necrotic tumor regions. 

8.4. Discussion 

PDAC aggressiveness combined with advanced stage at diagnosis has led to a 

desperate need for alternative therapeutic approaches. While research has focused on 

realizing new treatment options, it is equally important to identify effective approaches for 

accurate prediction of treatment outcomes and efficient assessment of treatment effects. In 

the case of photodynamic therapy, evidence have showed that the most promising treatment 

effects are on the microscopic level which requires additional imaging and/or special 

pathology staining of tumor samples. Low-dose photodynamic therapy, also known as 

photodynamic priming, in preclinical data promises the relieving effects on the tumor 

microenvironment. Compared to the most visible effect of cell death via necrosis which 

could be visualized on a patient’s CT scan, the other benefits are more subtle, emphasizing 

the employment of further CT image analysis as validated in this study.   

Texture analysis on pre-treatment CT scans focusing on the necrosis-induced tumor 

slices only showed that certain features could be used to predict tumor areas that are well-

responded to photodynamic therapy. Since analysis was only performed on pre-treatment 

images of tumor slices that later on expressed necrosis, each tumor slice contained a PDT 

and a PDP region to create paired data samples (Figure 8.3A). Although the sample pool 

was limited (n = 40 tumor slices), paired samples assure that the differences reported are 
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due only to the intrinsic tumor physiology. Figure 8.3B reported the six most statistically 

significant features when compared between PDT and PDP regions in pre-treatment scans. 

These features, namely tumor mean/stdev, GLCM contrast, dissimilarity and entropy, and 

GLRLM GLNU, all showed a p-value of less than 0.001. They also consistently support 

the idea that well-responded tumor areas are less dense, less disordered and more 

uniformed. While the limited data might not give a convincing statement on using these 

features as future treatment outcome identifiers, the data has indicated, for the first time, 

that tumor density and homogeneity directly affect photodynamic therapy treatment 

outcome in clinical PDAC patients.  

Data from Figure 8.2 and Figure 8.4 highlighted the intratumoral variation 

between pre-treatment and post-treatment CT scans as a result of photodynamic priming. 

Since all post-treatment CT scans were acquired 48 hours after PDT, tumor shrinkage was 

not observed. The relatively constant tumor size across most patients ensures that 

comparison between pre- and post-treatment scans are consistent. The significant reduction 

in patients’ tumor CT number corroborates with preclinical findings that PDT alleviates 

desmoplasia,12,30 an intrinsic characteristic of PDAC tumors responsible for elevated 

pressure and stiffness.31,32 Interestingly, the decrease in the standard deviation of tumor CT 

number for most patients (Figure 8.2C) supports the hypothesis that tumor 

microenvironment heterogeneity, a physical barrier of intratumoral drug delivery 

efficiency, become more uniformed after PDT treatment. This change in tumor 

heterogeneity was not only reflected by the decrease in CT number standard deviation, but 

it was further supported by GLCM texture features such as Homogeneity, Contrast and 

Dissimilarity reported in Figure 8.5. While Figure 8.5A provides a visualization of 
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treatment-induced changes in tumor heterogeneity, the ROC analysis in Figure 8.5C 

confirms that these second-order texture features performed better at identifying subtle 

intratumoral changes after light treatment. Moreover, combining all six of these features 

using SVM model greatly improved the classification performance with mean AUC value 

of 0.93 ± 0.07. The leave-one-patient-out cross validation was necessary given the limited 

patient cohort and the small patient-by-patient variation showed in Figure 8.5D confirmed 

that a combination of these classifiers provided a great tool to evaluate PDP treatment 

effects. The exclusion of Patient 01 with considerably large tumor volume in the 

classification process was validated by the physical limitations of photodynamic therapy, 

in which treatment efficacy relies on both the drug concentration and the amount of light 

exposure at the tumor site.  

8.5 Conclusion 

This study has validated the use of texture analysis on CT scans in predicting treatment 

outcome and assessing therapeutic effects on PDAC patients undergoing photodynamic 

therapy. The study shows that well-responded tumor regions were less dense, had lower 

average CT number and more unform. These observations align with preclinical data and 

are classified via GLCM and GLRLM texture features. More importantly, the 

indiscernible, microscopic-level effects of photodynamic priming on alleviating tumor 

heterogeneity have been visualized and quantified by comparing pre- and post-treatment 

CT scans. Besides noticeable reductions in tumor CT number and its standard deviation, 

second-order GLCM features provided better classifiers, demonstrating for the first time 

with clinical data that tumor density and homogeneity played a key role in modulating PDT 

treatment effects.  
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Chapter 9: Conclusion 

9.1 Overview 

Previously, each chapter has presented a study relevant to the thesis objectives and 

addressed the corresponding key conclusion points. In this chapter, the thesis work is 

summarized and discussed with respect to the 4 Specific Aims established in Chapter 1. 

