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I. INTRODUCTION 

Functional neuroimaging techniques have become a central research tool for 

psychologists, cognitive scientists and neuroscientists. The use of neuroimaging data 

from functional magnetic resonance imaging (fMRI) and positron emission tomography 

(PET) studies is central to the fields of cognitive neuroscience, affective neuroscience, 

social cognitive neuroscience, neuroeconomics, and related disciplines. FMRI and PET 

data are being combined with data on human performance, psychophysiology, genetics, 

and computational models of performance and neural function in increasingly 

sophisticated ways. The result is enhanced models of human brain function in relation to 

thought, emotion, and behavior, which can be used to both understand the mind and 

guide applied research on performance enhancement and clinical assessment and 

treatment. The best such models are informed by the rich histories of cognitive 

psychology and psychophysiology, and—due largely to the integration of neuroimaging 

data—are increasingly grounded in brain physiology. This grounding permits stronger 

and more specific connections with the neurosciences and biomedical sciences, allowing 

behavioral scientists to leverage a vast and growing literature on brain systems developed 

in these fields.  

All neuroscience methods have limitations, and neuroimaging is no exception. 

The current trend is towards increasingly multidisciplinary approaches that use multiple 

methodologies to overcome some of the limitations of each method used in isolation. For 

example, currently available techniques allow electroencephalography (EEG) and fMRI 

data to be collected simultaneously (Goldman et al., 2000), which provides improved 

temporal precision, among other benefits. Neuroimaging data are also being combined 

with transcranial magnetic stimulation, combining the ability of neuroimaging to observe 

brain activity with the ability of TMS to manipulate brain function and examine causal 

effects (Bohning et al., 1997).  

The rapid pace of development and interdisciplinary nature of the neuro-

behavioral sciences presents an enormous challenge to researchers. Moving this kind of 

science forward requires a collaborative team with expertise in psychology, 

neuroanatomy, neurophysiology, physics, biomedical engineering, statistics, signal 
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processing, and other disciplines. Having a successful team requires that individuals push 

beyond the boundaries of their disciplines and develop expertise in multiple areas, so that 

there is enough overlap that the team can work well together. Hence, the goal of this 

chapter is to review the basic techniques involved in the acquisition and analysis of 

neuroimaging data—and some recent developments—in enough detail to highlight the 

most important issues and concerns. We also intend to provide an overall roadmap of 

study design and analysis options and some of their limitations. 

The various aspects of PET and fMRI methodology are organized here into four 

sections. Section II deals with what several neuroimaging techniques measure, including 

a comparison of PET and fMRI. Section III covers the basics of fMRI data acquisition 

and the relationship between brain activity and observed fMRI signals. Section IV 

describes how fMRI data are used to make psychological inferences and how inference 

relates to study designs. We emphasize two kinds of inferences: forward inferences about 

brain activity given a psychological experimental manipulation, and reverse inferences 

about psychology given patterns of brain activation. Section V deals with neuroimaging 

data analysis and signal processing before analysis (“pre-processing”), the general linear 

model (GLM), and methods for investigating brain connectivity. This section also deals 

with the localization of results from functional neuroimaging studies.  

II. OVERVIEW OF NEUROIMAGING TECHNIQUES 

There are many ways to measure brain function, including fMRI, PET, single 

positron emission computerized tomography (SPECT), electroencephalography (EEG), 

magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS). Each of these 

techniques provides a unique window into the functions of mind and brain (Figure 1).  

In this chapter we will mainly focus on PET and fMRI, which provide the most 

anatomically specific information across the entire brain. The relatively high spatial 

resolution of PET and fMRI complement the precise timing information provided by 

EEG and MEG (CITE EEG CHAPTER). In addition, the ability of simultaneous multi-

slice fMRI to measure activity over the entire brain every 500 msec or so is providing 

enhanced temporal resolution and resistance to some of the artifacts that have plagued 
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fMRI.  

Whole-brain imaging techniques like PET and fMRI offer great potential for 

synergy with animal research. Whereas animal electrophysiology and lesion experiments 

are often focused on a single region, neuroimaging can assess global function and 

interactions across large-scale brain systems. Emerging neuroscientific techniques, 

including calcium imaging with two-photon or light sheet microscopy, are also able to 

examine fields of interacting neurons (at the single-neuron level, several orders of 

magnitude finer than fMRI). However, there is a critical gulf between what we learn in 

animals and what we can infer about the human brain and behavior. Comparing results 

from parallel experiments performed in humans and animals is thus critical. Before we 

discuss fMRI data acquisition, analysis, and inference in more detail, we provide a short 

overview of the most important measures available on MR and PET scanners (Table 1). 

Measures available on MR and PET scanners 

Structural images 

MRI can provide detailed anatomical scans of gray and white matter with a spatial 

resolution below 1 mm3. These images are used to localize functional results in individual 

or group-averaged brains, and are widely used to analyze measures of brain structure in 

relation to psychological or clinical variables of interest—e.g., practice or development, 

effects of aging, and differences between healthy individuals and clinical populations (see 

Figure 2A for examples).  

A popular way of analyzing gray-matter density is the voxel-based morphometry 

(VBM) method (Ashburner and Friston, 2000; Good et al., 2001), which uses structural 

image intensity to measure gray- and white-matter density. Other methods use measures 

of cortical thickness derived from surface reconstruction and unfolding (Fischl et al., 

1999; Van Essen and Dierker, 2007), or the volume of anatomically defined structures. 

One example using structural scans is a classic study reporting that London taxi drivers, 

who had developed extensive expertise in spatial navigation, had larger posterior 

hippocampi than controls (Maguire et al., 2000).  
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Diffusion weighted imaging (DWI) 

Another type of structural imaging attempts to quantify white-matter tracts. MRI 

pulse sequences can be tuned to be sensitive to directional (anisotropic) patterns of water 

diffusion, called diffusion-weighted imaging. Water diffuses more readily along the axons 

that make up the brain’s white matter than across them, and thus diffusion-weighted 

images be used to track the course of white-matter tracts (Figure 2C). Diffusion tensor 

imaging (DTI) is a popular technique for measuring directional diffusion and 

reconstructing the fiber tracts of the brain (Denis Le Bihan et al., 2001). DTI provides 

relatively low-resolution directional information, but many acquisition and analysis 

techniques for enhancing assessment and directionality of diffusion are being developed. 

Tractography analyses allow the quantification of the thickness and connectivity of these 

tracts (Behrens et al., 2007).  

Such tools allow researchers to analyze the relationships between structural 

connectivity and neuro-psychological processes such as development, training, aging, 

cognitive and emotional function, and psychopathology (Johansen-Berg and Behrens, 

2006). DWI can be combined with other techniques, such as fMRI (including measures 

of functional connectivity) or other anatomical and neurochemical measures. For 

example, one study used DWI to define adjacent sub-regions of the medial prefrontal 

cortex, and then used fMRI to show that the sub-regions responded differentially to 

different tasks (Johansen-Berg et al., 2004).  

 

Functional MRI 

Functional MRI allows the investigation of brain function during tasks or rest. It 

is by far the most popular MR technique and most often based on the blood oxygenation 

level dependent (BOLD) contrast (see MR physics and BOLD basics) that measures 

relative levels of oxygenated blood across the brain (Figure 2B).  

Task-based fMRI studies use experimental approaches to relate brain activity or 

functional connectivity measures to experimentally induced psychological states and/or 

measured performance variables. Resting state fMRI studies measure BOLD activity 

during rest, i.e. without any specific task. The signal covariation across different regions 
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or voxels is then assessed to identify brain networks (Biswal et al., 1995; Fox et al., 2007; 

Yeo et al., 2011). Both task-related and resting-state fMRI signals can be related to 

performance, clinical outcomes, and other variables of interest, within a single group or 

across groups (e.g., patients and controls, older and younger individuals, etc.).  

Though BOLD fMRI is the most popular type of functional MRI signal, there are 

other promising techniques as well, based on different pulse sequences and/or use of 

radiofrequency coils. Another popular fMRI technique is arterial spin labeling (ASL), 

which allows for quantitative measurement of regional cerebral blood flow (rCBF) (Detre 

et al., 1994), in many cases across long time scales (e.g., before and after cognitive 

training or a clinical intervention, Figure 2B). By magnetically labeling water molecules 

entering the brain through the carotid arteries and then comparing the MR images with 

labeled molecules to the MR images without labeling, one can estimate local blood flow 

throughout the brain (Buxton et al., 1998). There are many variants of ASL, but in recent 

years a technique called pseudo-continuous ASL (“PCASL”) has emerged as a stable and 

advantageous technique. ASL can be used to test the same types of functional effects as 

BOLD, including task-induced activation and connectivity, resting-state connectivity, and 

relationships between brain activity and performance (or other outcomes).  

 

Measures of brain activity using PET 

Perhaps the most frequent use of both PET and fMRI is the study of metabolic 

and vascular changes that accompany changes in neural activity. With PET, one may 

separately measure glucose metabolism, oxygen consumption, and rCBF. Each of these 

techniques allows one to make inferences about the localization of neural activity based 

on the assumption that neural activity is accompanied by a change in metabolism, in 

oxygen consumption, or in blood flow.  

The PET camera provides images by detecting positrons emitted by a radioactive 

tracer, the frequencies of which are reconstructed into three-dimensional volumes. 

Positrons are subatomic particles having the same mass but opposite charge as an 

electron. The most common radioactive tracers are 15O, “oxygen-15,” commonly used in 

blood-flow studies, 18F (fluorine), used in deoxyglucose mapping, and 13C (carbon) or 123I 
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(iodine), used to label raclopride and other receptor agonists and antagonists. The decay 

rate of such isotopes is quite fast, and their half-lives vary from a couple of minutes to a 

few hours, which means that a cyclotron must be available nearby in order to synthesize 

the radioactive tracer minutes before each PET scan.  

The tracer is injected into the subject’s bloodstream in either a bolus or a constant 

infusion that produces a steady-state concentration of tracer in the brain. As the tracer 

decays within the blood vessels and tissue of the brain, positrons are emitted. The 

positrons collide with nearby electrons (being oppositely charged, they attract), 

annihilating both particles and emitting two photons that shoot off in opposite directions 

from one another. Photoreceptors positioned in an array around the participant's head 

detect the photons. The fact that matched pairs of photons travel in exactly opposite 

directions and reach the detectors simultaneously are important for the tomographic 

reconstruction of the 3-D locations where the particles were annihilated. Note that the 

scanner does not directly detect the positrons themselves; rather it detects the energy that 

results from their annihilation. 

Depending on the design, most PET scanners are made up of an array of detectors 

arranged in a circle around the patient's head, or in two separate flat arrays that are 

rotated around the patient's head by a gantry. To detect simultaneously occurring pairs of 

photons, each pair of detectors on opposite sides of the participant’s head must be wired 

to a "coincidence detector" circuit.  

 The injected tracer will be distributed throughout the blood vessels and 

tissue of the brain and body. Each pair of detectors counts photons emitted within the 

tissue between them. The density of photons emitted at each location in three-

dimensional space can be estimated mathematically from the number of counts across the 

multiple detectors. The resulting, reconstructed PET images are maps of how many 

positron annihilation events occurred in the slice of interest. A more complete 

explanation of PET image formation, including a discussion of filtered backprojection 

and other methods, can be found in several good texts (Bendriem, 1998; Sandler, 2003). 

What do PET counts reflect? The answer depends on what type of molecule the 

label is attached to and where that molecule goes in the brain. Ideally, for 15O PET, 
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counts reflect the rate of water uptake into tissue. 18-fluorodeoxyglucose (FDG) PET 

measures glucose uptake, whereas 13C Raclopride PET measures dopamine binding. 

However, in practice the observed level of signal depends on a number of factors, 

including the concentration of the radiolabeled substance in the blood, the blood flow and 

volume, the presence of other endogenous chemicals that compete with the labeled 

substance, and kinetic properties. Kinetic properties refer to the dynamics of interactions 

between the ligand (i.e., the radiolabeled molecule), the receptors, and the tissue types 

they move through. Important variables include the binding affinity of the substance to 

receptors, the rate of dissociation of the substance from receptors, and the rate at which 

the substance is broken down by endogenous chemicals.  

Accurate quantification of binding requires study of the kinetic properties of the 

substance in animals and the use of this information in kinetic models, which use 

differential equations to estimate the biological parameters of interest (e.g., ligand bound 

specifically to the receptor type of interest). Different kinetic models estimate ligand 

concentrations in different numbers of compartments, or tissue types; for example, a two-

compartment model estimates how much of the ligand is in the vasculature as opposed to 

in the brain. A three-compartment model often used in receptor binding studies estimates 

tracer quantities in blood, ‘free’ tracer in tissue, and label bound to receptors. Often a 

reference region with few or no receptors (e.g., the cerebellum for dopamine) is used to 

model the separation of free from bound tracer; this requires the assumption that none of 

the signal in the reference region comes from ‘bound’ tracer. A four-compartment model 

additionally separates tracer bound to receptors of a specific type (called specific binding) 

from those bound to other receptors (called nonspecific binding). For more details, we 

refer the reader to (Frey, 1999). 

 

Measures of functional neurochemistry using PET  

The affinity of particular pharmacological agents for certain types of 

neurotransmitter receptors, such as raclopride for dopamine D2 receptors, provides a way 

to investigate the functional neurochemistry of the human brain. Radioactive labels such 

as C-11, a radioactive isotope of carbon, are attached to the pharmacological agent. 
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Labeled compounds are then injected into the arteries by either a bolus or continuous 

infusion, typically until the brain concentrations reach steady state. This method can be 

used to image task-dependent neurotransmitter release. As radioactively labeled 

neurotransmitters binds to receptors, the label degrades and gamma rays are emitted that 

are detected by the PET camera. When endogenous neurotransmitters are released in the 

brain, there is greater competition at receptors, and less binding of the labeled substance 

(referred to as ‘specific binding’). Thus, neurotransmitter release generally results in a 

reduction in radioactivity detected by the PET camera. 

The most common radioligands and transmitter systems studied are dopamine 

(particularly D2 receptors) using [11C]raclopride or [123I]iodobenzamide, muscarinic 

cholinergic receptors using [11C]scopolamine, opioids using [11C]carfentanil, and 

benzodiazepines using [11C]flumazenil. In addition, radioactive compounds that bind to 

serotonin, opioid, and several other receptors have been developed. In recent years, 

ligands for many other substances and cell markers have been developed as well, such as 

those related to neuroinflammation and glial-cell activity (Brown et al., 2007; Loggia et 

al., 2015). These types of molecular imaging may be very useful for examining specific 

forms of neuropathology in clinical disorders. For example, PET imaging with a 

compound called “Pittsburgh Compound B” or “PIB” is sensitive to molecules found in 

neurofibrillary tangles characteristic of Alzheimer’s disease, and is now used clinically as 

a marker for early-onset Alzheimer’s (Klunk et al., 2004). 

