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1.1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique
for studying brain activation. It measures changes in blood oxygenation and
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blood flow related to neuronal activity, providing researchers with the means
to study human brain function in vivo, either in response to a certain task or
when at rest. During the past two decades fMRI has provided researchers with
an unprecedented access to the inner workings of the human brain, which in
turn has lead to new insights into how the brain processes information.

The data acquired in an fMRI study consists of a sequence of 3-D magnetic
resonance images (MRIs), each made up of a number of uniformly spaced vol-
ume elements, or voxels. The voxels partition the brain into a large number of
equally sized cubes. A typical image may consist of roughly 100, 000 voxels,
where the image intensity value corresponding to each voxel represents the
spatial distribution of the nuclear spin density, which relates to blood oxy-
genation and flow, in the local area. During an fMRI experiment, 100− 1, 000
such 3-D images of the whole brain are acquired. In addition, a standard fMRI
experiment consists of multiple subjects (e.g, 10− 50), potentially brought in
for multiple scanning sessions, each consisting of a number of replications of
a certain experimental task.

Clearly, the amount of available data from a single experiment is extremely
large, and the analysis of fMRI data is an example of the type of modern big-
data problem that is fundamentally changing the quantitative sciences. In
addition, the data exhibit a complicated temporal and spatial noise structure
with a relatively weak signal (though, with appropriate methods, these signals
across the brain can be highly predictive of psychological and clinical states).
Hence, the available data is not only massive in scale but also complex making
the statistical analysis of fMRI data a difficult task.

The field that has grown around the acquisition and analysis of fMRI data
has experienced rapid growth in the past several years and found applications
in a wide variety of fields, including neuroscience, psychology, medicine, eco-
nomics and political science. The use of fMRI data is also central to a number
of emerging fields, such as cognitive neuroscience, affective neuroscience, so-
cial cognitive neuroscience, and neuroeconomics. In these areas fMRI data is
being combined with data on performance and psychophysiology to yield new
exciting models of human thought, emotion, and behavior.

This explosive growth is illustrated by the exponential increase, shown in
Fig. 1.1, of the number of yearly publications in PubMed that mention the
term ‘fMRI’ in either its title or abstract. In the early 1990s only a handful
of such papers were published yearly, while in more recent years this num-
ber has increased to over three thousand papers/year. In addition, more and
more methodological papers appear each year, and the field has become fertile
ground for the development and application of cutting-edge statistical meth-
ods. Researchers entering the field of MRI methods development come from
diverse backgrounds: statistics, computer science, engineering, mathematical
psychology, mathematics, and physics.

The rapid pace of development, as well as the interdisciplinary nature of
the diverse fields that use fMRI data, presents an enormous challenge to re-
searchers. The ability to move the field forward requires strong collaborative
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FIGURE 1.1
The yearly number of publications in PubMed that mention the term ‘fMRI’
either in its title or abstract between 1993 to 2012.

teams with expertise in a number of disciplines, including psychology, neu-
roanatomy, neurophysiology, physics, biomedical engineering, signal process-
ing, and statistics. Of course, true interdisciplinary collaboration is extremely
challenging, as all members of the research team must know enough about
the other disciplines to be able to talk intelligently with experts in each disci-
pline. Hence, making an impact in this exciting new area requires some initial
start-up costs.

The goal of this chapter is to review the basic principles involved in the
acquisition and analysis of fMRI data in enough detail to highlight the most
important issues and concerns. The hope is that this will provide quantitative
researchers with a basic understanding about the relevant research questions
and how to apply their knowledge to these questions in an appropriate man-
ner. We will also attempt to provide an overall road map to what kinds of
study design and analysis options that are available and highlight some of
their limitations. This chapter will be more focused on breadth rather than
depth, with more detailed descriptions of many of the topics found in the later
chapters of the book.

1.2 The Basics of fMRI Data

Functional MRI uses a standard magnetic resonance imaging (MRI) scanner
to acquire a series of brain volumes that can be used to study dynamic changes
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in brain activation. In order to understand the manner in which fMRI data
is acquired, one must first focus on the acquisition of a single static 3-D im-
age. For this reason, while the focus of this chapter is on functional imaging,
we must necessarily begin by reviewing data acquisition and reconstruction
techniques used to obtain a static MRI of the brain. This closely follows the
description in Chapter ** (cite MRI CHAPTER). After this review, we will
transition our focus towards the particular issues involved with acquiring data
meant for use in an fMRI study.