For each of the Aims, 3 main points are presented: 

1. Macroscopic view of the results and how they fit in with current relevant research effort  

2. Limitations of the work in terms of technical development, experimental designs, and 

assumptions or any considerations that were not accounted for 

3. Recommendations for future improvements and future research directions 

9.2 Conclusion for Aim 1 

Aim 1: Image wide-field tumor stiffness heterogeneity at transport-relevant resolution to 

investigate the relationship between tumor stiffening, desmoplasia and drug transport 

9.2.1 Results of Aim 1 from a Macroscopic View 

As mentioned in Chapter 1, there has been considerable research into characterizing how 

solid tumor biomechanics is associated with intra-tumoral pressure and the 

interrelationship between SS and IFP. However, discrete probe measurements of tissue 

pressure, although accurate in nature, can only account for regional assessments, which 

does not provide insight into the overall tumor spatial heterogeneity of these values. With 

evidence showing drastic local variations in tumor pressure, it is possible that biomarkers 
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of the tumor biomechanics can be used to capture insights about the heterogeneity. The 

results from Aim 1 have demonstrated that tumor stiffness satisfies these conditions. A 

strong correlation between tumor stiffness and collagen was established, and more 

importantly, the inverse relationship between stiffness heterogeneity and drug distribution 

was demonstrated. These findings confirmed, that from a tumor pathophysiology 

standpoint, tumor stiffness is the more relevant indicator of any tumor drug transport 

barriers, than would be interstitial pressure or other measures.  

Furthermore, the field of elastography has advanced with novel approaches to stiffness 

imaging that are both non-invasive and wide field. The high stiffness heterogeneity 

inherent in PDAC tumors necessitates whole-tumor sampling at transport-relevant 

resolution (hundreds of microns) over techniques that yield microscopic information from 

a limited field of view. The recent advancements such as UE and MRE hold some promise 

for clinical translation of stiffness imaging for PDAC patients, although they typically 

suffer from relatively low spatial resolution.  

9.2.2 Limitations of Aim 1 

Even though EVE system was able to generate whole-tumor stiffness heterogeneity map at 

high resolution, the mechanism remains a point-probe based approach, with considerable 

acquisition time required due to the uneven surface of stiff PDAC tumors. While 

measurements are not destructive to the specimen, sample preparation steps such as gelatin 

embedding and tumor cutting to reveal a flat surface are not negligible tasks and require 

some experience and technique development. Since the raw data collected is pressure at 

different compression displacements, a conversion factor to convert from pressure data to 

stiffness values is required. In Aim 1, this conversion factor was established using a series 



126 

of phantom studies and only pressure values in the range of PDAC tumor tissue were 

accounted for. Thus, more calibration will be necessary for biological samples or tumor 

organoids that are much softer than xenograft PDAC tumors. Still the values obtained for 

this part of the work were realistic and likely accurate, and regional relative differences 

across a tumor would always be valid.    

9.2.3 Recommendations and Future Directions for Aim 1 

If the system was to be used with much softer samples (< 5kPa), a more comprehensive 

phantom study should be conducted so that the conversion factor between pressure 

readings and absolute stiffness values was more robust down to these lower values. Major 

improvements with acquisition time could also be considered and one possible direction 

involves acquiring tumor surface roughness variation maps. There have been studies to 

image the topography of biological samples1, and with this information as a LabVIEW 

input, the system could greatly reduce the time taken to detect the tumor surface.  Currently 

this is responsible for the largest fraction of the acquisition time.  

9.3 Conclusion for Aim 2 

Aim 2: Visualize and quantify PDAC tumor collagen network from fresh samples using 

fluorescence imaging with ultraviolet illumination 

9.3.1 Results of Aim 2 from a Macroscopic View 

Collagen imaging is a mature research field with advanced techniques capable of capturing 

a large field of view at microscopic resolution. However, these imaging systems come at a 

high cost and with complicated optics. Meanwhile, fluorescence imaging with ultraviolet 

excitation offers a simple yet effective approach to wide-field imaging of tissue structures 
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at microscopic resolution and with inherent depth sectioning on the surface of thick 

samples. Results from Aim 3 demonstrated that such imaging technique could be employed 

to visualize PDAC tumor stroma, for the first time. Although this method is highly 

reproducible and more research effort has been put into pushing it towards clinical 

translation, it is unlikely that UV-fluor could be utilized to extract tumor stromal 

information in a clinical setting because of the logistics of imaging just a surface with 

applied dyes. While it is possible to make the imaging apparatus more compact or turn it 