 

Comparison of PET and fMRI 

PET and fMRI can be used in different ways to measure a number of biological 

processes related to brain activity. Measures are generally obtained for each of a large 

number of local regions of brain tissue called “voxels” (three-dimensional pixels), 

providing 3-D brain maps. Popular techniques include measures of both brain structure 

and function. Structural measures may be divided into measures related to gray- and 

white-matter volume and density, and measures related to neurochemical receptors and 

other biomarkers.  
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The most frequently used functional measures are those that measure processes 

related to overall neuronal and/or glial activity, referred to here as “activation.” These 

measures include measures of glucose metabolism, blood flow or perfusion in PET and 

arterial spin labeling (ASL) and the Blood Oxygen Level Dependent (BOLD) signal in 

fMRI. Activation and deactivation in both PET and fMRI reflect changes in neural 

activity only indirectly, and they measure different biological processes related to brain 

activity, which may be broadly defined as the energy-consuming activity of neurons and 

glia, and the electrical and chemical signals they produce. Thus, both PET and fMRI can 

be used to measure brain activity, though each has unique advantages over alternative 

techniques and one another. These are summarized in Table 2, which lists some of the 

strengths and weaknesses of PET and fMRI in terms of acquisition, signal types and 

interpretability, resolution, accessibility, and ‘multimodal potential’—potential for 

combination with other techniques. 

As one might expect, both PET and fMRI have their share of limitations as well. 

One should consider the limitations of each technique not only when designing 

experiments, but also when interpreting the results of studies and reading the 

neuroimaging literature as a whole. One should always ask the following question: “Are 

the activations caused by the experimental paradigm or by other unwanted sources?” and 

“What are the plausible psychological or physiological explanations for the reported 

activity?” Conversely one should also ask: “Were there other active regions that were 

likely missed by the experimental paradigm?” Together, the answers to these questions 

constitute an interpretation of both positive and negative findings. Errors of both 

commission and omission may occur because of the spatial or temporal limitations of the 

technique, image artifacts, task confounds, or mischaracterized noise. 

 

Spatial limitations of PET and fMRI 

The upper bound on spatial resolution of PET is on the order of 1-1.5 cm3, though 

it varies across types of PET scanners and is likely quite a bit lower in practice. The 

upper bound of fMRI resolution is around 1 mm3 in high-field imaging in humans or 

animals, but is typically on the order of 8-36 mm3 for human studies. The limiting factors 
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in fMRI include signal strength and the point-spread function of BOLD imaging, which 

tends to extend beyond neural activation sites into draining veins (Duong et al., 2002). 

Estimates of the point-spread function of BOLD at 3 Tesla, a limit on the effective 

resolution based on the fact that BOLD samples oxygenation and flow in local 

vasculature, are around 3 mm—no matter how small the voxels are (Chaimow et al., 

2011). Thus, separating out information encoded in brain features such as cortical 

columns and even major sub-nuclei (e.g., there are 30 or so in each of the amygdala and 

thalamus) require high-resolution techniques, often with customized acquisition 

parameters, to achieve the necessary resolution. Even if the BOLD point-spread function 

is limited, it is possible to obtain differential information encoded in brain structures with 

a spatial frequency of around 1-2 mm. For example, careful work in individual 

participants has demonstrated the imaging of ocular dominance columns in humans 

(Cheng et al., 2001).  

While this resolution does not sound all that bad, there is another factor that 

seriously limits the effective spatial resolution in most studies. That is the fact that 

making inferences about populations of subjects requires analyzing groups of individuals, 

each with differing brain shapes. Usually, individual brains are aligned to one another 

through a registration or warping process (see Preprocessing), which introduces spatial 

blurring and noise in the group average. Thus, the effective resolution for group fMRI 

and PET studies is about the same. One estimate based on meta-analysis is that the spatial 

variation in the location of an activation peak among comparable group studies is 2-3 cm 

(Wager et al., 2004a). 

Overcoming these limitations with high-resolution fMRI imaging is a challenging 

and rapidly developing research area. By focusing on particular regions and omitting data 

collection in much of the brain, it is possible to acquire voxels on the order of 1.5 mm per 

side, yielding fMRI maps with resolution closer to the physical size of functional sub-

regions (e.g., cortical fields within the hippocampus, or nuclei in the brainstem). 

Resolution can potentially be considerably enhanced using high-field imaging and 

analysis techniques that remove some spread in fMRI signal due to draining veins 

(Menon, 2002). Secondly, collecting thinner slices can reduce susceptibility artifacts and 
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improve imaging around the base of the brain (Morawetz et al., 2008). However, there 

are costs as well. There is a substantial loss in signal due to the smaller volume of each 

voxel. Ultimately, high-resolution studies are very promising when a small set of 

subcortical nuclei or nearby cortical regions are of primary interest. 

Finally, limitations in group studies related to inter-individual variability can be 

partially overcome using identification of regions of interest on individual participants’ 

anatomical images or by advanced cortical unfolding and inter-subject warping 

techniques (Ashburner, 2007). Another interesting idea, called ‘hyperalignment’, is to 

match voxel response profiles between subjects to align them in a ‘representational’ 

space instead of anatomical space (Haxby et al., 2011). These techniques are making it 

increasingly possible to do group studies at higher effective spatial resolution, and thus 

make population inferences about performance, clinical status, and other outcomes. 

 

Temporal resolution and trial structure 

Another important limitation of scanning with PET and fMRI is the temporal 

resolution of data acquisition. The details of this are discussed below, but it is important 

to note here that PET and fMRI measure different things, over different time scales. 

Because PET computes the amount of radioactivity emitted from a brain region, at least 

30 seconds of scanning must pass before a sufficient sample of radioactive counts is 

collected. This limits the temporal resolution to blocks of time of at least 30 seconds, well 

longer than the temporal resolution of most cognitive events, but more suitable for 

examining mental states or ‘mindsets’. For glucose imaging (FDG) and receptor mapping 

using radiolabeled ligands, the period of data collection for a single condition is much 

longer, on the order of 30-40 minutes.  

Functional MRI has its own temporal limitations, due largely to the latency and 

duration of the hemodynamic response to a neural event. Typically, even very brief 

events (e.g., 16 msec) induce measurable changes in BOLD signal, but the BOLD 

response does not reach its peak until 5-6 seconds after local neuronal and metabolic 

activity has occurred. Thus, the locking of neural events to the vascular response is not 

very tight. Current fMRI designs (see Event-related fMRI) use a General Linear Model 
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(GLM) to link BOLD activity to specific mental events. By examining differences in 

average event-related activity across conditions, it is possible to make inferences about 

the relative timing and duration of brain responses across different mental processes 

(Lindquist et al., 2008; Waugh et al., 2010). 

 

Acquisition artifacts 

Artifacts and image distortions may arise from a number of sources. An early 

study, for example, found a prominent PET activation related to anticipation of a painful 

electric shock in the temporal pole (Reiman et al., 1989). However, it was discovered 

some time later that this temporal activation was actually located in the jaw – the subjects 

were clenching their teeth in anticipation of the shock!  

‘Artifacts’ refer to both (a) deviations in the spatial pattern and/or intensity of an 

image from the true, underlying values, and (b) spurious results related to confounding 

processes. Artifacts can be introduced or mitigated at virtually all stages of acquisition 

and analysis. Acquisition-related artifacts include those related to magnetic susceptibility, 

instability in magnetic gradients used to acquire images, and radio-frequency interference 

from outside sources. They also include distortions related to reconstruction and, 

importantly, interactions between the magnetic field gradients and physiological 

processes, mainly head movement, heartbeat and breathing (including induced motion 

and carbon dioxide levels, which affects BOLD signal). 

Susceptibility artifacts in fMRI occur because magnetic gradients near air and 

fluid sinuses and at the edges of the brain cause local inhomogeneities in the magnetic 

field that affects the signal, causing distortion in echo-planar imaging (EPI) sequences 

and blurring and dropout (reduced signal intensity) in spiral sequences. These problems 

increase at higher field strengths and provide a significant barrier in performing effective 

high-field fMRI studies. Not all scanner/sequence combinations can reliably detect 

BOLD activity near these sinuses—which affects regions including the orbitofrontal 

cortex, inferior temporal cortex, hypothalamus, and amygdala. Signal may be recovered 

by using optimized sequences such as “z-shimming” (Constable and Spencer, 1999) or 

spiral in/out sequences (Glover and Law, 2001) and/or using a physical magnetic shim 
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held in the mouth of the participant (Wilson and Jezzard, 2003). Signal loss and distortion 

may be further minimized by using improved reconstruction algorithms (Noll et al., 

2005) and “unwarping” algorithms that measure and attempt to correct EPI distortion 

(Andersson et al., 2001). Collecting thinner slices can reduce susceptibility artifacts and 

improve imaging around the base of the brain (Morawetz et al., 2008), which is now 

increasingly possible with simultaneous multi-slice or ‘multiband’ imaging (Feinberg et 

al., 2010; Setsompop et al., 2012). 

Functional MRI also contains more sources of signal variation due to a substantial 

slow drift of the signal across time and higher frequency changes in the signal due to 

physiological processes accompanying heart rate and respiration. The low-frequency 

noise component in fMRI can obscure results related to a psychological process of 

interest and it can produce false positive results, so it is usually removed statistically prior 

to analysis. A consequence of slow drift is that it is often impractical to use fMRI for 

designs in which a process of interest only happens once or unfolds slowly over time, 

such as drug highs or the experience of strong emotions, though some 

experimental/analysis approaches have been developed to facilitate such studies 

(Lindquist et al., 2007). As scanners have become more stable, low-frequency drift has 

become less of a problem—though it is still important to consider—and many published 

studies analyze BOLD responses across periods of several minutes. These include, for 

example, BOLD imaging in response to pharmacological challenges (Wise et al., 2002; 

Atlas et al., 2012) and stressors (Sinha et al., 2004). 

 

Combining Techniques: fMRI, EEG, TMS, Genetics 

One option to overcome some of the temporal limitations of fMRI is the 

integration of multiple methodologies with low (fMRI) and high temporal resolution 

(EEG). Such multimodal imaging is associated with a number of technical challenges, but 

it is increasingly popular as more integrated solutions to some of these challenges 

become available. Figure 3 visualizes some potential synergies between MR measures 

and other methods. 
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The simplest way to combine fMRI with EEG or MEG is to repeat the same 

experiment once in the MR scanner and once outside using EEG or MEG. Structural MR 

images can also be used to improve source localization in EEG/MEG datasets. A more 

integrated approach is the concurrent acquisition of fMRI and EEG data inside the 

scanner. This enhances the analysis of fMRI by making more direct links, based on 

fMRI-EEG co-variation across time, trials, and/or conditions. This combination enhances 

the temporal resolution of fMRI and can support more informed temporal modeling 

choices. It can also enhance the spatial resolution of EEG analysis by constraining source 

localization (Phillips et al., 2002) or by testing covariation between EEG signals and 

activity in specific MRI voxels (Scheibe et al., 2010).  

Simultaneous acquisition of fMRI and EEG data poses several technical 

challenges; among them, radiofrequency pulses during MRI scanning induce large 

artifacts in EEG recording by inducing currents in the EEG leads. However, in addition to 

hardware enhancements minimizing artifacts, the regular timing and waveform of the MR 

artifacts allow them to be subtracted out from the EEG recordings, as long as the timing 

synchronization is extremely precise (see (Laufs et al., 2008) for a review). 

Neuroimaging is also being combined with transcranial magnetic stimulation 

(TMS) to integrate neuroimaging of brain activity with the ability afforded by TMS to 

manipulate brain function and examine causal effects (Bohning et al., 1997; Leitao et al., 

2015). Different TMS protocols can be applied either before the fMRI session to 

investigate more tonic effects, or interleaved between acquisition of single fMRI volumes 

(Bohning et al., 1999; Ruff et al., 2006).  

Finally, integrating genetics with brain imaging is seen as a way to study how 

genetic polymorphisms and other genetic characteristics may affect functional brain 

activity. For example, an early study found that prefrontal activation related to reward 

anticipation was dependent on a polymorphism in the Catechol-O-methyltransferase 

(COMT) gene, which regulates a transporter critical for the reupdake of dopamine, 

norepinephrine, and epinephrine (Yacubian et al., 2007). A hope for the field of imaging 

genetics is that quantitative indicators of brain function could facilitate the identification 

of the genetic determinants of complex brain-related disorders such as autism, dementia 
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and schizophrenia (Glahn et al., 2007b; Glahn et al., 2007a). Most studies look at (a) 

associations between brain activity and candidate genes or genome-wide single 

nucleotide polymorphisms (GWAS); (b) moderation of task- or performance-related 

brain responses by gene variants (a type of gene-by-brain or gene-by-brain-by-

performance interactions); or (c) the heritability of structural and functional brain patterns 

in twin samples. 

However, as usual in science, there are substantial challenges to be overcome. A 

fundamental issue with both brain imaging and candidate gene studies is the large 

number of tests that can potentially be performed to screen for significant effects. The 

more tests are conducted for a sample of a given size, the less likely the results are to 

replicate: The ‘winning’ tests might either be purely due to chance, or, if this possibility 

is minimized using appropriate multiple comparisons correction, their importance (i.e., 

effect size) is typically dramatically overestimated. With many voxels and many potential 

genes, this problem increases multiplicatively. Now imagine multiplying that number by 

the number of potential task effects and ways of defining outcomes in a given study. The 

flexibility can become astronomical if the space of hypotheses tested is not carefully 

constrained, with corresponding increases in false findings. To provide reasonably 

powered tests, very large sample sizes are needed—depending on the underlying effect 

size, thousands or tens of thousands of subjects may be required, therefore requiring huge 

investments and extensive collaborative efforts. This is what motivates consortia such as 

ENIGMA, a collaborative data-sharing project that includes summary measures of brain 

imaging and genetic data for over 50,000 individuals (Thompson et al., 2014).  

Each of these multi-modal approaches promise to be important topics of future 

research, and to fully realize their promise, novel statistical techniques will be needed. 

Ultimately, combining information from different modalities is challenging to data 

analysts, if for no other reason than that the amount and variety of data will significantly 

increase. In addition, since different modalities are measuring fundamentally different 

quantities, it is not immediately clear how to best combine the information. However, 

clearly, this is an extremely important problem that has already started to become a major 

area of research. 
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III. FMRI MEASURES: SIGNAL ACQUISITION AND PHYSIOLOGY 

MR physics and BOLD basics 

Both structural and functional MRI images are obtained using the same scanner; 

the only difference is in how the scanner is programmed. A brief overview of the image 

acquisition process is as follows. A sample (e.g., a brain) is placed in a strong magnetic 

field and exposed to a radiofrequency (RF) electromagnetic field pulse. The nuclei absorb 

the energy only at a particular frequency band, which is strongly dependent on their 

electromagnetic environment, and become “excited” (i.e. – they change their quantum 

energy state). The nuclei then emit the energy at the same frequency as they “relax.” The 

same antenna that produced the RF field detects the returned energy. Pulse sequences, or 

software programs that implement particular patterns of RF and gradient magnetic field 

manipulations, are used to acquire data that can be reconstructed into a map of the MR 

signal sources, i.e., an image of the brain. For more in-depth information, we recommend 

two very approachable texts (Elster, 1994; Huettel et al., 2004), and more detailed texts 

for the advanced reader (Haacke, 1999; Bernstein, 2004). 