Proper understanding of the data acquisition and reconstruction proce-
dures associated with fMRI is complex, requiring background in both MR
physics and signal processing. Thus, the description that follows is abbrevi-
ated. For a more in-depth discussion see, for example, excellent references such
as [21] or [23].

1.2.1 Principles of Magnetic Resonance Signal Generation

In this section we outline the physical bases of fMRI. We begin by providing
some basic background on the MR scanner and continue by illustrating how it
can be used to generate signal, and in turn how this signal can be used to con-
struct an image. While these topics are common with the acquisition of MRI
images, we conclude the section with discussing particular issues associated
with fMRI.

1.2.1.1 The MRI Scanner

An MRI scanner is a large and versatile piece of hardware. Its main component
is a superconducting electromagnet with an extremely strong static magnetic
field, typically varying from 1.5− 7.0 Tesla in human brain research. To place
this into context, the Earths magnetic field is only 0.00005 Tesla. Thus, the
field strength is strong enough to pull magnetic objects into its core. Because,
the static field is always active, it is critical to observe caution when bringing
objects into the MR scanner room. However, it is important to note that there
are no known long-term effects on biological tissue, making the technique
attractive for scanning humans.

A second critical component of the scanner is the radio frequency coils,
hardware coils close to the object being imaged (e.g., the head) that can be
used to generate and receive energy at the resonance frequency of the volume
being imaged. They are turned on and off during the course of data acquisition.

A third component is the gradient coils, which are electromagnetic coils
that can be used to create spatial variation in the strength of the magnetic
field in a controlled manner. As we will see this is critical for the ability to
encode spatial information into the signal that is necessary for the creation of
images.

MR scanners are extremely versatile, as they can be used to study both
brain structure and function in multiple ways. Different types of images can



Principles of functional Magnetic Resonance Imaging 7

be generated to emphasize contrast related to different tissue characteristics.
In addition, the scanner can be used to study the directional patterns of
water diffusion – diffusion-weighted imaging (DWI) used to measure white-
matter tracts – elastic properties of brain tissue, flow of cerebrospinal fluid,
and other properties. Hence, the same scanner is used to acquire structural
MRIs, functional MRIs, and perform diffusion tensor imaging (DTI) of white-
matter tracts; see Chapters * and ** (cite MRI & DTI CHAPTERS). This is
extremely beneficial as it allows for the acquisition of several different types
of images on a specific subject during a given scanning session. In particular,
structural images are always acquired as part of a standard fMRI scanning
session, as they play an integral part in subsequent preprocessing of the data;
see Section 6 and Chapter **** (cite PREPROCESSING CHAPTER).

1.2.1.2 Basic MR Physics

All magnetic resonance imaging techniques rely on a core set of physical prin-
ciples. To properly understand these principles, one should begin by looking at
a single atomic nucleus and illustrate its impact on the generated MR signal.
In particular we focus on hydrogen atoms consisting of a single proton (1H
atoms), as they are the most commonly used nuclei in MRI due both to their
magnetic properties and abundance in the human body.

Protons can be viewed as positively charged spheres that are always spin-
ning about their axis. This gives rise to a net magnetic moment along the
direction of the axis of the spins, which is the source of the signal we seek to
measure. Unfortunately, it is not possible to measure the magnetization of a
single proton using an MRI scanner. Instead, we must focus our attention on
measuring the net magnetization of the ensemble of all nuclei within a chosen
volume. The net magnetization, denoted M , can be represented as a vector
with two components. The first is a longitudinal component, which is parallel
to the magnetic field, and the second a transverse component perpendicular
to the field.

In the absence of an external magnetic field, the individual nuclei are
randomly oriented with respect to one another and therefore do not give rise
to a net magnetization. However, when placed into a strong magnetic field,
the nuclei align with the field, creating a net longitudinal magnetization in
the direction of the field. While aligned the nuclei precess about the field with
an angular frequency determined by the Larmor frequency, but at a random
phase with respect to one another.

In order to measure the net magnetization of the nuclei within a certain
volume, one must perturb the equilibrium and observe the reaction. A ra-
diofrequency (RF) electromagnetic field pulse causes the nuclei to absorb the
energy at a particular frequency band, and become “excited”. Conceptually,
we can imagine this process as the RF pulse aligning the phase of the pre-
cessing nuclei and tipping them over into the transverse plane. This causes
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the longitudinal magnetization to decrease, and establishes a new transversal
magnetization.