into a hand-held device, the trade-off between depth of field and resolution is governed by 

optics and therefore it is not possible to compromise. Any specimen would either need to 

be flat or use multiple optical sectioning to see into it. Still, UV-fluor has proven to be an 

excellent imaging tool for ex vivo assessment of fresh biological samples at whole-

specimen field of view and preserving microscopic spatial resolution. The system is 

capable of capturing the PDAC stromal heterogeneity from fresh bulk tissues in a non-

destructive manner so that conventional pathology staining could still be performed 

subsequently. These benefits are highly valued as an experimental tool, especially in pre-

clinical small animal studies where whole-tumor samples are a reasonable size. Drug and 

treatment studies involving fibroblast depletion also benefited from the advantages UV-

fluor.  In particular, the study of photodynamic priming treatment, with the goal of reducing 

PDAC stroma, was conducted on nude mice presented in Aim 3 of this thesis work and this 

tool was an ideal fast imaging pathway to document these macroscopic changes in the 

tumors. 

9.3.2 Limitations of Aim 2 

Due to the considerable tumor surface irregularity and the limited depth of field of 
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microscopy lenses (up to 10 m for a 10X lens), acquisition of a large image stack at each 

location is required to minimize out of focus pixels. While the depth of field correction 

algorithm used in Aim 2 was very robust, stiff PDAC tumors resulted in extreme surface 

uneven imaging planes.  Despite a large z-stack acquisition and an open-top epi-

illumination setup, this still did not yield satisfactory image quality without extensive use 

of software postprocessing. Meanwhile, illumination source using LEDs in the UVC range 

is cost-effective but required an exposure time of 100 ms for the illuminances used in the 

study. Considering that current UV-LED technology offers very limited intensity, this 

exposure time is quite reasonable, but still less than ideal when image acquisition demands 

required a large image stack of vertical focusing depths at each location in the image.  

Although again, for laboratory work, this was manageable and still faster than post 

processing of tissues by a pathology research service.  

The staining procedure was well-established to highlight collagen strands, but there is room 

for improvement to ensure even more consistent staining quality. It was noticeable that due 

to the highly uneven surface, residual of the staining mixture could be left behind on top 

of the tumor surface if washing was not thorough. This remaining staining dye cocktail 

could contribute to the low image contrast problem. Post processing of the raw image data 

was developed specifically for PDAC collagen profiles, so more training data would be 

necessary if the algorithm was applied to different types of tissues that have different 

collagen characteristics. Additionally, this computational technique was demonstrated with 

only BxPC-3 tumor line in the study, and so could need alteration if tested on other tumor 

lines with significantly different characteristics.  

9.3.3 Recommendations and Future Directions for Aim 2 
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Since image contrast remained the biggest problem throughout this study, a better imaging 

setup or cutting technique to address the unevenness of the stiff tumor surface would be 

beneficial for improvement. It would be convenient to keep the open-top setup so stiffness 

mapping and collagen mapping are streamlined. However, an external force applied on top 

of the tumor surface to flatten it out will be necessary to reduce the image stack size and 

minimize out of focus pixels. Alternatively, a better approach for collagen imaging would 

be to consider pressing the tumor upside-down on a UV-transparent platform with 

illumination sources and the camera positioned from the bottom-up. This setup would 

ensure a flat imaging surface even though the exposure time per acquisition might be 

extended due to the attenuated intensity of UV-LEDs when illuminated through a UV-glass 

platform. This compromise should be minor, as compared to the larger problems with 

suitable image contrast. Therefore, it is recommended that current imaging setup is 

improved with reducing the tumor surface irregularity as the top priority. Solving this 

problem will not only help increasing the image quality but will also should result in better 

collagen quantification from post-processing.  

9.4 Conclusion for Aim 3 

Aim 3: Evaluate collagen and stiffness modulation effects by photodynamic therapy 

treatment to enhance intratumoral drug uptake 

9.4.1 Results of Aim 3 from a Macroscopic View 

The benefits of low-dose PDT, or PDP, have been demonstrated to induce intratumoral 

changes mostly on the microscopic level.2,3 Strong evidence of PDP working 

synergistically with chemotherapy as a combination treatment suggested cellular level 
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effects in regulating gene expressions and signal pathways. Desmoplasia modulation 

induced by PDP has been recently introduced and results from Aim 3 are among the first 

studies to document this TME remodeling effect. Beyond the treatment-induced collagen 

depletion as reported in both this thesis work and other studies4, stiffness heterogeneity 

normalization and average stiffness reduction by PDP treatment are established for the first 

time. This finding not only supports early evidence of PDP-induced stromal depletion but 

more importantly, it also reaffirms the proposal of using tumor stiffness information as an 

indicator of tumor drug uptake as presented throughout this thesis work. The impact is 

further elucidated when considering the promise of elastography imaging in clinical 

translation as compared to the additional burden from costly and time-consuming 

procedures of immunohistochemistry staining and/or imaging techniques to provide 

cellular level information to confirm PDP treatment effects. It is even more exciting that 

texture analysis of tumor stiffness data showed a reduction in tumor heterogeneity in the 

treated mice, which has motivated the work in Aim 4 and supported the use of texture 

analysis of clinical patient data to quantify PDP effects.  