The relaxation process can be described by three values: T1, T2, and T2
*. T1 and T2 

are constants determined by the spin frequency, field strength, and tissue type (largely 

based on the hydrogen content, which depends in turn on how much water is in the 

tissue). T1 refers to the rate at which spins relax back to alignment with the main 

magnetic field, and T2 refers to the rate of attenuation of the magnetic field applied by the 

RF pulse. T2
* is like T2, but depends additionally on local inhomogeneities in magnetic 

susceptibility that are caused by changes in blood flow and oxygenation, among other 

factors. 

Different pulse sequences—patterns of RF excitations and data collection 

periods—produce images that are sensitive primarily to T1, T2, or T2
*. Because T1 and T2 

vary with tissue type but are insensitive to functional changes and local magnetic field 

homogeneity, T1- and T2-weighted images can produce high-resolution depictions of the 

boundaries between gray matter (mostly cell bodies), white matter (mostly axons), and 

cerebrospinal fluid (CSF, mostly water). An example of the same slice of tissue imaged 

with T1 and T2 weighting can be seen in Figure 2A. The images look strikingly different. 
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Changing the contrast mechanism can be very useful in differentiating brain structures or 

lesions, since some structures will be apparent in some kind of images but not in others. 

For example, multiple sclerosis lesions are virtually invisible in T1 weighted images, but 

appear very brightly in T2 weighted images. 

Because T2
* is sensitive to flow and oxygenation, unlike T1- and T2-weighted 

images, T2
*-weighting is used to create images of brain function. T2

*-weighted images 

form the basis of functional MRI. 

BOLD Physiology 

Unlike PET, which can provide measures of both (a) overall activation related to 

metabolism and blood flow or (b) specific neurochemical systems, fMRI is principally 

used to obtain measures of regional brain activity. The most popular type of functional 

signal, which we focus on, is the Blood Oxygenation Level Dependent (BOLD) signal 

(Kwong et al., 1992; Ogawa et al., 1992), which is obtained using T2
*-weighted images. 

BOLD imaging takes advantage of the difference in T2
* between oxygenated and 

deoxygenated hemoglobin. As neural activity increases, so does metabolic demand for 

oxygen and nutrients. Capillaries in the brain containing oxygen and nutrient-rich blood 

are separated from brain tissue by a lining of endothelial cells, which are connected to 

astroglia, a major type of glial cell that provides metabolic and neurochemical-recycling 

support for neurons. Neural firing signals the extraction of oxygen from hemoglobin in 

the blood, likely through glial processing pathways (Sibson et al., 1997; Shulman et al., 

2004). As oxygen is extracted from the blood, the hemoglobin becomes paramagnetic, 

which creates small distortions in the magnetic field that cause dephasing of the protons 

or ‘spins,’ resulting in a faster decay of the signal and a lower T2
*. Initial increases in 

deoxyhemoglobin can lead to a decrease in BOLD signal, often referred to as the “initial 

dip.” The initial decrease in signal is followed by an increase, due to an over-

compensation in blood flow that results in an increase in oxygenated hemoglobin (Figure 

9A). The inflow of diamagnetic oxygenated blood leads to less local field 

inhomogenities, less dephasing of spins, and hence longer T2
* and more measured signal. 

The longer T2
* relaxation time of oxygenated compared to deoxygenated blood is the 

basis for the BOLD signal (Ogawa et al., 1990). 
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How well does BOLD signal reflect increases in neural firing? The answer to this 

important question is complex, and understanding the physiological basis of the BOLD 

response is currently a topic of intense research (Buxton and Frank, 1997; Vazquez and 

Noll, 1998; Heeger and Ress, 2002; Buxton et al., 2004). 

Essentially, the BOLD signal corresponds relatively closely to the local electrical 

field potential surrounding a group of cells—which in turn is likely to reflect changes in 

post-synaptic activity under many conditions. Demonstrations by Logothetis and 

colleagues have shown that BOLD activity closely tracks the position of neural firing and 

local field potentials in monkey visual cortex, even to the locations of specific columns of 

cells responding to particular line orientations (Logothetis et al., 2001). However, under 

other conditions, neural activity and BOLD signal may become decoupled (Disbrow et 

al., 2000). Thus, for these reasons and others, BOLD signal is only likely to reflect a 

portion of the changes in neural activity in response to a task or psychological state.  

Another important question is whether BOLD signal increases reflect neural 

excitation or inhibition. Some research supports the idea that much of the glucose and 

oxygen extraction from the blood is driven by glutamate metabolism, a major (usually) 

excitatory transmitter in the brain released by 60-90% of the brain’s neurons (Shulman 

and Rothman, 1998). This is because glutamate is thought to be involved in generating 

the signals that trigger glucose uptake from blood vessels. However, this is not the whole 

story, and in some cases BOLD increases may be caused by activation of inhibitory 

interneurons as well.  

Given these ambiguities, one might reasonably ask whether BOLD signal 

increases linearly with increases in cognitive effort, which we define for present purposes 

as the metabolic demand involved in engaging in a mental process. In addition to issues 

of what physiological processes BOLD signals sample, floor and ceiling effects could 

result in insensitivity to task/mental state demands, resulting in null findings. The answer 

to this question depends on the precise task, mental state, experiment, the subject’s 

expertise, and brain region(s) tested. A helpful distinction between cognitive effort and 

cognitive work (what has been accomplished by the cognitive effort) illuminates two sets 

of findings. First, experts are able to achieve the same outcome with less cognitive effort 
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compared to novices. For example, expert drummers easily process congruent visual and 

auditory presentations of drumming, with BOLD responses in the cerebellum lower than 

those of novices (Petrini et al., 2011). Second, in repetition suppression experiments, 

stimulus repetition can lead to lower BOLD responses in sensory cortices while subjects 

still perceive the stimulus – the same percept is accompanied by reduced fMRI signal 

(Henson et al., 2000; Summerfield et al., 2008). These examples illustrate instances in 

which the BOLD signal may not increase linearly with task demands. Fortunately, and 

perhaps surprisingly, BOLD signal does go up approximately linearly in appropriate 

brain regions with increasing demand on visual processing (Boynton et al., 1996), 

reaction time (Grinband et al., 2011), subjective value (Hare et al., 2009), pain (Bornhovd 

et al., 2002; Buchel et al., 2002; Atlas et al., 2014), and other conditions. Such 

demonstrations that the BOLD signal is sensitive to particular mental processes in a 

specific psychological intensity range are important, because they help ensure that brain 

measures will be sensitive subsequent tests, e.g., those that try to augment or inhibit the 

mental state. 

Practical considerations (acquisition) 

There are a number of critical determinations that go into designing an fMRI 

study (for aspects regarding experimental design see Practical considerations). One set 

of decisions concerns the desired spatial and temporal resolution of the study. The 

temporal resolution determines our ability to separate brain events in time. In fMRI its 

value depends upon how quickly each individual image is acquired, i.e. the TR. In 

contrast, the spatial resolution determines our ability to distinguish changes in an image 

across different spatial locations. The manner in which fMRI data is collected makes it 

impossible to simultaneously increase both, as increases in temporal resolution limit the 

number of measurements that can be made in the allocated sampling window and thereby 

directly influence the spatial resolution of the image (Figure 4). Therefore there are 

inherent trade-offs required when determining the appropriate spatial and temporal 

resolutions used in an fMRI experiment. A major exception to this trade-off is multi-slice 

sequences that simultaneously acquire date from multiple slices of a volume and thereby 

drastically increase the temporal resolution. 
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The main limitation in terms of temporal resolution for standard sequences – 

besides the slowness of the hemodynamic response – is the time T2* time that has to be 

considered for each slice. If the whole brain is to be imaged, at least 38 slices at about 4 

mm thickness are needed. This typically takes about 2 or more seconds. It is possible to 

reduce brain coverage by measuring fewer slices per volume and achieving a faster TR. 

Another option is to decrease slice thickness, and thus increase spatial resolution, while 

keep the number of slices and TR constant, but also reducing brain coverage.  

The spatial resolution of fMRI studies is typically on the order of 3x3x4mm, 

corresponding roughly to image dimensions on the order of 64x64x38 voxels. However, 

combining higher field strengths and new acquisition techniques allows for much higher 

spatial and temporal resolution. For example, multi-slice sequences excite multiple slices 

(typically 2-8 slices) at the same time, thereby drastically reducing sampling rates. 

Currently it is possible to acquire 2 x 2 x 2 mm data across the brain in less than 1 

second. An important aspect to keep in mind is that smaller voxels are less prone to 

susceptibility artifacts, but have lower signal-to-noise ratio (SNR). The SNR is critical for 

detecting changes in the signal induced by the experiment. Table 3 summarizes some of 

the acquisition parameter choices for fMRI experiments. 

As previously mentioned, respiration and cardiac pulsation induce artifacts in 

functional images. Almost all MR systems offer the possibility to record respiratory and 

finger pulse data during acquisition of functional images. These data can be used to 

reduce artifacts related to these physiological processes. This can be done on the acquired 

images (Glover et al., 2000) or within the subject-level GLM (Deckers et al., 2006; 

Brooks et al., 2008). Correcting for physiological noise has been shown to be beneficial 

for amygdala imaging (Boubela et al., 2015) and is necessary for spinal cord fMRI (Kong 

et al., 2012). 
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IV. USING FMRI TO MAKE INFERENCES ABOUT BRAIN AND MIND 

Interpretation of fMRI studies 

Forward inference and reverse inference 

A fundamental question in neuroimaging research, and a good starting point for 

planning a study, is determining what question one hopes to answer with the study. 

Successful research requires a solid grasp of how neuroimaging results can and cannot 

bear on psychological or physiological theory, and a grounded understanding of what 

kinds of results are likely to be obtainable.  

There are several potential inferential goals in neuroimaging studies. One goal is 

prediction of a psychological or disease state using neuroimaging data, which can be 

accomplished using regression or classification techniques (Norman et al., 2006). 

‘Prediction’ can literally refer to predicting the future, e.g., to detecting early-onset 

Alzheimer’s disease before other measures. But it can also be much more, including 

developing measures that track mental events or other outcomes (e.g., performance) so 

that brain-based measures can support or even replace those outcomes when they are 

suspect or unavailable. For example, pain and emotion are typically measured in terms of 

self-reports, which are appropriate in many circumstances; but self-report has 

fundamental limitations and biases, and progress in research may require complementary, 

objective measures. Neuroimaging-based measures are unique in this respect because 

they are close to the neurophysiological mechanisms that generate pain and emotion, and 

so can provide more clues about their mechanisms.  

Another important goal, and the traditional one in cognitive neuroscience, is to 

infer something about the structure of mental processes from imaging data—i.e., to use 

neuroimaging to inform psychological theory. This is a difficult goal, and some 

psychologists have argued that it has not been achieved in any domain (Coltheart, 2006). 

However, it is possible under some circumstances. Making inferences about 

psychological states has been termed reverse inference, because it involves inferences 

about the state of the mind given some observed measures of the brain. Several excellent 

papers review some of the issues related to reverse inference in brain imaging (Sarter et 
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al., 1996; Poldrack, 2011) and physiological data generally (Cacioppo and Tassinary, 

1990).  

Valid reverse inference requires strong knowledge of what types of mental events 

a physiological measure can and cannot reflect. For example, let’s say we apply a new 

drug to the skin and want to know if it affects pain – a subjective mental state (Figure 5). 

Let’s say we measure signaling in pain-specific neurons “nociceptors” demonstrated to 

respond only to painful events, and we find that the drug suppresses their firing. We 

might then be justified in inferring that the neurophysiological mechanisms that give rise 

to pain (or at least some forms of pain) have been disrupted. Of course, we would still 

want to know whether people reported less pain (a behavior). But there may be 

circumstances in which people are not able to communicate their pain effectively, and we 

may want to know if the drug effects occur in neurophysiological systems that 

normatively give rise to pain, or those associated with emotions beyond pain specifically 

or other decision-making or social cognitive processes.  

Often, reverse inference is done improperly and heuristically, leading to the 

impression that it cannot be done at all. However, reverse inference can also be done 

formally, with conclusions valid for the range of hypotheses considered (see Chapter 1 

for an in-depth treatment of valid inference and Bayesian approaches).  

In experimental studies, a psychological state is typically manipulated, and we 

calculate statistics related to the probability of observing the brain data given the 

psychological state. This probability is called sensitivity in testing theory and forward 

inference in the neuroimaging literature. To make reverse inferences about psychological 

states, we must estimate the relative probabilities of a defined set of psychological 

hypotheses given the data, typically using Bayes Rule. This requires assessing both 

sensitivity and specificity—the probability of not observing a brain pattern in the absence 

of a particular psychological state—across a range of potential states. If sensitivity and 

specificity are high enough, a brain measure may have high positive predictive value—

that is, a high likelihood of implying a particular mental state or class of states (Poldrack, 

2011).  

As noted above, reverse inference based on activation in single brain regions is 
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problematic. For example, researchers have inferred that romantic love and retribution 

involve “reward system” activation because these conditions activate the caudate nucleus 

(de Quervain et al., 2004; Aron et al., 2005), that social rejection is like physical pain 

because it activates the anterior cingulate (Eisenberger et al., 2003), and many other, 

similar conclusions. These inferences are problematic because both these regions are 

involved in a wide range of tasks, including shifting of attention, working memory, and 

inhibition of simple motor responses, so their activation is not indicative of any particular 

psychological state (Bush et al., 2000; Kastner and Ungerleider, 2000; Paus, 2001; Wager 

et al., 2004b; Wager et al., 2005b). That is, the specificity of activation in these regions is 

low, and so they have little positive predictive value for any particular state.  

These examples demonstrate the broader principle that overlapping brain activity 

is not sufficient to infer overlap in neural or mental processes. 

 

From regions to patterns: Enhanced potential for inference 

The type of ‘reverse inference’ discussed so far relates to inferences based on 

activation of a particular brain region (e.g., the primary visual cortex, the hippocampus, 

etc.). Strong inferences based on activation of a region are rarely valid, because (a) 

specificity of activation of a region is too low; (b) the definition of what constitutes 

activation is not precise—exactly which voxels and their relative activity levels should be 

specified; and (c) many psychological processes are distributed across brain networks, 

and activity in one region is insufficient to characterize them even in principle.  

However, it is possible to apply the same logic for making reverse inferences to 

other types of brain measures as well. Rather than focusing on single regions, recent 

studies have identified patterns of activity across brain regions. Increasingly, the 

sensitivity and specificity of these patterns are being assessed, in a few cases across 

studies and laboratories, and they are thus being evaluated as markers for particular 

mental processes. For example, our lab is interested in the development identifying whole 

brain patterns that have positive predictive power for pain perception. This is currently 

possible for cutaneous heat pain (Wager et al., 2013); a distributed pattern-based marker 

called the Neurologic Pain Signature has high sensitivity and specificity in discriminating 
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painful heat from non-painful warmth, pain anticipation, and pain recall (> 90%). This 

pattern is also able to discriminate painful heat from social rejection, which has been 

claimed to involve the same processes as pain experience. 