After the RF pulse is removed, the system seeks to return to equilibrium.
Now the nuclei emit the absorbed energy as they “relax”. This causes the
transverse magnetization to disappear, in a process known as transversal re-
laxation, while the longitudinal magnetization grows back to its original size
in a process referred to as longitudinal relaxation. During this time a signal
is created that can be measured using a receiver coil.

Longitudinal relaxation represents the restoration of net magnetization
along the longitudinal direction as the nuclei return to their original aligned
state. It is seen as an exponential recovery in magnetization described by a
time constant T1. Transverse relaxation is the loss of net magnetization in the
transverse plane due to loss of phase coherence. Since the net magnetization
depends upon the combined contribution of a large number of nuclei, its value
is largest when all the nuclei are in phase. However, the removal of the RF pulse
causes the nuclei to de-phase, causing an exponential decay in magnetization
described by a time constant T2. Both the T1 and T2 values depend upon
tissue type, and it is this property that allows for the creation of structural
MR images that can be used to differentiate between different tissue types.

The term T ∗
2 is similar to T2, but also depends on local inhomogeneities in

the magnetic field caused by changes in blood flow and oxygenation. These in-
homogeneities cause the nuclei to de-phase quicker than they normally would.
Certain pulse sequences are able to eliminate the effects of these inhomo-
geneities, while others seek to emphasize them. Thus it is possible to produce
images sensitive primarily to T1, T2, or T ∗

2 . T ∗
2 signal provides the basis for

functional MRI, as it is sensitive to neurovascular changes that accompany
psychological and behavioral function.

1.2.1.3 Image Contrast

One of the reasons for the versatility of the MR scanner is its ability to create
images based on a variety of different contrasts that are sensitive to both
the number and properties of the nuclei being imaged. To illustrate, assume
the initial value of the net magnetization prior to excitation is given by the
value M0. By altering how often we excite the nuclei (TR) and how soon after
excitation we begin data collection (TE) we can control which characteristic
of the tissue is emphasized. This relationship can be seen by noting that the
measured signal is approximately equal to:

M0(1− e−TR/T1)e−TE/T2 . (1.1)

If one, for example, choose a long TR and short TE value the signal will
be approximately equal to M0, which in turn is proportional to the number of
nuclei (or protons) in the tissue. Hence, these settings can be used to produce
so-called ‘proton-density’ images that provide maps over how hydrogen is dis-
tributed across the sample. When the TE is short (∼ 20ms), but the TR is of
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intermediate length, we instead get ‘T1-weighted’ images, which are typically
used to reveal anatomical structure. Finally, for ‘T2-weighted’ images, another
type of structural image, a long TR and an intermediate TE should be cho-
sen. Because T1 and T2 vary with tissue type, T1- and T2-weighted images can
be used to provide detailed representations of the boundaries between gray
matter, white matter, and cerebrospinal fluid (CSF).

FIGURE 1.2
Examples of proton density, T1, and T2-weighted images.

Because T ∗
2 is sensitive to flow and oxygenation, T ∗

2 -weighting can be used
to create images of brain function. T ∗

2 -weighted images are obtained in a
similar manner to T2-weighted images. The difference lies in manner in which
the pulse sequence uses the magnetic gradients. This is beyond the scope of this
chapter, but interested readers should are referred to [21] or [23]. See Fig. 1.2
for examples of the difference in proton density, T1, and T2-weighted images.
In particular note that the images highlight different anatomical properties of
the underlying sample, and their usage depends upon the goals of the study.

1.2.2 Image Formation

The goal of exciting nuclei in the MRI scanner is ultimately to obtain enough
information to be able to construct an image of the underlying sample. Any
image is represented by a matrix of numbers that correspond to spatial loca-
tions. The images generally depict the spatial distribution of some property
of the nuclei within the sample. This could be the density of nuclei, their
mobility, or the relaxation time of the tissues in which they reside. Pulse se-
quences define particular manipulations of RF pulses and the shape of the
magnetic field that allow us to reconstruct the acquired data into a map of
the underlying signal sources, i.e. the hydrogen atoms, and obtain images of
the brain.