9.4.2 Limitations of Aim 3 

While the results of Aim 3 support a consistent relationship between tumor stiffness, 

collagen content and drug uptake established throughout this thesis work, the modulation 

effects induced by PDP treatment of PDAC xenograft mouse model were inferred from a 

small number of animals per group with only BxPC-3 tumor line being investigated. 

Consistent tumor size between the control and the treated group as an indicator of 

equivalent tumor progression required both a staggering tumor implantation schedule and 

frequent tumor size monitoring. This study employed tumor palpation methods, for which 
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experience on working with PDAC orthotopic models is needed, due to the subtle nature 

of pancreatic tumor location. The use of ultrasound imaging to monitor tumor size would 

yield a more accurate and unbiased approach and would not require prior experience. The 

current xenograft model used immunocompromised mice, which were not ideal to 

investigate immune cell recruitment as a potential PDP effect, but served as a reasonable 

compromise for studying the biophysical nature of the treatments.  

9.4.3 Recommendations and Future Directions for Aim 3 

While our study was reasonably solid, a larger number of animals per group would be 

beneficial to validate the findings reported in this study. Additional PDAC tumor lines 

could also be investigated, as desmoplasia complexity has been observed to vary 

significantly among different phenotypes. While preliminary data showed dextran 

perfusion as a marker for tumor drug uptake, it would be more convincing to use a 

chemotherapy drug fluorescence, or tagged with a fluorophore if needed, to assess tumor 

drug distribution.  Several chemotherapy agents have inherent UV fluorescence and could 

be used for this purpose, although gemcitabine does not seem to have this. The current dose 

of PDT drug and light has resulted in approximately 20% necrosis, therefore an even lower 

dose of PDT could be administered in future studies to truly represent the sub-lethal 

concept of PDP treatment.  

One possible method to determine the threshold of low-dose PDT effects is to mark 

the tumor position when exposed to light treatment during surgery. Then, treatment-

induced modulation on tumor collagen, stiffness, vasculature and drug uptake should be 

analyzed radially outward to visualize the gradient of PDP effects with respect to attenuated 

light intensity. If resources permitted, it would be beneficial to conduct the same 
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experiment with transgenic mouse models so that the effects on immune cells could be 

examined, which would be valuable to the assessment of combination treatment with PDT 

and immunotherapy.  

9.5 Conclusion for Aim 4 

Aim 4: Quantify photodynamic priming effects using radiomics analysis on clinical 

PDAC CT scans 

9.5.1 Results of Aim 4 from a Macroscopic View 

While preclinical findings have reported supporting evidence that low-dose PDT, or PDP, 

results in tumor growth inhibition either via targeting certain cellular signaling pathways 

or the tumor microenvironment, clinical outcomes of PDAC patients receiving PDT 

treatment have been limited to examining macroscopic changes such as necrosis, tumor 

size and neighboring major vasculature involvements via CT scans. Although the 

aforementioned tumor changes are reliable indicators of PDT treatment effects, they do not 

reflect the PDP benefits that hold the clinical promise of priming the PDAC tumors for 

combination treatment. Results from Aim 4 have demonstrated, for the first time, that PDP 

effects could be observed and quantified by radiomics analysis in PDAC patients receiving 

PDT treatment. Besides a strong agreement between clinical data and preclinical findings, 

the convenience of information extraction directly from the standard CT scans has made 

this approach even more attractive and feasible for clinical translation. Being able to 

visualize and quantify the tumor priming effects efficiently with CT radiomics marks an 

important step towards realizing PDT as a neoadjuvant therapy for combination treatment.  

9.5.2 Limitations of Aim 4 
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Although extra control and validation testing steps were taken to account for the inherent 

patient variability, it is important to recognize the limited patient cohort presented in this 

study. Tumor segmentation was performed by a trained, board-certified radiologist. 