 

Dissociation logic 

Another type of reverse inference is less specific about the localization of 

psychological functions in the brain but in some cases more defensible. Based on 

dissociations in activation among tasks on can learn about representations of mental 

states. This is used in studies that test two or more tasks in the same experiment. 

Dissociation occurs when a brain region is more active in Task A than Task B. A double 

dissociation occurs when each task activates one region more than the other task. Double 

dissociations are a powerful tool because they imply that the two tasks utilize different 

processes, and that one task is not a subset of the other. These kinds of inferences can 

both be answered using classical univariate approaches or multivariate approaches (see 

Comparison of univariate and multivariate techniques). 

Though double dissociations are potentially powerful, they have been criticized 

on several counts. For one thing, nonlinear relationships between task demands and 

activation can produce a double dissociation even if there are no processes unique to each 

task. Sternberg (Sternberg, 2001) has proposed a stronger criterion for task separability 

called ‘separate modifiability’, which entails finding outcomes that are affected by each 

task but not the other task, which is a stronger criterion for the separability of two brain 

processes. Secondly, even if double dissociations or separately modifiable brain measures 

demonstrate that there are unique brain processes involved in each task, it does not 

strongly imply that the brain processes are those the investigators are interested in. 

Therefore, if the brain processes that are dissociated are also predictive of psychological 

or behavior outcomes of interest, we can make stronger inferences that the brain 

processes involved in the behaviors are separable.  

For example, consider a recent study that looked at the overlap between physical 

pain and romantic rejection (Woo et al., 2014b). Physical pain was induced by noxious 

heat (somatic stimulation), and feelings of rejection were induced by showing 
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participants pictures of their ex-romantic partners. The research team identified separate 

brain patterns that were responsive to physical pain but not rejection and vice versa, 

demonstrating separate modifiability. But does that mean that the brain processes that 

give rise to feelings of pain and rejection are separable? This evidence alone is not 

enough, because the separately modifiable brain patterns could simply be related to the 

stimulus modality (touch vs. vision) rather than the feelings involved. In this case, further 

demonstration of separate modifiability in all the brain regions thought to encode 

physical pain—including the anterior cingulate and insula, thought to be the seat of 

shared representations—provided stronger evidence that the relevant brain processes 

were dissociable. Even stronger evidence would be provided if the brain patterns 

involved were demonstrated to be sensitive and specific to pain across studies. This was 

the case for the physical pain pattern in our example study, but the sensitivity and 

specificity of rejection-related brain patterns remains to be assessed.  

 

Interpretation of overlapping brain signals 

The complement to dissociations, which argue for separability of brain processes, 

is inferences based on overlap in patterns of activity, which is often taken as evidence 

that the tasks share common processes (Sylvester et al., 2003). Though the logic that 

activation overlap equals process overlap is commonly used, it provides weak support 

for shared neuronal processes: A single voxel in a neuroimaging study typically contains 

on the order of 5.5 million neurons, and it is entirely possible that different subsets of 

neurons in the same voxel are activated by different tasks (Logothetis, 2008). Paton et al. 

(Paton et al., 2006), for example, found different cells in the monkey amygdala that 

respond to either positive or negative predictions about upcoming rewards within the 

volume of a single neuroimaging voxel. Recent optogenetic studies, which can 

experimentally manipulate the firing of specific, genetically tagged subpopulations of 

neurons with light, are increasingly identifying microcircuits with different, and often 

opposing, functional properties (Tye et al., 2011; Kvitsiani et al., 2013). Activation of 

distinct microcircuits is likely to produce similar profiles of activation in fMRI and PET 

studies. Thus, two tasks that activate any given brain region might do so for very 
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different reasons. The difference in activation patterns elicited by functionally distinct 

neuronal circuits may not be evident in univariate analyses. Multivariate techniques that 

analyze multiple voxels at a time may be able to pick up the subtle differences on a voxel 

level. In addition, neurons involved in different functional microcircuits often project to 

different areas of the brain, suggesting that patterns of long-range fMRI functional 

connectivity may be useful in disentangling them in some cases. We discuss these 

techniques in more detail below. 

 

Comparison of univariate and multivariate techniques 

During the last few years, multivariate analyses methods have gained enormous 

popularity. While this chapter provides a general overview of functional neuroimaging, 

we refer the reader to one of the several excellent papers covering multivariate fMRI 

methods in more depth (e.g., (Kriegeskorte et al., 2009; Haynes, 2015).  

In the univariate, statistical parametric mapping (SPM), type of analysis, brain 

responses are modeled using a GLM separately for every voxel. The subject level GLM 

is often defined in a way that allows the parameter estimates in each voxel to be 

interpreted as the amplitude of the response to a specific experimental condition. The 

group statistic computed in every voxel then indicates how likely it is that a response of 

this magnitude occurred by chance. This approach tries to explain the fMRI data by the 

experimental condition, say viewing pictures of faces or houses. It is sometimes referred 

to as ‘encoding’ analysis. 

Multivariate analyses, also referred to as ‘decoding’ approaches, use data from 

multiple voxels at the same time (hence the term multivariate) to model experimental 

conditions (say, looking at faces or houses). Now, the brain data constitute a set of 

predictors, and the experimental variable the outcome. The term multivariate analysis or 

multivariate pattern analysis (MVPA) does not refer to a single method, but rather a large 

family of multivariate techniques. These kinds of analyses can be executed on raw data, 

selective trial averages, or on parameter estimates from subject level GLMs. In addition, 

multivariate analysis can be extended to cover many types of both continuous and 

categorical outcomes, both within- and between-persons, including the perceptual 
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characteristics during natural viewing, performance, emotional experiences, age, clinical 

symptoms or status, and more. 

Put another way, ‘encoding’ models and ‘massively univariate’ analyses are 

typically univariate in the brain (analyzing one voxel at a time) and multivariate in 

psychological/behavioral space, and ‘decoding’ models are typically multivariate in brain 

space and univariate in psychological space. Some techniques, such as partial least 

squares and canonical correlation, are multivariate in both brain and psychological space. 

Multivariate techniques differ from univariate approaches in that they (i) 

simultaneously analyze multiple voxels, and (ii) use brain data as predictors of outcomes 

of intrinsic interest (switching the predictors and predicted variables). A major benefit of 

analyzing multiple voxels at a time is that it takes into account the spatial 

interdependencies across voxels. Each voxel’s response is analyzed while controlling for 

other voxels in a set. Common choices of voxel sets are spheres of voxels (searchlight), 

anatomical regions of interest, or whole brain (e.g., all gray-matter voxels). The 

simultaneous analysis of multiple voxels can thus pick up on patterns across brain 

space—i.e., the relative activity across a set of voxels—that a univariate analysis cannot. 

In many cases, multivariate techniques likely offer enhanced sensitivity. For example, 

using a multivariate technique called support vector machine (SVM), allowed researchers 

to discriminate different emotions from auditory stimuli which was not possible using 

univariate methods (Ethofer et al., 2009). 

Common choices of multivariate algorithms are SVM’s and linear discriminant 

analysis (LDA) to distinguish between categorical variables of interest (e.g., perception 

of left vs. rightward oriented gratings (Kamitani and Tong, 2005)). Principal component 

regression (PCR) or support vector regression are often chosen to model continuous 

variables (e.g., perceived pain, (Wager et al., 2013). It is important to note that there is no 

single best algorithm for all questions. The best algorithm for a given dataset is the one 

that best matches the process that generated the data – i.e. whose assumptions are most 

correct for the process of interest. 

Due to their high sensitivity for difference in activation patterns, multivariate 

methods are able to predict many variables that do not correlate with univariate voxel 
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responses (Ethofer et al., 2009). However, the term prediction is often used in a 

misleading way. The switch of independent and dependent variable does not imply 

changes in causality. The causal nature of the analysis still depends on the experimental 

design. The mere possibility of ‘prediction’ does not entail causality (Friston, 2009). A 

prediction can also be made using univariate analysis, but the term is not regularly used 

in this context. For example, by evaluating the response magnitude of a single voxel in 

the fusiform face area, one can make predictions of whether the subject saw a face or a 

house during a given trial. Since this area is particularly sensitive to faces, one would 

simply predict that the subject was looking at a face for all responses of this voxel above 

a certain threshold. Nevertheless, the multivariate model should outperform the univariate 

prediction in most cases because it based on more data. 

 

Designs for fMRI studies 

Experimental designs 

Designing a neuroimaging study involves a series of tradeoffs between 

experimental power and the ability to make strong inferences from the results. Some 

types of designs, such as block designs, typically yield high experimental power, but 

provide imprecise information about the particular psychological processes that activate a 

brain region. Event-related designs, on the other hand, allow brain activation to be related 

more precisely to the particular cognitive processes engaged by particular mental events, 

but often are reduced in power to detect activation, depending on the process being 

studied. Researchers may also choose to focus intensively on testing one comparison of 

interest, and maximizing the power to detect this particular effect, or they may test 

multiple conditions in order to draw inferences about the generality of a brain region’s 

involvement in a class of similar psychological processes. Below we describe several 

types of experimental designs and provide some discussion of the applications for which 

they are best suited. 
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Block designs 

Because long intervals of time (30 seconds or more) are required to obtain good 

PET images, the standard experimental design used in PET studies is the block design. A 

block design is one in which different conditions in the experiment are presented as 

separate blocks of trials. For example, to image a briefly occurring psychological process 

(e.g., activation due to attention switching) using a block design one might repeat the 

process of interest during an experimental block (A) and have the subject rest during a 

control block (B). The A – B (A minus B) comparison is the most basic type of contrast 

for this design. The block structure of PET designs (and block fMRI designs) imposes 

limitations on the interpretability of results. While activations related to slowly changing 

factors such as task-set or general motivation are well captured by block designs, they are 

not well suited if one wishes to image the neural responses to individual stimuli. In 

addition, the A – B contrast does not allow researchers to determine whether a region is 

activated solely in A, deactivated solely in B, or some combination of both effects. 

Multiple controls and comparison conditions can ameliorate this problem to some degree. 

The main advantage to using a block design is that it typically offers increased 

statistical power to detect a change. Under ideal conditions, it has been shown that block 

designs can be over 6 times as efficient as randomized event-related designs (Wager and 

Nichols, 2003). Generally, theory and simulations designed to assess experimental power 

in fMRI designs point to a 16-18 s task / 16-18 s control alternating-block design as being 

optimal with respect to statistical power (Skudlarski et al., 1999; Wager and Nichols, 

2003; Liu, 2004). 

However, it is worth noting that this is not always true, as the relative power of a 

block design depends on whether the target mental process is engaged continuously in A 

and not at all in B, and whether imposing a block structure changes the nature of the task. 

For example, the updating of internal predictions based on visual information elicits so-

called ‘prediction errors’ whose associated neuronal firing lasts for only a very short 

time. Here, a block design is a bad choice, because the signal of interest will decay 

quickly and the block design will mis-model the neuronal responses. An event-related 

design will yield higher power and better interpretability in this case and similar ones.  In 
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the end, it is important to consider how the temporal structure influences the magnitude 

of the underlying psychological and neural events being studied as well as its impact on 

the ability to detect signals in the fMRI environment. 

 

Event-related fMRI  

Event-related fMRI designs take advantage of the rapid data-acquisition 

capabilities of fMRI. They provide the ability to estimate the fMRI response evoked by 

specific stimuli or cognitive events within a trial (Rosen et al., 1998). With modern multi-

slice sequences the whole brain can be measured with standard spatial resolution (e.g., 3 

x 3 x 3 mm voxels) every 0.5 seconds. The limiting factor in the temporal resolution of 

fMRI is generally not the speed of data acquisition, but rather the speed of the underlying 

evoked hemodynamic response to a neural event, referred to as the hemodynamic 

response function (HRF). A typical HRF begins within a second after neural activity 

occurs, and peaks 5-8 seconds after that neural activity has peaked (Friston et al., 1995; 

Aguirre et al., 1998).  

While event-related designs are attractive because of their flexibility and the 

information they provide about individual responses, they rely more strongly on 

assumptions about the time course of both evoked neural activity and the HRF. It is 

common to assume a near-instantaneous neural response for brief events and a canonical 

HRF shape in order to generate linear models for statistical analyses. In practice, 

however, the timing and shape of the HRF are known to vary across the brain, within an 

individual, and across individuals (Schacter et al., 1997; Aguirre et al., 1998; 

Summerfield et al., 2006). Part of the variability is due to the underlying configuration of 

the vascular bed, which may cause differences in the HRF across brain regions in the 

same task for purely physiological reasons (Vazquez et al., 2006). Another source of 

variability is differences in the pattern of evoked neural activity in regions performing 

different functions related to the same task. 

Block designs are less sensitive to the variability of the HRF because they depend 

on the total activation caused by a train of stimulus events, which makes the overall 

predicted response less sensitive to variations in the shape of responses to individual 
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events. However, predicted responses in block designs may still be quite inaccurate if the 

HRF model is very inaccurate or if the density and time-course of neural activity is not 

appropriately modeled (Price et al., 1999), or if complex responses cause signals from 

different events to cancel each other out (Gonzalez-Castillo et al., 2012).  

Event-related designs rely on the response estimation of voxels to single trials or 

brief events. The underlying assumption is that the magnitude and shape of the BOLD 

response do not change depending on the preceding stimuli. Studies have found that 

nonlinear effects in rapid sequences (1 or 2 s) can be quite large (Vazquez & Noll, 

1998)(Friston et al., 2000; Birn et al., 2001; Wager et al., 2005a), but that responses are 

roughly linear if events are spaced at least 4 s – 5 s apart (Miezin et al., 2000). If they are 

properly designed, rapid designs still allow one to discriminate the effects of different 

conditions. One key is incorporating ‘jitter,’ or variable inter-stimulus interval (ISI), 

between events, which is critical for comparing event-related responses to an implicit 

resting baseline—i.e., determining whether the events are “activations” or “deactivations” 

relative to rest. 

With a randomized and jittered design, sometimes several trials of a single type 

will occur in a row, and because the hemodynamic response to closely spaced events 

sums in a roughly linear fashion, the expected response to that trial-type will build to a 

high peak. Introducing jitter allows peaks and valleys in activation to develop that are 

specific to particular experimental conditions. If one cares only about comparing event 

types (e.g., A – B), randomizing the order of events creates optimal rise and fall without 

additionally jittering the ISI. However, jittered ISIs are critical for comparing events to 

baseline activity and thus determining whether events activate or deactivate a voxel 

relative to that baseline (Josephs and Henson, 1999; Wager and Nichols, 2003). Suppose, 

for example, you have a rapid sequence with two types of trials—say, attention-switch 

trials (S) and no-switch trials (N) as in the task switching experiment described above. 

Randomly intermixing the trials with an ISI of 2 s will allow you to estimate the 

difference S – N. However, you will not be able to tell if S and N activate or deactivate 

relative to some other baseline. If you vary the inter-stimulus intervals randomly between 

2 and 16 s, you’ll be able to compare S – N (with less power because there are fewer 
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trials), but you’ll also be able to test whether S and N show positive or negative 

activation responses. This ability comes from the inclusion of inter-trial rest intervals 

against which to compare S and N, and the relatively unique signature of predicted 

responses to both S and N afforded by the random variation in ISIs.  