However, human bias could be considered present as segmentation results came from one 

only one radiologist, and a more detailed analysis for a radiology audience would require 

more readers. While LIFEx software offers a streamlined, user-friendly interface to 

perform segmentation and texture analysis, it is not open-source, so information on the 

back-end code was only given via the user manual. Thus there is little control of the 

analysis algorithms, but given the widespread use of this package in publications it was felt 

that this would be acceptable for the introductory level of this study. Quantitative 

normalization methods were considered but they were not fully executed on raw CT data, 

so only classification process to account for patient variability were performed on texture 

results. Lastly, it was assumed that most non-necrotic regions of the tumors received some 

at least partial PDT treatment, as there were no records of the exact optical fiber insertion 

location. This assumption was fair to small and medium tumors but is likely not that 

accurate with considerably large tumors, as observed in Patient 01. In the future, more 

detailed studies might keep track of the insertion location at least, to determine the area of 

the tumor to track for radiomic signature changes.  

9.5.3 Recommendations and Future Directions for Aim 4 

It is crucial that efforts are put into recruiting more patients in prospective studies, so that 

the proposed combined classifier by the SVM model is properly validated for future use of 

determining treatment-induced tumor homogeneity. While the current study has shown 

evidence that changes in tumor CT numbers were dominant by light treatment, it would be 
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beneficial to apply a normalization method to account for CT scan variation factors, 

whether introduced by unexpected errors in scanning techniques or intrinsic patient 

variability. To realize these extra steps in data pre-processing, an open-source texture 

analysis package would be useful so that implementation of normalization, control and 

validation testing becomes easier to implement. The assumption used in this study that all 

non-necrotic tumor regions partially received PDT treatment and thus were classified as 

PDP regions could be improved if the exact location of the light fiber insert was identified. 

Further estimations of tumor regions receiving low-dose PDT would be more accurately 

determined using tools such as the light modeling described in Jermyn et al to approximate 

the treatment dose given at a certain location.5 To acquire such information would require 

additional collaboration and expertise from the clinicians, which was feasible as proven in 

the past studies. Therefore, it is highly recommended that future studies regarding PDT 

treatment for PDAC patients consider acquiring an extra low-dose CT scan to help identify 

the fiber location.  

9.6 Final Remarks 

PDAC survival rate has remained unchanged for the past 30 years despite considerable 

efforts to characterize the disease progression and explore potential treatment regimens. 

The well-established complexity of PDAC tumor biology and physiology has called for 

combination treatments as an effective solution to simultaneously and synergistically target 

multiple pathways of tumor progression. The findings presented in this thesis work support 

the use of photodynamic therapy as an efficient neoadjuvant step that primes the PDAC 

tumors for subsequent treatments.  In this study we primarily examined the potential for 

priming to relieve the tumor heterogeneity and enhance intratumoral drug distribution. By 
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focusing on the tumor mechanical microenvironment, the work provided consistent 

evidence throughout all Aims to support the inverse relationship between stiffness 

heterogeneity and intratumoral drug uptake, inferring the use of tumor stiffness as a 

surrogate for drug delivery efficiency. A strong emphasis was placed on acquiring 

heterogeneity information at a whole-tumor field of view and transport-relevant resolution 

to truly capture the complexity of drug delivery mechanism in PDAC.  

With the ultimate goal of translational research, this thesis has tested two novel 

approaches to tackle assessment of PDAC treatment efficacy. Specifically, the use of 

stiffness imaging to predict tumor drug delivery is well-supported and deemed highly 

applicable by the growth of promising elastography techniques suitable for clinical 

settings. However, because of resolution limitations in the clinical techniques for 

elastography with ultrasound or MRI, the focus here was on pre-clinical imaging of 

response with direct in situ elastography and UV-fluorescence stromal imaging.  This thesis 

has also highlighted the potential of texture analysis in quantifying tumor homogeneity 

improvements after photodynamic therapy treatment of PDAC patients, all of which are 

feasible via conventional CT scans. Even though clinical adoption of these two proposed 

ideas is far from realized, the findings have set a stepping stone towards improving PDAC 

treatment evaluation.   
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Appendices 

This section includes the important Matlab codes that were used for image processing tasks 

performed in the projects highlighted in Chapter 3 through 7. The majority of data was 

obtained via a microscope or RGB cameras, with the exception of stiffness data being 

collected by LabVIEW programming that integrated the FISO pressure signaling module 

with a translational stage. The codes included below are not exhaustive of scripts that were 

used to perform data analysis in this thesis, but they are the most representative of central 

imaging processing tasks required to obtain the experimental results.  