The advantages of rapid pacing—including faster trials and possible increased 

statistical efficiency—must be weighed against potential problems with nonlinearity, 

multicolinearity of regressors, and model mis-fitting. A current popular choice is to use 

‘jittered’ designs with inter-stimulus intervals of at least 4 s, with exponentially 

decreasing frequencies of delays up to 16 s.  

 

Optimized experimental designs 

What constitutes an optimal experimental design depends on the psychological 

nature of the task as well as the ability of the fMRI signal to track changes introduced by 

the task manipulations over time. It also depends on the specific comparisons (contrasts) 

of interest in the study. And to make matters worse, the delay and shape of the BOLD 

response (and ASL signals, and other blood flow-based methods), scanner drift and 

nuisance factors such as physiological noise, and other factors conspire to make 

experimental design for fMRI more complicated than for experiments that measure 

behavior alone. Not all designs with the same number of trials of a given set of conditions 

are equal, and the spacing and ordering of events is critical.  

Some intuitions and tests of design optimality follow from a deeper understanding 

of the statistical analysis of fMRI data and are elaborated on in Section 0. For a full 

treatment, however, we refer the reader to several excellent papers (Josephs and Henson, 

1999; Wager and Nichols, 2003; Liu, 2004; Smith et al., 2007). We also note that several 

computer algorithms are available for constructing statistically optimized designs, 

including an approach based on m-sequences - mathematical sequences which are near-

optimal for certain types of designs (Buracas and Boynton, 2002), and approaches based 

on genetic algorithms (Wager and Nichols, 2003; Kao et al., 2009), that incorporate m-

sequence designs as a starting point and considers the relative importance of various 

contrasts to the study goals in calculating optimality.  
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Figure 6 plots the power of different designs based on effect sizes estimated from 

visual cortex data (Wager et al., 2005a). Block designs have large power for estimating 

contrast effects that are based on amplitude differences, whereas event-related and m-

sequence designs have more power in HRF shape estimation. Optimized designs offer a 

balance between the two. 

 

Resting state 

The majority of fMRI (and EEG/MEG) studies are still studying brain activations 

related to cognitive tasks, perception, and action. However, some years ago Biswal et al. 

(1995) observed that the BOLD time-courses in left and right sensorimotor cortices were 

highly correlated at rest (Biswal et al., 1995), suggesting that much of the ‘noise’ in these 

regions, and possibly the rest of the brain, was not noise at all but rather coherent 

spontaneous activity. Further studies identified a set of large-scale networks that show 

correlated activity during rest in the absence of any task (Raichle et al., 2001; Fox et al., 

2005; Buckner et al., 2008). These networks are most often identified using clustering 

approaches on pairwise correlations or data-decomposition algorithms such as 

Independent Components Analysis (ICA) or Principal Components Analysis (PCA); 

voxels that load highly on the same component are thought to comprise the ‘network.’ 

Often, voxels are additionally assigned to discrete, non-overlapping ‘networks’ using 

clustering algorithms. For instance, a study based on a large sample of 1000 subjects 

grouped brain regions in the cortex into 7 and 17 large-scale networks (the choice of how 

many to extract is to some degree arbitrary) (Yeo et al., 2011). Other studies have found 

that ‘networks’ derived from resting state scans are in broad agreement with clusters 

obtained from structural connectivity measures (Honey et al., 2009; Wiech et al., 2014). 

These networks can be reliably identified in different samples, and they are often 

labeled with psychological terms and used as units of analysis in other studies. The 

‘default mode network’ (DMN) (Raichle et al., 2001), includes the ventromedial and 

dorsomedial prefrontal cortices (vmPFC/dmPFC), posterior cingulate, medial temporal 

lobe, superior temporal cortices, and several other areas. The name is based on 

observations that many of its regions show high metabolic activity when a person is ‘at 
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rest’ (not doing a task) and decrease during the performance of many cognitive tasks. 

However, so-called DMN regions are activated above resting levels by a number of tasks 

focused on reflection on internal states, including retrieval of semantic memories (Binder 

et al., 2009), imagining the future (Schacter et al., 1997), experiencing psychological 

stress (Wager et al., 2009; Gianaros and Wager, 2015), experiencing emotion (Kober et 

al., 2008; Lindquist et al., 2012a), reflection on one’s self (Northoff et al., 2006; Denny et 

al., 2012), reflecting on others’ minds (Denny et al., 2012), and ‘mind-wandering,’ a mix 

of often self-focused thoughts and memories (Andrews-Hanna et al., 2010). 

Many other networks have been identified and labeled with terms that imply they 

implement specific functions. The ‘salience network,’ for example, includes regions 

activated by many cognitive and affective states, including the dorsal anterior cingulate, 

anterior insula, and amygdala (Seeley et al., 2007). Regions in this ‘network’ certainly 

respond to many kinds of salient events, but it would be a mistake to make the fallacious 

reverse inference that a task activates the network because it is ‘salient.’ As we discussed 

above, specific neurons in these regions participate in micro-circuits that encode specific, 

and diverse, types of information and behavior.  

Resting-state studies have become increasingly popular, and there is much hope 

that they will provide markers for characteristics related to aging, psychopathology, 

performance, and clinical symptoms. These studies do not employ a specific task or 

experimental manipulation, but rather acquire fMRI data while the subjects rest in the 

scanner. Most studies display a fixation cross during the measurement and ask subjects to 

look at the crosshair. Another approach is to minimize visual input and have subjects 

close their eyes during the scan. Typical scan durations are 5 – 12 minutes per subject, 

making it easy and cost-effective to acquire data in many subjects. 

The analysis of resting state data is different from experimental fMRI studies. 

Since there is no experimental manipulation, a conventional GLM analysis is impossible. 

Instead, most of the techniques are analyzing the correlational structures among voxels. 

The analysis of resting state involves first estimating brain connectivity measures—using 

‘seed’ regions, ICA, or voxel-by-voxel pairwise inter-correlation matrices across the 

brain. Then, those connectivity metrics are correlated with outcomes of interest—for 
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example, clinical symptom scores. For an overview of connectivity and correlation based 

analysis see Connectivity analyses in fMRI. 

Though increasingly popular, resting state analyses are not without serious 

pitfalls. One is ambiguity, and person-to-person variability, regarding what mental states 

and physiological processes are actually being imaged. A large amount of research 

funding is currently dedicated to exploring the idea that resting state connectivity will be 

able to tell us about depression, anxiety, dementia, cognitive and emotional development, 

and a host of other outcomes of interest. However, at least some of the coherent brain 

activity observed at rest is demonstrably due to physiological noise, including artifacts 

related to head movement, respiration (which affects fMRI signal via inducing head 

movement, magnetic field currents, and changes in carbon dioxide levels), pulsatile 

motion, and vascular oxygenation due to heartbeat. In addition, though it is often 

implicitly assumed that participants are complying with task instructions and are all 

equally awake and alert, this is clearly not the case. A recent study found that 50% of 

participants in resting state studies are asleep after 10 minutes (Tagliazucchi and Laufs, 

2014). Since activity patterns and neuronal oscillations change drastically during the 

transition from wakefulness to sleep, it is important to control for wakefulness during the 

scan and carefully check potential group differences. In addition, activity patterns 

consistent with resting state networks are present even in anesthetized animals (Vincent 

et al., 2007). And finally, different patterns of resting state connectivity are related to 

different types of spontaneous thought (Andrews-Hanna et al., 2010; Doucet et al., 2012). 

Whereas the goal of experimental paradigms is to explicitly control the types of mental 

processes in which a participant engages and study brain activity in relation to those 

processes, resting state studies do not control the types of mental processes that a 

participant engages in. 

Thus, for some researchers, resting state scans are viewed as a window into the 

intrinsic architecture of the brain; for others, they are windows into mental states or 

mental status, or physiological artifacts to be discarded. The trouble is that it is hard to 

tell how much of the brain connectivity patterns at rest are related to which of these three 

alternatives. Even if outcomes are reliably associated with resting state networks, it may 
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not be clear why, or whether the associations have interesting implications for 

neuroscience or are merely physiological or image artifacts. The utility of resting-state 

fMRI, like all areas of scientific inquiry, is ultimately an empirical question that is being 

asked now in myriad ways.  

 

Non-experimental designs 

The fast growth in computing power together with the introduction of multivariate 

techniques into fMRI paved the way for large-scale decoding studies. The aim of these 

studies is to study brain processes of natural vision. In order to achieve higher external 

validity as in natural conditions, experimental control is reduced. However, compared 

with traditional experiments, these designs have the potential to establish profiles of brain 

activity, and their specificity to particular mental states, across a wide range of more 

naturalistic conditions. 

Early approaches used quasi-experimental designs to search for brain regions 

whose activity tracks conscious perception. These studies use multi-stable visual stimuli 

(e.g. a Necker cube) that lead to fairly regular, spontaneous switches in conscious 

percepts. Subjects are asked to report the perceptual switches via button-presses and 

researchers can analyze responses following perceptual switches. An early univariate 

fMRI study reported phasic positive responses in the fusiform gyrus and negative 

responses in the thalamus (Kleinschmidt et al., 1998). A later study using multivariate 

analyses was able to predict the current percept from activity in the lateral geniculate 

nucleus, an early visual processing nucleus in the thalamus (Haynes et al., 2005).  

To achieve even more natural viewing conditions across a wide range of stimuli, 

it is increasingly common to present movies or podcasts to their subjects while measuring 

fMRI data. Studies aimed at mapping responses within individuals can include data 

collected over 10 hours or more, across multiple sessions. The enormous amount of data 

is then used to predict current perceptions from brain activity by exploiting the unique 

covariation patterns between brain activity and features of the current stimulus 

composition (Haxby et al., 2011; Huth et al., 2012; Horikawa et al., 2013). 
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Practical considerations (design, power) 

Designing a neuroimaging study involves a tradeoff between experimental power 

and the ability to make strong inferences from the results. Some types of designs, such as 

the block design, typically yield high experimental power, but provide imprecise 

information about the particular psychological processes that activate a brain region. 

They also rely on the ability of the task to activate neuronal populations for the duration 

of a whole block (see Block designs). Event-related designs, on the other hand, allow 

brain activation to be related more precisely to the particular cognitive processes engaged 

in certain types of trials, but often suffer from decreased power. The choice of the design 

should thus be guided by the research question, the underlying psychological model, and 

estimated effect sizes. For valid inference it is necessary that task is appropriate to isolate 

the psychological process of interest. Increasing the sample size can often compensate a 

relative loss in power. Sometimes technical constraints limit the choice of the design; for 

example, heat pain studies are typically done using sustained heat epochs, essentially like 

block designs, because many heat stimulation devices were unable to change the 

temperature fast enough for event related designs. 

Another major aspect of planning a neuroimaging study is the desired statistical 

power and the question of how to best achieve it. Statistical power depends on having 

either a large effect size (high contrast values) or a small standard error. The standard 

error in a group analysis is determined by both 

€ 

σ 2
W  and 

€ 

σ 2
B . At the group level, 

€ 

σ 2
B  can 

be reduced and power increased by increasing the sample size, more accurate 

normalization or more informed ROI selection, and increased control of strategies used 

and individual psychological responses to the task. 

€ 

σ 2
W  can be reduced by improving 

modeling procedures and reducing acquisition-related scanner noise and physiological 

noise.  

A key question when beginning to design a group study is determining an 

adequate sample size. The answer to this question ultimately depends on the effect size in 

the group, the amount of scanner noise, and signal optimization. It will be different for 

each task and each brain voxel (Zarahn and Slifstein, 2001; Desmond and Glover, 2002). 

Power analysis is difficult in fMRI because power depends on so many factors relating to 
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psychology, task design and analysis, and hardware—however, by referring to standard 

effect sizes, one can obtain estimates of what sample sizes are needed in a group analysis. 

There are several tools for estimating power in fMRI studies. For example, Mumford and 

Nichols (2008) developed a website and software to estimate group statistical power for 

the average voxel in regions of interest (http://fmripower.org).  

With reduced scanning costs, the sample sizes and statistical power of fMRI 

studies have increased over the last years. However, many studies still have low power to 

detect small or medium size effects due to small sample sizes. Some have argued that this 

is not a real concern, because small sample studies can detect only large effects that are 

presumably strong enough to be of interest (Friston, 2012). However, such analyses 

neglect to consider that because of fMRI noise, not all regions identified in small studies 

actually have large effects! Thus, this view neglects the large confidence intervals and 

associated uncertainty about the true effect size (Lindquist et al., 2013). Because of the 

large sampling error associated with estimates from small studies, significant results from 

small studies are more likely to be inflated by voxel selection bias and thus capitalize on 

chance. Hence, many positive results from underpowered studies will overestimate the 

true effect size, giving rise to problems with replication of the results (Button et al., 

2013).  

One way to consolidate findings and estimate true effect sizes is to use meta-

analytic techniques to aggregate across studies (Wager et al., 2007). For these meta-

analyses to be unbiased, it is important to also report fMRI results as completely as 

possible, even non-significant results (e.g., those not surviving multiple comparison 

correction, but p < 0.001, uncorrected) should be reported in supplemental tables when 

possible. 

Figure 7 shows an example of power calculation and variance component 

estimation from a working memory study.  Figure 7A shows the main effect for working 

memory (an N-back task vs. rest), which we used to identify voxels of interest. We 

calculated power averaged across these voxels of interest shown in (A) in a different 

contrast, the more difficult 3-back vs. easier 2-back condition in the N-back. This 

analysis is illustrative; we note that for a truly unbiased power analysis, the selection of 
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voxels must be independent of the data used to calculate power.  Figure 7B shows plots 

of power (y-axis) as a function of sample size (x-axis) for three different significance 

thresholds. Power will always increase with larger sample sizes, but sample size is 

always limited in practice. Thus, this analysis assumes a fixed number of scan hours 

available for a replication study—in this case, 40 total hours. With a few other 

assumptions, such as a maximum session time of 90 minutes and a 30 min startup cost 

(for anatomical images, etc.) for the first session and 15 min startup cost for additional 

sessions (for scanner placement), we can calculate the power as a function of number of 

subjects and scan time per subject.  With a total of only 40 scan hours, the U-shaped 

function suggests that the optimal allocation is to run 38 people in a session just under 1-

hour in length, with about 35 minutes of functional time. This is a typical case with 

moderately strong activation. The within- and between-subjects noise is roughly balanced 

(shown in the Venn diagram), and voxel-wise power with 40 hours to allocate is around 

15% with family-wise error rate (FWER) multiple comparisons correction control at p < 

.05 corrected. There are many active voxels to detect, so this power level might be 

acceptable or not, depending on the study goals. This is a sobering analysis however: If 

one wants to detect most of the active voxels with only a 5% chance of a false positive 

anywhere in the map (FWER control), then large numbers of subjects are needed. Using 

less stringent forms of control (e.g., False Discovery Rate, discussed below) and 

specifying precise a priori hypotheses can increase power dramatically.   

As we said above, the optimal balance of numbers of subjects vs. scan time per 

subject depends on the ratio of between-subject and within-subject variances.  In contrast 

to the example above, with extremely strong effects and little within-subject error, 80% 

power is achievable with 15 subjects and about two hours per subject. This type of effect 

size and error distribution is more typical of visual cortical stimulation (e.g., retinotopic 

mapping). If you cannot easily estimate this ratio and perform power calculations, then 

scanning as many subjects as possible with about 30 min of functional time per subject 

for cognitive studies, and fewer subjects with more time per subject for visual 

psychophysical studies, is a reasonable rule of thumb. 

In addition to aspects of experimental design and statistical power, practical 
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considerations like session length and subject alertness and focus are important. Most 

participants feel increasingly uncomfortable as the duration of the imaging session 

progresses beyond one hour total, with corresponding increases in head movement, pain, 

and fatigue, and likely reductions in data quality.  

 

V. FUNDAMENTALS OF FMRI SIGNAL PROCESSING AND ANALYSIS 

Preprocessing 

The major steps in fMRI preprocessing are reconstruction, slice acquisition timing 

correction, realignment, coregistration of structural and functional images, registration or 

nonlinear warping to a template (also called normalization), and smoothing (Figure 8). 

Single-subject analyses do not require the warping step, which introduce spatial 

uncertainty in terms of anatomical locations, and thus can provide higher anatomical 

resolution. Group studies, however, largely preclude false positives due to fMRI time 

series artifacts, and permit population inference. Some group studies do not employ 

smoothing in order to increase spatial resolution. 

 Reconstruction. Images must be first reconstructed from the raw MR 

signal. Reconstruction is commonly automated directly at the scanner site. Raw and 

reconstructed data are stored in a variety of formats, but reconstructed images are 

generally composed of a 3-D matrix of data, containing the signal intensity at each 

“voxel” or cube of brain tissue sampled in an evenly-spaced grid, and a header that 

contains information about the dimensionality, voxel size, and other image parameters. A 

popular format is the nifti-format, which can hold single or multiple 3-D volumes per file. 

The format allows storing multiple images in a 4-D matrix, where the fourth dimension is 

time. 

 Slice Timing. Statistical analysis at the subject level using a single 

hemodynamic reference function assumes that all the voxels in an image are acquired 

simultaneously. In reality, the data from different slices are shifted in time relative to 

each other—because most BOLD pulse sequences collect data slice-by-slice, some slices 
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are collected later during the volume acquisition than others. Thus, we need to estimate 

the signal intensity in all voxels at the same moment in the acquisition period. This can 

be done by interpolating the signal intensity at the chosen time point from the same voxel 

in previous and subsequent acquisitions. A number of interpolation techniques exist, from 

bilinear to sinc interpolations, with varying degrees of accuracy and speed. Sinc 

interpolation is the slowest, but generally the most accurate. Some researchers do not use 

slice timing, as it adds interpolation error to the data, and instead use more flexible 

hemodynamic models to account for variations in acquisition time.  

 Realignment. A major problem in most time-series experiments is 

movement of the subject's head during acquisition of the time series. When this happens, 

the image voxels' signal intensity gets "contaminated" by the signal from its neighbors. 

Thus, one must rotate and translate each individual image to compensate for the subject's 

movements. Realignment is typically performed by choosing a reference image (popular 

choices are the first image or the mean image) and using a rigid body transformation of 

all the other images in the time series to match it, which allows the image to be translated 

(shifted in the x, y, and z directions) and rotated (altered roll, pitch, and yaw) to match 

the reference. The transformation can be expressed as a pre-multiplication of the image 

spatial coordinates to be altered by a 3 x 3 affine matrix. The elements of this matrix are 

parameters to be estimated, and an iterative algorithm is used to search for the parameter 

estimates that provide the best match between an image and the reference image. Usually, 

the matching process is done by minimizing sums of squared differences between the two 

images.  

Realignment corrects adequately for small movements of the head, but it does not 

correct for the more complex spin-history artifacts created by the motion. The parameters 

at each time point are saved for later inspection and are often included in the analysis as 

covariates of no interest; however, even this additional step does not completely remove 

the artifacts created by head motion. Residual artifacts remain in the data and contribute 

to noise. Sometimes this noise is correlated with task contrasts of interest, which poses a 

problem, and can create false results in single-subject analyses. However, because these 

artifacts are expected to (and typically do) differ in sign and magnitude across subjects, 
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group analysis is valid. Group analyses are usually robust to such artifacts in terms of 

false positives, but power can be severely compromised if large movement artifacts are 

present. An exception is task-correlated motion. When all subjects move their head at the 

same time as the events of interest, it is not possible to dissociate task from motion 

artifacts.  

Because of these issues, it is typical to exclude subjects that move their heads 

substantially during the scan. Subject motion in each of the 6 directions can be estimated 

using the magnitudes of the transformation required for each image during the 

realignment process, and time series of displacements are standard output for realignment 

algorithms.  

Coregistration. Often, high-resolution structural images (T1 and/or T2) are used 

for warping and localization. The same transformations (warps) are applied to the 

functional images, which produce the activation statistics, so accurate registration of 

structural and functional images is critical. Coregistration aligns structural and functional 

images, or in general, different types of images of the same brain. Because functional and 

structural images are collected with different sequences and different tissue classes have 

different average intensities, using a least squares difference method to match images is 

often not appropriate. For example, the signal intensity in gray matter (G), white matter 

(W), and ventricles are ordered W > G > V in functional T2
* images, and V > G > W in 

structural T2 images (Figure 1). In such cases, an affine transformation matrix can be 

estimated by maximizing the mutual information among the two images, or the degree 

that knowing the intensity of one can be used to predict the intensity of the other (Cover 

and Thomas, 1991). Typically, a single structural image is co-registered to the first or 

mean functional image. 

Warping to atlas (normalization). For group analysis, each voxel must lie 

within the same brain structure in each individual subject. Individual brains have 

different shapes and features, but there are regularities shared by every non-pathological 

brain, and normalization attempts to register each subject’s anatomy with a standardized 

atlas space defined by a template brain. Normalization can be linear, involving simple 

registration of the gross shape of the brain, or nonlinear, involving warping to match local 
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features. In intensity-based normalization, matching is done using image intensities 

corresponding to gray/white matter/fluid tissue classes. Surface-based normalization uses 

extracted features such as gyral and sulcal boundaries explicitly. Here, we describe 

nonlinear intensity-based normalization as implemented in SPM software.  

Whereas the realignment and co-registration procedures perform a rigid body 

rotation, normalization can stretch and shrink different regions of the image to achieve 

the closest match. This warping consists of shifting the locations of voxels by different 

amounts depending on their original location. The function that describes how much to 

shift the voxels is unknown, but can be described by a set of cosine basis functions. The 

task is then to search for a set of coefficients (weights of each basis function) that 

minimize the least squares difference between the transformed image and the template. 

How closely the algorithm attempts to match the local features of the template depends 

on the number and spatial frequency of basis functions used. Often, warping that is too 

flexible (using many basis functions) can produce gross distortions in the brain, as local 

features are matched at the expense of getting the right overall shape. This happens 

essentially because the problem space is too complex, and the algorithm can settle into a 

“local minimum” solution that is not close to the global optimal solution. Surface-based 

warping uses similar principles, but matches features on extracted cortical surface 

representations instead of image intensities.  

Inter-subject registration is one of the largest sources of error in group analysis. 

Thus, it is important to inspect each normalized brain and, if necessary, take remedial 

measures. These include manually improving the initial alignment, using a mask to 

exclude problematic regions of atrophy or abnormality (e.g., a lesion), altering the 

number of basis functions and other fitting parameters, and in some cases developing 

specialized template brains (e.g., for children).  

 Smoothing. Currently, many investigators apply a spatial smoothing 

kernel to the functional data, blurring the image intensities in space. This is ironic, given 

the push for higher spatial resolutions and smaller voxels—so why does anyone do it? 

One reason is to improve inter-subject registration. A second reason is that Gaussian 

Random Field Theory, a popular multiple-comparisons correction procedure, assumes 
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that the variations across space are continuous and normally distributed. However, 

images are sampled on a grid of voxels, and neither assumption is likely to hold; 

smoothing can help to meet these assumptions. Smoothing typically involves convolution 

with a Gaussian kernel, which is a 3-D normal probability density function often 

described by the full width of the kernel at half its maximum height (“FWHM”) in mm. 

One estimate of the amount of smoothing required to meet the assumption is a FWHM of 

3 times the voxel size (e.g., 9 mm for 3 mm voxels).  

An important consideration is that acquiring an image with large voxels and 

acquiring with small voxels and smoothing an image are not the same thing. The signal-

to-noise ratio during acquisition increases as the square of the voxel volume, so acquiring 

small voxels means that much signal is lost that can never be recovered!  

Researchers using multivariate analyses methods often choose not to smooth the 

functional images in order to retain the information contained in individual fine-grained 

activation patterns. This is more useful when the evaluation of the multivariate model is 

within subject. When the aim of the study is to accurately predict variables across 

subjects, e.g. from new fMRI data sets, some smoothing can increase inter-subject 

alignment and predictive performance. 

   

 General linear model 

Localizing task-related activations with the GLM 

The GLM is the most common statistical method for assessing task – brain 

activity relationships in neuroimaging (Worsley and Friston, 1995). It is a linear analysis 

method that subsumes many basic analysis techniques, including t-tests, ANOVA, and 

multiple regression. The GLM can be used to estimate whether the brain responds to a 

single type of event, to compare different types of events, to assess correlations between 

brain activity and behavioral performance or other psychological variables, and for other 

tests.  

The GLM is appropriate when multiple predictor variables—which together 

constitute a simplified model of the sources of variability in a set of data—are used to 
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explain variability in a single, continuously distributed outcome variable. In a typical 

neuroimaging experiment, the predictors are related to psychological events, and the 

outcome variable is signal in a brain voxel or region of interest. Analysis is typically 

‘massively univariate,’ meaning that the analyst performs a separate GLM analysis at 

every voxel in the brain, and summary statistics are saved in maps of statistic values 

across the brain.  

It is usually advantageous to design studies and statistical analyses in a way that 

permits inferences about a population of participants. Population inference is typical in 

all kinds of studies; for example, when testing a new drug, researchers perform statistical 

tests that allow them to infer that the drug is likely to produce a benefit on average for 

individuals in a certain population. Even most studies of psychophysics and 

electrophysiology in monkeys, which often rely on only one or two participants for the 

entire study, need to be able to claim that their results apply beyond the particular 

individuals studied. They do so by invoking the additional assumption that all 

participants will behave the same way as the few observed in the study. In almost all 

domains of human neuro-psychology, this is not a safe assumption, and statistics should 

be performed that permit population inference in a standard way. This can be achieved by 

considering the multi-level nature of neuroimaging data.  

A key to population inference (see Interpretation of fMRI studies) is to treat the 

variation across participants as an error term in a group statistical analysis, which leads to 

generalizability of the results to new participants drawn from the same population. The 

most popular group analysis is the one-sample t-test on contrast estimates (e.g., Task A – 

Task B) at each voxel. This analysis tests whether the contrast of interest is non-zero on 

average for the population from which the sample was drawn, and it provides a starting 

point for our discussion on population inference. The principle, however, applies to any 

kind of statistical model, including more complex ANOVA and regression models and 

multivariate analyses such as group independent components analysis (ICA).  
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Single-subject GLM model basics  

For a single subject, the fMRI time course or series of PET values from one voxel 

is the outcome variable (y). Activity is modeled as the sum of a series of independent 

predictors (x variables, i.e., x1, x2, etc.) related to task conditions and other nuisance 

covariates of no interest (e.g., head movement estimates). In fMRI analysis, for each task 

condition or event type of interest, a time series of the predicted shape of the signal 

response is constructed, usually using prior information about the shape of the vascular 

response to a brief impulse of neural activity. Most often, a canonical hemodynamic 

response function (HRF) implemented in the respective software package is used (Figure 

9A shows an example of an empirical HRF). The vectors of predicted time series values 

for each task condition are collated into the columns of the design matrix, X, which 

contains a row for each of n observations collected (observations over time) and a column 

for each of k predictors. The GLM fitting procedure estimates the best-fitting amplitude 

(scaling factor) for each column of X, so that the sums of fitted values across columns 

best fits the data. These amplitudes are regression slopes, and are denoted with the 

variable β̂  (the “hat” denotes an estimate of a theoretical constant value). It also 

estimates a time series of error values, ε̂ , that cannot be explained by the model. The 

model is thus described by the equation: 

 

    y =Xβ +ε      (1) 

 

whereβ  is a k x 1 vector of regression slopes, X is an n x k model matrix, y is an n x 1 

vector containing the observed data, andε  is an n x 1 vector of unexplained error values. 

The equation is in matrix notation, so that Xβ  indicates the rise and fall in the data 

explained by the model, or the sum of each column of X multiplied by each element ofβ . 

Error values are assumed to be independent and to follow a normal distribution with 

mean 0 and standard deviation s. The values of β̂  correspond to the estimated magnitude 

of activation for each psychological condition described in the columns of X. An example 

for X is shown in Figure 9B. 
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One of the advantages of the GLM is that there exists an algebraic solution for β̂  

that minimizes the squared error, the ordinary least-squares solution: 

 

    β̂ = (XTX)−1XTy     (2) 

 

where T indicates the transpose operator. 

Inference is generally conducted by calculating a t-statistic, which equals the β̂ s 

divided by their standard errors, and obtaining p-values using classical inference. The 

standard errors of the estimates are the diagonal elements of the matrix: 

 

se(β̂) = (XTX)−1σ̂      (3) 

 

Notably, the error term is composed of two separate terms from different sources. 

The termσ̂ 2  is the estimated residual error variance, which depends on many factors, 

including scanner noise. The term (XTX)−1  depends on the design matrix itself, and 

reflects both the variability in the predicted signal and covariance among predictors (i.e., 

multicolinearity). It should be noted that the design optimization algorithms described in 

the section on Optimized experimental designs, work on minimizing the design-related 

component of the standard error, i.e. (XTX)−1 .  

One important additional feature of the data requires a further extension of the 

model. Typically, fMRI data are autocorrelated—signals are correlated with themselves 

shifted in time and are not independent—and the autocorrelation must be removed for 

valid single-subject inference. This is typically done by estimating the autocorrelation in 

the residuals, after model fitting, and then removing the autocorrelation by 

‘prewhitening’. Prewhitening works by pre-multiplying both sides of the general linear 

model equation (Eq. 1) by the square root of a filtering matrix W, that will counteract the 

autocorrelation structure and create a new design matrix W1/2X  and whitened data 

W1/2y . This process is incorporated into what is known as the generalized least-squares 
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solution, so that: 

 

β̂ = (XTWX)−1XTWy      (4) 

 

Note that the standard errors and degrees of freedom change as well due to the 

whitening process. Because the estimation of W depends on β̂ , and vice versa, a one-

step algebraic solution is not available, and the parameters are estimated using an 

iterative algorithm. There are many ways of designing W, ranging from estimates that 

make strong simplifying assumptions about the form of the data, such as the one-

parameter autoregressive AR(1) model, to empirical estimates that use many parameters. 