A.1-Converting pressure reading data imported from Excel into stiffness maps 

%% Load data 
filename=fullfile('..','Excel','20200827','M02.xlsx'); %specify path to 

excel file 
xlRange='N:N'; 
sheet = 1; 
data = xlsread(filename,1,'A:A'); 
X = 29; %input the X-Y size of tumor based on translational stage step 

(1 step = 300 micron) 
Y = 24; 
%% Delete all pre-allocated data (value = 95) while the stage is moving 

before the pressure readings are taken 
ind95 = find(data==95); 
delind = zeros(numel(ind95),1); 
for i = 1:numel(ind95)-1 
    indtemp = ind95(i); 
    if data(indtemp+1)==95 
        delind(i) = indtemp+1; 
    end 
end 
delind(delind==0) = []; 
data(delind)=[]; 

  
%% Get number of points and Rsquare of linear fit 
cycle = 4; 
%Find index of 95kPa 
ind95 = find(data==95); 
%Check to find where pins are 
temp = 1:4:numel(ind95)*4; 
temp = temp'; 
vdiff = temp-ind95; 
indpin = find(vdiff ~= 0); 
vec = zeros(10000,1); 
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data2 = data; 

  
%Add data to fill the pin holes 
while ~isempty(indpin) 
    ind = temp(indpin(1)); 
    data2 = vertcat(data2(1:ind-1),95,data2(ind:end)); 
    ind95 = find(data2==95); 
    temp = 1:4:numel(ind95)*4; 
    temp = temp'; 
    vdiff = temp-ind95; 
    indpin = find(vdiff ~= 0); 
end 

  
%% Get Young's Modulus via calculating the slope of 3-point pressure 

reading data 
numpts = numel(ind95); 
stress = zeros(3,1); 
length = 0.5*10^-2; %0.5cm 
strain = 6.3*(10^-6)*[15 20 25]'./length; 
slope = zeros(numpts,1); 
Rsquare= zeros(numpts,1); 
for i = 1:numpts 
    k = ind95(i); 
    stress(:,1)=data2(k+1:k+3); 
    [fitObj,gof]=fit(strain,stress,'poly1'); 
    Rsquare(i,1)= gof.rsquare; 
    slope(i,1)=fitObj.p1; 
end 

  
%% Locate and index all negative YM values (occasionally the pressure 

probe misrecords a value which makes YM a negative value) 
ind = true(size(slope)); %true = good points, false = bad points  

  
smean = mean(slope(:)); 
ind((slope<0)) = false; %negative slope = false 
negind = find(slope<0); %index of slope < 0 

  
%% Assign the average of the surrounding YMs to replace the negative 

YMs 
indsum = size(negind,1); 
slopecorr = slope; 
for i = 1:indsum 
    k = negind(i); %index of negative slope  
    kb = k-1; ka = k+1; 
    while slope(kb)<0; kb = kb-1;end 
    while slope(ka)<0; ka = ka+1;end 
    slopecorr(k) = (slope(kb)+slope(ka))/2;    
end    

  
%% Turn into matrices/map using the X-Y values for each tumor 
vecs = slopecorr; 
[r1,c1] = size(vecs(1:end)); 
smap = reshape(vecs(1:end),[Y,X]); 
smap2 = transpose(smap); 
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%% Visualize the map 
figure 
image(smap2,'CDataMapping','scaled'); 
axis equal 
axis off 
colormap hot 
caxis([0 max(slopecorr(:))]) 
set(gca,'FontSize',24) 
set(gcf,'Color','white') 
colorbar 
%% Save stiffness map (smap) as .mat files 
mapfile = fullfile('..','Vectra','StiffnessMap','M02_map.mat'); 

%specify local file path 
save(mapfile,'smap2') 
%load(mapfile,'smap2') 

A.2-Co-registration of image data using rigid transformation with Trichrome image 

data as the reference 

 
%%Load data 
animal = 'M02'; %animal name 
%get stiffness map 
dirraw = fullfile('..','Vectra','StiffnessMap'); 
dirinfo = dir(fullfile(dirraw,'*M02_map*')); 
pfile = fullfile(dirraw,dirinfo(1).name); 
load(pfile,'smap2'); 

  
%get binary stiffness mask  
mask = imread(fullfile('..','Vectra','StiffnessMask','M02_mask.tiff')); 

  
%get Trichrome image data to use as reference 
vinfo = dir(fullfile('..','Vectra','10x_crop','*M02*')); 
co = imread(fullfile('..','Vectra','10x_crop',vinfo(1).name)); 

  
%% Modify pmap to image for visualization 
pmap = smap2.*mask; 
%normalize double image to 0 - 1 
pmapn = pmap./max(pmap(:)); 
pmapind = uint8(floor(pmapn * 255)); 
Map       = jet(255); 
pmaprgb = ind2rgb(pmapind, Map); 

  
%% Match common points 
cpselect(pmaprgb,co) %transform pmaprgb to co, co is the reference 

  