As with any model fitting procedure, a tradeoff exists between using few and many 

parameters. Many-parameter models generally produce close fits to the observed data. 

However, models with few parameters—if they are chosen carefully—can produce more 

accurate estimates of the underlying true function because they are less susceptible to 

fitting random noise patterns in the data.  

Contrasts. Contrasts across conditions can be easily handled within the GLM 

framework. Mathematically, a contrast is a linear combination of predictors. The contrast 

(e.g., A – B in a simple comparison, or A + B – C – D for a main effect in a 2 x 2 

factorial design) is coded as a k x 1 vector of contrast weights, which we denote with the 

letter c. For example, the contrast weights for a simple subtraction is c = [1 –1]T., while a 

single contrast for a linear effect across four conditions might be c = [-3 –1 1 3]T. 

Concatenating multiple contrasts into a matrix can simultaneously test a whole set. Thus, 

the main effects and interaction contrasts in a 2 x 2 factorial design can be specified with 

the following matrix: 

 

C =  [1  1  1  
  1  -1  -1 
 -1 1 -1 
 -1 -1 1];  

 
Columns 1 and 2 test main effects, and the third tests their interaction. In order to 
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test contrast values against a null hypothesis of zero—the most typical inferential 

procedure—contrast weights must sum to zero. If the weights do not sum to zero, then 

the contrast values partially reflect overall scanner signal intensity, and the resulting t-

statistics are invalid. The analyst must take care to specify contrasts correctly, as contrast 

weights in neuroimaging analysis packages are often specified by the analyst, rather than 

being created automatically as in SPSS, SAS, and other popular statistical packages. The 

true contrast values CTβ can be estimated using CT β̂ , where β̂  is obtained using Eq. (2). 

Most imaging statistics packages write a series of images to disk containing the 

betas for each condition throughout the brain, and another set of contrast images 

containing the values of CT β̂  throughout the brain. Contrast images are typically used in 

a group analysis. A third set of images contains t-statistics, or the ratio of contrast 

estimates to their standard errors. 

 

Mixed and fixed effects.  

The one-sample t-test across contrast values treats the value of that contrast as a 

random variable with a normal distribution over subjects, and hence the error term in the 

statistical test is based on the variance across participants. Such an analysis has come to 

be known as a “random effects” analysis in the neuroimaging literature. Many early 

studies performed incorrect statistical analyses by lumping data from different 

participants together into one “super subject” and analyzing the data using a single 

statistical model. This is called a “fixed effects” analysis because it treats participant as a 

fixed effect, and assumes the only noise is due to measurement error within subjects. It is 

not appropriate for population inference because it does not account for individual 

differences (Figure 10). For example, collecting five hundred images each (250 of Task 

A and 250 of Task B) on two participants would be treated as the equivalent of collecting 

two images each (Task A and B) on 500 participants. Some researchers have argued that 

the fixed analysis allows researchers to make inferences about the brains of participants 

in the study, but not to a broader population. While this is technically true, inferences 

about particular individuals are seldom useful; such a lack of generalizability would be 
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unacceptable in virtually any field, and we do not consider it appropriate for 

neuroimaging studies either. 

A more correct analysis is the “mixed effects analysis,” so termed because it 

estimates multiple sources of error, including measurement error within subjects and 

inter-individual differences between subjects. The one-sample t-test on contrast estimates 

described above is actually a simplified mixed-effects analysis that is valid if the standard 

errors of contrast estimates are the same for all participants. Full mixed-effects analyses 

use iterative techniques (such as the Expectation-Maximization (EM) algorithm) to obtain 

separate estimates of measurement noise and individual differences. They are 

implemented in packages such as Hierarchical Linear Modeling (HLM; (Raudenbush and 

Bryk, 2002)), R packages, such as LME4 (Bates et al., 2013), for Matlab (Lindquist et al., 

2012b), and MLwiN (Rasbash, 2002). Neuroimaging data-friendly mixed-effects models 

are implemented in FSL (Beckmann et al., 2003; Woolrich et al., 2004) and another 

implementation is available via the command line in SPM8 and via the batch editor in 

SPM12.  

 

Thresholding and multiple comparisons 

The results of neuroimaging studies are often summarized as a set of ‘activated 

regions’ or statistical maps. Such summaries describe brain activation by color-coding 

voxels whose t-values or comparable statistics (z or F) exceed a certain statistical 

threshold for significance. The implication is that these voxels are activated by the 

experimental task. A crucial decision is the choice of threshold to use in deciding whether 

voxels are ‘active.’ In many fields, test statistics whose p-values are below 0.05 are 

considered sufficient evidence to reject the null hypothesis, with an acceptable false 

positive rate (alpha) of 0.05. However, in brain imaging we often test on the order of 

100,000 hypothesis tests (one for each voxel) at a single time. Hence, using a voxel-wise 

alpha of 0.05 means that 5% of the voxels on average will show false positive results. 

This implies that we actually expect on the order of 5,000 false positive results. Thus, 

even if an experiment produces no true activation, there is a good chance that without a 

more conservative correction for multiple comparisons, the activation map will show a 
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number of activated regions, which would lead to erroneous conclusions.  

The traditional way to deal with this problem of multiple comparisons is to adjust 

the threshold so that the probability of obtaining a false positive is simultaneously 

controlled for every voxel (i.e., statistical test) in the brain. In neuroimaging, a variety of 

different approaches towards controlling the false positive rate are commonly used – we 

will discuss them in detail below. The fundamental difference between methods is 

whether they control for the family-wise error rate (FWER) or the false discovery rate 

(FDR). The FWER is the probability of obtaining any false positives in the brain, 

whereas the FDR is the proportion of false positives among all rejected tests.  

To illustrate the difference between FWER and FDR, imagine that we conduct a 

study on 100,000 brain voxels at alpha = .001 uncorrected, and we find 300 ‘significant’ 

voxels. According to theory we would expect that 100 (or 33%) of our significant 

‘discoveries,’ to be false positives, but which ones we cannot tell. Since 33% is a 

significant proportion of all active voxels, we may have low confidence that the activated 

regions are true results. Thus, it may be advantageous to set a threshold that limits the 

expected number of false positives to 5%. This is referred to as FDR control at the q = 

0.05 level. In this case, we might argue that most of the results are likely to be true 

activations; however, we will still not be able to tell which voxels are truly activated and 

which are false positives. FWER, by contrast, is a stronger method for controlling false 

positives. Controlling the FWER at 5% implies that we set a threshold so that, if we were 

to repeat the above-mentioned experiment 100 times, only 5 out of the 100 experiments 

will result in one or more false positive voxels. Therefore when controlling the FWER at 

5% we can be fairly certain that all voxels that are deemed active are truly active. 

However, the thresholds will typically be quite conservative, leading to problems with 

false negatives, or truly active voxels that are now deemed inactive. For example, in our 

example perhaps only 50 out of the 200 truly active voxels will give significant results. 

While we can be fairly confident that all 50 are true activations, we have still ‘lost’ 150 

active voxels, most of the true activity. 

Many published PET and fMRI studies do not use either of these corrections; 

instead, they use arbitrary uncorrected thresholds, with a modal threshold of p < .001. A 
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likely reason is because with the sample sizes typically available, corrected thresholds are 

so high that power is extremely low. This is, of course, extremely problematic when 

interpreting conclusions from individual studies, as many of the activated regions may 

simply be false positives. Imposing an arbitrary ‘extent threshold’ for reporting based on 

the number of contiguous activated voxels does not necessarily correct the problem 

because imaging data are spatially smooth, and thus corrected thresholds should be 

reported whenever possible.  

However, because achieving sufficient power is often not possible, it does make 

sense to report results at an uncorrected threshold and use meta-analysis or a comparable 

replication strategy to identify consistent results (Wager et al., 2007; Yarkoni et al., 2011) 

with the caveat that uncorrected results from individual studies cannot be strongly 

interpreted. Ideally, a study would report both corrected results and results at a reasonable 

uncorrected threshold (e.g., p < .001 and 10 contiguous voxels) for archival purposes. 

Methods controlling for multiple comparisons can be applied to the whole brain, 

gray matter masks, or other regions of interest (ROI). It is reasonable to define regions of 

interest based on a priori hypotheses. Such hypotheses regarding regions of interest can 

be based on functional (e.g., functional localizer for face sensitive areas) or anatomical 

constraints (e.g., mask of V1 and V2). The important issue is that the definition of the 

ROI must be independent from the statistical test conducted in that ROI (see 

(Kriegeskorte et al., 2009; Vul et al., 2009; Kriegeskorte et al., 2010). Problematic 

examples are defining a region activated in older subjects and then testing if its activity is 

reduced in younger subjects or defining a region based on activity in the first run of an 

experiment and then testing whether it shows less activity in subsequent runs. Both of 

these are not valid tests because they do not control for regression to the mean. 

 

FWE correction 

The simplest way of controlling the FWER is to use Bonferroni correction in 

which the alpha value is divided by the total number of statistical tests performed (i.e., 

voxels). However, if there is spatial dependence in the data—which is almost always the 

case, because the natural resolution and applied smoothing both lead to spatial 
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smoothness in imaging data—this is an unnecessarily conservative correction that leads 

to a decrease in power to detect truly active voxels. Gaussian Random Field Theory 

(RFT) (Worsley et al., 2004), used in SPM software (Taylor and Worsley, 2006), is 

another (more theoretically complicated) approach towards controlling the FWER. If the 

image is smooth and the number of subjects is high enough (around 20), RFT is less 

conservative and provides control closer to the true false positive rate than the Bonferroni 

method.  

In addition, RFT is used to assess the probability that k contiguous voxels 

exceeding the threshold under the null hypothesis, leading to a “cluster-level” correction. 

The probability that a cluster of size k is found under the null hypothesis is specific to an 

initial, uncorrected significance threshold. It is much more likely to obtain a cluster of k = 

300 at an initial threshold of p < 0.05 than using p < 0.001 as initial threshold, simply 

because more voxels will survive a more liberal threshold. Recent analyses have shown 

that a liberal initial threshold (higher than p < 0.001) inflates the number of false 

positives above the nominal level of 5% (Woo et al., 2014a). Nichols and Hayasaka 

(Nichols and Hayasaka, 2003) provide an excellent review of FWER correction methods. 

Their conclusions are that while RFT is overly conservative at the voxel level, it is liberal 

at the cluster level with small sample sizes. Another aspect to keep in mind when using 

cluster-level correction is that inference is also on the cluster level. Inference is only valid 

for the whole cluster. It is thus not possible to make inferences about single voxels within 

that cluster, rather the interpretation is that ‘there is true signal somewhere in the cluster’ 

(Woo et al., 2014a). For large clusters spanning multiple anatomical or functional 

regions, it is thus impossible to state in which of these regions activation is present. This 

problem is particularly prominent with liberal initial thresholds, since more voxels are 

considered active and form larger clusters. Cluster-level inference with liberal initial 

threshold hence reduces the spatial resolution of fMRI. 

Both methods described above for controlling the FWER assume that the error 

values are normally distributed, and that the variance of the errors is equal across all 

values of the predictors. As an alternative, nonparametric methods instead use the data 

themselves to find the appropriate distribution. Using such methods can provide 



FUNCTIONAL NEUROIMAGING 58 

 

substantial improvements in power and validity, particularly with small sample sizes, and 

we regard them as the “gold standard” for use in imaging analyses. Thus, these tests can 

be used to verify the validity of the less computationally expensive parametric 

approaches. A popular package for doing non-parametric tests, SnPM or “Statistical Non-

Parametric Mapping” (Nichols and Holmes, 2002) (http://warwick.ac.uk/snpm), is based 

on the use of permutation tests. FSL also offers permutations tests via its ‘randomise’ 

function (Winkler et al., 2014). 

 

FDR control 

The false discovery rate (FDR) is a relatively recent development in multiple 

comparison correction developed by Benjamini and Hochberg (Benjamini, 1995) While 

the FWER controls the probability of any false positives occurring in a family of tests 

(e.g., a statistical brian map), the FDR controls the expected proportion of false positives 

among significant tests. In a brain map, this means that approximately 95% of the voxels 

reported at q < .05 FDR-corrected (q is used instead of p) are expected to show some true 

effect. The FDR controlling procedure is adaptive in the sense that the larger the signal, 

the lower the threshold. If all of the null hypotheses are true, the FDR will be equivalent 

to the FWER. Any procedure that controls the FWER will also control the FDR. 

Conversely, any procedure that controls the FDR can only be less stringent than FWER 

and lead to increased power. A major advantage is that since FDR controlling procedures 

work only on the p-values and not on the actual test statistics, it can be applied to any 

valid statistical test. 

  

Anatomical localization and inference 

Accurately identifying the anatomical locations of activated regions is critical to 

making inferences about the meaning of brain imaging data. Knowing where activated 

areas lie permits comparisons with animal and human lesion and electrophysiology 

studies. It is also critical for accumulating knowledge across many neuroimaging studies.  

Localization is challenging for several reasons; first among them is the problem of 
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variety: Each brain is different, and it is not always possible to identify the ‘same’ piece 

of brain tissue across different individuals (Vogt et al., 1995; Thompson et al., 1996). 
Likewise, names for the same structures vary: The same section of the inferior frontal 

gyrus (IFG) can be referred to as IFG, inferior frontal convexity, Brodmann’s Area 47, 

ventrolateral prefrontal cortex, the pars orbitalis, or simply the lateral frontal cortex. 

Standard anatomical atlas brains differ as well, as do the algorithms used to match brains 

to these atlases. There is currently a wide and expanding array of available tools for 

localization and analysis. A database of tools is available from the Neuroimaging 

Informatics Tools and Resources Clearinghouse (NITRC), and another useful list can be 

found at http://www.nitrc.org.  

The most accurate way to localize brain activity is to overlay functional 

activations on a co-registered, high-resolution individual anatomical image. Many groups 

avoid issues of variability by defining anatomical regions of interest (ROIs) within 

individual participants and testing averaged activity in each ROI. The use of functional 

localizers—separate tasks or contrasts designed to locate functional regions in 

individuals—is also a widely used approach, and functional and structural localizers can 

be combined to yield individualized ROIs. For example, structural ROIs are often used in 

detailed analysis of medial temporal regions in memory research; and the use of 

retinotopic mapping, a functional localization procedure, to define individual visual-

processing regions (V1, V2, V4, etc.) is standard in research on the visual system. 

However, the vast majority of studies are analyzed using voxel-wise analysis over 

much of the brain. In most applications, precise locations are difficult to define a priori 

within individuals, and often many regions as well as their connectivity are of interest. In 

such cases, atlas-based localization is used. Such localization can be performed using 

paper-based atlases (Haines, 2000; Mai et al., 2007; Duvernoy, 2012), and there is no 

substitute for a deep knowledge of neuroanatomy. However, a range of automated atlases 

and digital tools are becoming increasingly integrated with analysis software. Some of 

the major ones are described below. 

Early approaches to atlas-based localization were based on the Talairach atlas 

(Talairach and Tournoux, 1988), a hand-drawn illustration of major structures and 
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Brodmann’s Areas (BAs)—cortical regions demarcated according to their 

cytoarchitecture by Brodmann in 1909—from the left hemisphere of an elderly French 

woman. The brain is superimposed on a 3-D Cartesian reference grid whose origin is 

located at the anterior commissure. This allows brain structures to be identified by their 

coordinate locations. This stereotactic convention remains a standard today. Peak or 

center-of-mass coordinates from neuroimaging activations are reported in left to right (x), 

posterior to anterior (y), and inferior to superior (z) dimensions. Negative values on each 

dimension indicate locations at left, posterior, and inferior positions, respectively. 

However, because the Talairach brain is not representative of any population and is not 

complete—only the left hemisphere was studied, and no histology was performed to 

accurately map BAs—‘Talairach’ coordinates and their corresponding BA labels should 

not be used (see (Brett et al., 2002; Devlin and Poldrack, 2007) for discussion) as better 

alternatives are now available. A current standard in the field is the Montreal Neurologic 

Institute’s (MNI’s) 305-brain average1 (Collins et al., 1994), which is the standard 

reference brain for two of the most popular software packages, SPM and FSL (Smith et 

al., 2004) and the International Consortium for Brain Mapping project.  

Digital atlases, including the MNI-305 template (not the Talairach template!), 

permit fine-grained nonlinear warping of brain images to the template and can (if data 

quality is adequate) match the locations of gyri, sulci, and other local features across 

brains. A popular approach implemented in SPM software is intensity-based 

normalization (see Preprocessing). 

An alternative to intensity-based approaches is surface-based normalization, in 

which brain surfaces are reconstructed from segmented gray-matter maps and inflated to 

a spherical shape or flattened (reviewed in (Van Essen and Dierker, 2007). Features (e.g., 

gyri and sulci) are identified on structurally simpler 2-D or spherical brains, and the 

inflated brain is warped to an average spherical atlas brain. This approach has yielded 

better matches across individuals in comparison studies (Fischl et al., 1999; Van Essen 
                                                

1 Called avg305T1 in SPM software. A higher-resolution template in the same space, 
called the ICBM-152 and named avg152T1 in SPM, is also available. It was created from 
the average of the 152 most prototypical images in the 305-brain set. 
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and Dierker, 2007). Several free packages implement surface-based normalization to 

templates, including FreeSurfer, Caret/SureFit software (Van Essen et al., 2001), and 

BrainVoyager. AFNI, using SUMA software (Saad et al., 2004), and FSL have facilities 

for viewing and analyzing surface-based data with FreeSurfer and SureFit.  

Because the original BAs were not precisely or rigorously defined in a group, 

reporting of BAs using the Talairach atlas is not recommended (Devlin and Poldrack, 

2007). However, modern probabilistic cytoarchitectural atlases are being developed 

(Amunts et al., 2007), and some of these are available digitally either from the 

researchers or within FSL (Juelich Atlas) and SPM (as part of the SPM Anatomy 

Toolbox (Eickhoff et al., 2005). 

Another way to localize functional activations is to compare them with the results 

of meta-analyses of other neuroimaging studies. Comparison with meta-analytic results 

can help to identify functional landmarks and provide information on the kinds of 

different tasks that have produced similar activation patterns. Whereas it was typical in 

early neuroimaging studies to claim consistency with previous studies based on activation 

in the same gross anatomical regions (e.g., activation of the anterior cingulate cortex), it 

is now recognized that many such regions are very large, and more precise 

correspondence is required to establish consistency across studies. Quantitative meta-

analyses identify the precise locations that are most consistently activated across studies, 

and they thus provide excellent functional landmarks.  

The variety and heterogeneity of tools that are currently available is both a 

strength and an obstacle to effective localization. A few guidelines may aid in the 

process. First, it is preferable to overlay functional activations on an average of the actual 

anatomical brains from the study sample, after normalization (registration and/or 

warping) to a chosen template, rather than relying solely on an atlas brain. Normalization 

cannot be achieved perfectly in every region, and showing results on the subject’s actual 

anatomy is more accurate than assuming the template is a perfect representation. In 

addition, viewing the average warped brain can be very informative about whether the 

normalization process yielded high co-registration of anatomical landmarks across 

participants, and can help identify problem areas. Single-subject atlases should not be 
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taken as precise indicators of activation location in a study sample, and while they make 

attractive underlay images for activations, they should not be used for this purpose. 

Second, it is important to remember that atlas brains are different, and different 

algorithms used with the same atlas produce different results. Therefore, it is important to 

report which algorithm and which atlas was used. Also, it would be highly misleading to 

use a probabilistic atlas such as those in the SPM anatomy toolbox if the study brains 

were normalized to a different template (and/or with different procedures) than the one 

used to create the atlas (e.g., the SPM anatomy toolbox should not be used when 

normalizing to the ICBM-452 atlas). Regardless of the tools used, identifying functional 

activations on individual and group-averaged anatomy, collaborating with 

neuroanatomists when possible, and using print atlases to identify activations relative to 

structural landmarks are all essential components of the localization and interpretation 

process. 

 

 Connectivity analyses in fMRI 

Most analysis techniques discussed so far focus on questions of functional 

specialization. The kinds of questions that fMRI can answer with regard to specialized 

functions are inherently limited by the spatial resolution of fMRI. A different type of 

question asks how cognitive functions are integrated across brain regions or how 

neuronal populations work together. To this end, it is necessary to study multiple regions 

at the same time and investigate their relationships. The commonality of all these 

techniques is that they build on time-series data from voxels or ROI’s. There are many 

ways of extracting measures of brain connectivity data, and the literature is now replete 

with a huge, and growing, variety of possibilities (Figure 11). We can only provide a 

short overview here and refer the reader to some of excellent specialized reviews 

(Friston, 2011; Smith, 2012; Calhoun et al., 2014).  

Time-series values can be used in structured, hypothesis-driven models of 

connectivity, including path models, Granger causal models, Dynamic Causal Models 

(DCM), and related state-space models. Some of these are discussed below. Large-scale 

connectivity matrices can be used to estimate higher-order, graph theoretic properties of 
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the networks as a whole, which can then be related to outcomes. There is currently a 

proliferation of such measures, including ‘small worldness,’ path length, betweenness-

centrality, ‘rich club’ indices, and metrics of degree distribution (Sporns, 2014). These 

describe, in various ways, organizational properties concerning how all of the ‘objects’ 

(in this case, brain voxels or regions) relate to the others. Spectral measures, which 

summarize connectivity based on its temporal frequencies, include voxel-wise amplitude 

of low-frequency fluctuations (ALFF) and measures derived from time-frequency 

analysis.  

Two very popular techniques for connectivity analysis are psycho-physiological 

interaction (PPI) analysis (Friston et al., 1997) and Dynamic causal modeling (DCM) 

(Friston, 2003). PPI correlate the time-series from a ROI (seed-region) with all other 

voxels’ time-series. The question of interest is then, where in the brain the correlation 

with the seed region is effected by a psychological moderator. The term PPI is used 

because the test is formulated as interaction between the seed time-series and the time-

course of the psychological variable within the GLM framework.  

PPI belongs to class of techniques often labeled ‘functional connectivity’ that do 

not imply and directionality of the estimated connections. DCM and Granger causal 

models assume directionality and thus explicitly model whether the influence is from A 

to B or from B to A.  

DCM also includes a neuronal network model and links the observed fMRI to its 

underlying generative model via a model of neurovascular coupling. The nodes and 

connections between nodes are explicitly specified in DCM and can include 

psychological moderator variables affecting connections or nodes. This explicit 

formulation of hypothesis is one of the strengths of DCM because it forces the researcher 

to clearly define hypothetical models of brain function. After a set of candidate models 

has been specified and estimated, DCM uses Bayesian model selection to choose the 

model that best explains the observed data (Friston et al., 2003; Stephan et al., 2009).  

While most of the literature has focused on stationary correlations that are 

constant across time, researchers are increasingly interested in time-varying correlations 

(Cribben et al., 2012; Calhoun et al., 2014), which provide expanded measures of how 
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correlations change across time and can be used to estimate time-varying graph or 

network structures. 

Hypothesis-driven models of connectivity (e.g., path models and DCM), graph 

theoretic measures, spectral measures, and time-varying connectivity metrics are all 

brain-derived measures that can be used to learn how brain activity maps into mental 

states, performance, experiences and clinical symptoms, behavior, and other outcomes. 

We think of them as part of a “grand search” for the critical levels and type of brain 

measures that will predict and eventually explain how the brain shapes those outcomes. 

 

VI. CONCLUSIONS 

In this chapter we have reviewed the basics of functional neuroimaging with a 

focus on PET and fMRI. We have covered data acquisition, experimental design, analysis 

of the data, and covered principles of inference in neuroimaging studies. We hope that 

this brief introduction provides some practical advice for conducting, analyzing, and 

interpreting fMRI studies and encourages the reader to study these topics in more depth. 

The field has seen a marked increase in the data quality of fMRI over the past 

decade, and at the same time the options for data analyses have multiplied. Together with 

the marked increases in sample size due to collaborative efforts and the new ease of 

sharing data, these developments open exciting avenues for increasing our knowledge 

about brain function. 
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VIII. FIGURE CAPTIONS 

Figure 1. Overview of functional measures in human neuroscience. Temporal 

resolution (x-axis) is plotted against spatial resolution (y-axis). The spatial scale of 

selected entities of interest is indicated by the arrows. 

 

Figure 2. Examples of Magnetic Resonance Imaging (MRI) data. (A-B) The 

same slice of brain tissue can appear very different, depending on which relaxation 

mechanism is emphasized as the source of contrast in the pulse sequence.  Using long 

echo times emphasizes T2 differences between tissues, and shortening the repetition time 

emphasizes T1 differences in tissue. The same slice of the brain acquired as (A) a T1-

weighted image and (B) a T2-weighted image. (C) Diffusion tensor imaging allows 

researchers to measure directional diffusion and reconstruct the fiber tracts of the brain. 

This provides a way to study how different brain areas are connected. Diffusion image is 

adapted from (Behrens et al., 2007).  

 

Figure 3. Measures available on MR scanners. MRI provides structural (left) and 

functional (right) measures of the brain. These measures can be used to study 

psychological processes in relationship to the brain. The combination of MR measures 

with measures of peripheral processes allows the study of integrated physiological 

system, e.g. stress responses in the hypothalamic–pituitary–adrenal (HPA) axis, 

responses in the autonomic nervous system (ANS). Panel with task-related activity 

adapted from Huth et al. (2012) with permission from Elsevier. Spectrogram from gray 

matter voxel (inset) adapted from (Finsterbusch et al., 2013) with permission from John 

Wiley and Sons. 

 

Figure 4. Space basic tradeoffs in fMRI. Choices of sequences (EPI vs. spiral, 

standard vs. multi-slice) and parameters (TR, TE, parallel vs. non-parallel acquisition) 

occupy different points in a space of basic tradeoffs. Multi-slice EPI acquisition is a 

special case, since it allows for high temporal resolution and high coverage at the same 

time. 
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Figure 5. Prediction from brain activity. Various measures of brain activity can 

be used to predict outcome variables. The example on the left used trained a voxel weight 

map on BOLD responses to painful stimuli in order to predict pain. The weight map can 

easily be applied to new subjects by computing the dot-product between the weight map 

and the brain activity (e.g. GLM parameter estimates). The predicted pain response can 

then be compared against actual pain ratings for this condition. 

 

Figure 6. The tradeoff between contrast detection (y-axis) and hemodynamic 

response function (HRF) shape estimation power (x-axis), and the performance of 

different types of designs on each. Power on each axis is expressed here in terms of z-

scores in a simulated group analysis (n = 10, effect sizes estimated from visual cortex 

data in Wager et al., 2005b). The double-circle shows a block design with roughly 

optimal task alternation frequency (16 s / task). The dark circles show power for a 

number of randomized event-related designs with roughly optimal parameters under 

linear modeling assumptions (randomized sequences with a stimulus every 2 s). The dark 

squares show truncated m-sequence designs with the same parameters as the randomized 

design. The open circles show results for genetic algorithm (GA) optimized designs with 

the same parameters. Each circle represents the results of one run of the optimization 

routine with different user-specified detection/shape estimation tradeoff settings. 

 

Figure 7. Balancing scan time and participants. A Contrast for working memory 

task (N-back vs. Rest, N=21, data from (van Ast et al., 2014). Hot colors indicate positive 

activations, cool colors indicate negative effects. B Statistical power as a function of 

sample size with a maximum total scan time of 40 h (see text for details). Different plot 

power curves for three different significance thresholds. The maximum power is around 

38 subjects, each scanned for approximately 1 h. 

 

Figure 8. Schematic of fMRI data analyis steps. Information about the 

experimental design is necessary at all levels of the analysis pipeline. After data 



FUNCTIONAL NEUROIMAGING 79 

 

acquisition on the scanner, images are reconstructed (usually automated onsite). 

Preprocessing can included various steps (slice-timing correction, motion correction, co-

registration with the structural image, spatial normalization to a template space, and 

spatial smoothing). Data analysis itself can also include different steps and techniques. 

The standard approach is to estimate subject-level general linear models (GLM) and 

compute group statistics for contrast images obtained from all subjects. Other kinds of 

analyses include connectivity analysis, multivariate techniques, or prediction of other 

variables from brain data. 

 

Figure 9. Hemodynamic responses and subject-level GLM. A Empirical 

hemodynamic response functions (HRFs) from primary visual and motor cortices, 

adapted from Lindquist et al. (2008), with permission of Elsevier. Data were sampled at a 

high time-resolution using a recently developed acquisition technique (100 ms, with 

whole-brain coverage at 12 mm spatial resolution), permitting visualization of fine-

grained details of the HRF, including the initial dip in signal due to blood oxygenation 

decreases. Participants saw a contrast-reversing checkerboard (visual) for 100 ms and 

made a button-press response an average of 250 ms later. The signal in the visual cortex 

proceeds the signal in the motor cortex throughout the duration of the HRF. B In an fMRI 

experiment with four conditions (A to D), the stimulus function is convolved with a 

canonical HRF to obtain two sets of predicted BOLD responses. The responses are placed 

into the columns of a design matrix X and used to compute whether there is significant 

signal corresponding to the conditions in a particular BOLD time course.  

 

Figure 10. The hierarchical structure of fMRI experiments. Each of the 1 to N 

subjects has participated in multiple sessions on the same or different days. Within each 

session the data acquisition (and task) is split into K different runs. In between runs the 

scanner is stopped, but the subjects remains inside the bore. SPM does not differentiate 

between runs and sessions. It refers to each run as ‘session’. Within each run T volumes 

are acquired, resulting in a time-series of T samples for each voxel. The inter-sample 

interval is the repetition time TR. 
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Figure 11. Varieties of connectivity. Connectivity analyses can be grouped into 3 

classes; Functional connectivity analyses correlate time-series obtained from voxels or 

regions with time-series from other regions or voxels. Psychophysiological interactions 

(PPI) look for time-series correlations depend on a external, psychological, variable. 

Measures of effective connectivity estimate a directional of effect of one source onto 

other time-series. Multivariate connectivity techniques analyze multiple sources (time-

series) simultaneously to estimate their connectivity graphs. 

 