%% Apply transformation  
tform = 

fitgeotrans(movingPoints,fixedPoints,'nonreflectivesimilarity'); 
tformfile = 

fullfile('..','Vectra','10x_single_aligned','tform_smap',[animal 

'.mat']); 
save(tformfile,'tform') 
%load(tformfile,'tform') 
Jregistered = imwarp(pmaprgb,tform,'OutputView',imref2d(size(co)));  

  
%% Save transformed image out 
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Jregistered = imwarp(pmaprgb,tform,'OutputView',imref2d(size(co))); 
dirim = fullfile('..','Vectra','10x_single_aligned','smap'); 
if exist(dirim,'dir')==0;mkdir(dirim);end 
imname = [animal '_smap.tiff']; 
imfile = fullfile(dirim,imname); 
imwrite(Jregistered,imfile); 

  
%% Apply tfrom to pmap (not just the image form of pmap) 
Jregistered2 = imwarp(smap2,tform,'OutputView',imref2d(size(co))); 
dirim = fullfile('..','Vectra','10x_single_aligned','transmap-

stiffness'); 
if exist(dirim,'dir')==0;mkdir(dirim);end 
transmap = Jregistered2; 
mapfile = fullfile(dirim,[animal '_transmap.mat']); 
save(mapfile,'transmap'); 

 

A.3-Color segmentation on pathology images 

% Color segmentation on pathology data to get blood vessels or Collagen  
%% load data 
animal = 'M05'; 
slice=1; 
dirraw = fullfile('..','Vectra','10x_crop'); 
dirinfo = dir(fullfile(dirraw,'*M05_*')); 
he = imread(fullfile(dirraw,dirinfo(slice).name)); 
[r,c,l] = size(he); 
%% Convert from RGB to HSV 
hehsv = rgb2hsv(he); 
imshow(hehsv) 
%% Segmentation in HSV space 
h = hehsv(:,:,1); 
s = hehsv(:,:,2); 
v = hehsv(:,:,3); 
mask = true(r,c); 
mask(h<0.4)=false; % empirical HSV value cutoffs depending on the 

structure 
mask(h>0.7)=false; 
mask(s<0.4)=false; 
mask(v<0.3) =false; 
imshow(mask) 

  
%% Get rid of tiny clusters that are not structural information 
mask2 = bwareaopen(mask,50); 

  

%% Write out binary mask 
segname = [animal '_C_mask.tiff']; 
outfile = 

fullfile('..','Vectra','10x_single_aligned','C_mask_hsv',segname); 
imwrite(mask,outfile); 

  
%% Visualize a region on original and segmented image as part of QA 

process 
im = he; 
    imshow(im,[]) 
    a = imrect;  
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    reg = wait(a); 
    x1 = floor(reg(2)); x2 = floor(reg(2)+reg(4)); 
    y1 = floor(reg(1)); y2 = floor(reg(1)+reg(3)); 
    im1 = im2double(he(x1:x2,y1:y2,:)); 
    %im1 = im2double(collagen(x1:x2,y1:y2,:)); 
    %im2 = coll2(x1:x2,y1:y2); 
    m = mask2(x1:x2,y1:y2); 
    im2 = hehsv(x1:x2,y1:y2,:); 
    im3 =cat(3,m.*im1(:,:,1),m.*im1(:,:,2),m.*im1(:,:,3)); 
    figure 
    imshowpair(im1,im3,'montage') 

 

A.4- Get lectin percentage from pathology images 

% This script calculates lectin percentage area 
%% Load data from local path 
animal = 'M21'; 
dirraw = fullfile('..','Vectra','10x_single_aligned'); 
lec = imread(fullfile(dirraw,'L',[animal '_L.tiff'])); 
mask = imread(fullfile(dirraw,'Masks_corr_PDP',[animal 

'_C_mask_corr_PDP.tiff'])); 
maskpdp = logical(mask); 
he  = imread(fullfile('..','Vectra','10x_crop',[animal '_C.tiff'])); 
lec = im2double(lec); 

  
%% BG subtraction for lectin  
imshow(lec) 
title('Select background area') 
a = imrect; 
reg = wait(a); 
close(gcf) 
bgim = imcrop(lec,reg); 
bg = mean(bgim(:)); 
lecn = lec-bg; 
imshow(lecn) 

  
%% Use C mask to get lectin signal  
lecim = lecn.*maskpdp; 

  
%% Get lectin by C mask 
lec1 = imbinarize(lecim,X); %X = thresholding level  
imshow(lec1) 

  
%% QA step - make sure artifacts are eliminated 
title('Select region of artifact') 
a = roipoly(lec1); 
lec1 = lec1-a; 

  
%% Count pixel to get percentage 
totalvec = find(maskpdp==1); 
totalpix = length(totalvec); 
lecimvec = find(lec1==1); 
lecpix = length(lecimvec); 
ratio = lecpix/totalpix*100 
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A.5-Collagen analysis to obtain structural information 

%% Collagen analysis from Trichrome/UV-fluor images  
%load data from local paths 
animal = 'M05'; 
mt = imread(fullfile('..','Vectra','10x_crop',[animal '_C.tiff'])); 
cmask = 

imread(fullfile('..','Vectra','10x_single_aligned','C_mask_hsv',[animal 

'_C_mask.tiff'])); 
pdpmask = 

imread(fullfile('..','Vectra','10x_single_aligned','Masks_corr_PDP',[an

imal '_C_mask_corr_PDP.tiff'])); %pdp = no necrosis 
pdpmask=logical(pdpmask); 
maskmt = cmask&pdpmask; 

  
%% Get collagen binary mask from UV-fluor images 
i=1; 
imlist = dir(fullfile('..','Vectra','10x_crop','*.tiff')); 
lalist = dir(fullfile('..','Vectra','labelmt','*.tiff')); 
imname = imlist(i).name; 
uv = imread(fullfile('..','Vectra','10x_crop',imlist(i).name)); 
la = imread(fullfile('..','Vectra','labelmt',['label_' 

imlist(i).name])); 
maskuv = la==4; 
%% Get rid of tiny clusters 
maskmt = bwareaopen(maskmt,20); %get rid of clumps smaller than X 

pixels 

  
%% Fill in holes on collagen strands for strand counting  
im = maskmt; 
im2 = ~bwareaopen(~im, 500); 

  
%% bothat filtering 
sebot = strel('disk',3); 
imbot =imbothat(im2,sebot); 
imsum = imbot+im2; 

     
%% Merge all small holes within collagen strand 
imsum3 = imcomplement(imsum2); 
imcol = bwareaopen(imsum3,800); 

     
%% Find dist of collagen to BG (which is an indicator of the collagen 

strand thickness) 
[d,ind] = bwdist(imcol); %dist of coll pixel to nearest BG 
% dout = fullfile('..','Data','duv',['d_' imname(1:end-4) 'mat']); 
% save(dout,'d') 

  
%% Break up weak strands by thresholding - MT 
im = d; 
im(im<1)=0; 
immask = bwareaopen(im,2000); 
colmap = im; 
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%% Get percentage of collagen 
total = size(colmap,1)*size(colmap,2); 
colind = find(colmap~=0); 
colper= length(colind)/total 

  
%% Get skeleton of colmap 
core = bwskel(logical(colmap),'MinBranchLength',100); 
se = strel('disk',5); 
core2 = imdilate(core,se); 
bp = bwmorph(core,'branchpoint'); 
bpbreak = core-bp; 

  
%% QA step - Double check the segmentation  
imshow(labeloverlay(mt.*uint8(logical(colmap)),core2,'Colormap','hot')) 

  
%% Count regions based on connectivity 
cc = bwconncomp(bpbreak); 
ccout = fullfile('..','Vectra','10x_single_aligned','cc_new',[animal 

'_cc.mat']); 
save(ccout,'cc') 

  
%% Load structure  
load(fullfile('..','Vectra','10x_single_aligned','cc_new',[animal 

'_cc.mat'])); 

  
j=1; 
numob = cc.NumObjects; 
regind = cc.PixelIdxList; % 1 x numob cell array 
regcount = labelmatrix(cc); 
s = regionprops(cc,'Orientation','MajorAxisLength','MinorAxisLength', 

'Eccentricity', 'Centroid','Area','PixelIdxList'); % all collagen 

strands 

  
%% Get collagen fiber length 
len = [s.MajorAxisLength]; %length in pixel 
lenm = len.*1; %1pix = 0.35 micron, scaling depending on pathology or 

UV-fluor images 
figure 
histogram(lenm,30,'FaceColor','k','EdgeColor','k') 
set(gca,'FontSize',25) 

  
%% Get collagen thickness 
thic = zeros(length(s),1); 
for k = 1:numel(s) %go thru all strands in one image 
    vecind = s(k).PixelIdxList; % ind of all pixels in the region 
    dtemp = colmap; %distance map 
    maskreg =  regcount==k; %mask of each strand 
    vec = dtemp(maskreg); 
    thic(k)=mean(vec(:)); %average thickness of each length 
end 

  
thicm = thic.*1; % 1pix = 0.35micron 
%figure 
histogram(thicm.*1,30,'FaceColor','k','EdgeColor','k') 
set(gca,'FontSize',25) 
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%% Get collagen orientation 
ori = [s.Orientation]; 
histogram(ori,20,'FaceColor','k','EdgeColor','k') 
set(gca,'YTickLabel',[]); 
set(gca,'FontSize',25) 
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