While most MRIs are 3-D representations of the brain, they are almost
always constructed through the acquisition of a series of 2-D slices. This ac-



10 Book title goes here

quisition can be performed in either a sequential or interleaved manner. To
illustrate, consider that we are interested in acquiring a total of Nz slices
of the brain. Using a sequential scheme the slices are acquired in order, in
either an ascending or descending manner. Using an interleaved scheme one
instead collects data in an alternating slice order. This can minimize the risk
of signal bleeding from an adjacent slice that was previously excited. Both
sequential and interleaved sequences have different pros and cons, though a
detailed discussion is beyond the scope here.

In general, the process of exciting nuclei only provides information about
the net magnetization within the slice. In order to construct a meaningful
image of the brain we must find ways to extract information about the spatial
contributions to the net magnetization, i.e. how much each individual voxel
contributes to its value. This is done using a system of gradient coils that
manipulate the magnetic field within the chosen slice and sequentially control
its spatial inhomogeneity. In short, this process allows one to express each
measurement of the signal as the Fourier transformation of the spin density
at a single point in the frequency domain, or k-space as it is commonly called
in the field.

Conceptually, we can think of k-space being sampled at a number of dis-
crete locations (kx(tj), ky(tj)) at time tj . Here tj = j∆t is the time of the jth

measurement, where ∆t depends on the sampling bandwidth of the scanner;
typically it takes values in the range of 250 − 1000µs. See Chapter ** (cite
MRI CHAPTER) or [35] for more detail. Mathematically, the measurement
of the MR signal at the jth time point of a readout period can be written

S(tj) ≈
∫
x

∫
y

M(x, y)e−2πi(kx(tj)x+ky(tj)y)dxdy, (1.2)

where M(x, y) is the spin density at the point (x, y). This is the entity that
we seek to measure at each voxel of the brain.

To reconstruct a single MR image, one needs to sample a large number
of individual k-space measurements. The exact number depends upon the
desired image resolution. For example, to fully reconstruct a 64× 64 image, a
total of 4096 separate measurements are required, each sampled at a unique
coordinate of k-space. There is a time cost involved in sampling each point,
and therefore the time it takes to acquire an image is directly related to its
spatial resolution.

There exist a variety of approaches towards sampling k-space. In echo-
planar imaging (EPI) k-space is sampled uniformly around its origin ([42]).
This allows for the quick and easy reconstruction of the image using the Fast
Fourier Transform (FFT); see Fig. 1.3 for an illustration. Alternatively, one
can use non-uniform trajectories, such as the Archimedean spiral ([17]). While
these trajectories provide a number of benefits relating to speed and signal-to-
noise ratio, the FFT algorithm cannot be directly applied to the non-uniformly
sampled raw data. Instead the raw data are typically interpolated onto a
Cartesian grid in k-space and thereafter the FFT is applied to reconstruct the
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FIGURE 1.3
The raw data obtained from the MRI scanner is sampled in k-space, typically
on a unifrom grid. Using the inverse Fourier transform (IFT) the data can be
transformed into image space where data analysis is performed.

image. Image reconstruction is described in more detail in Chapter ** (cite
RECONSTRUCTION CHAPTER).

The k-space signal is measured over two channels, and therefore the raw
k-space data will be complex valued. It is assumed that both the real and
imaginary components are measured with independent normally distributed
error. Since the Fourier transformation is a linear operation, the reconstructed
data will also be complex valued in each voxel, with both parts following
a normal distribution. In the final stage of the reconstruction, the complex
valued measurements are separated into magnitude and phase components.
In the vast majority of studies only the magnitude portion of the images are
used in the data analysis, while the phase portion is discarded.

It is important to note that the magnitude images no longer follow a
normal distribution, but rather a Rice distribution ([20]). The shape of this
distribution depends on the signal-to-noise (SNR) ratio within the voxel. For
the case when no signal is present, it behaves like a Rayleigh distribution.
When the SNR is high, the distribution will be approximately Gaussian.

1.2.3 From MRI to fMRI

The data acquisition and reconstruction techniques discussed so far provide
the means for obtaining a static 3-D image of the brain. However, changes in
brain hemodynamics in response to neuronal activity impact the local intensity
of the MR signal. Therefore, a sequence of properly acquired T ∗

2 -weighted
brain images allow for the study of changes in brain function over time. This
can be achieved by repeatedly measuring T ∗

2 -weighted images of the brain
every few seconds. The time between successive 3-D brain volumes is referred
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to as the repetition time, or TR. In most fMRI experiments the TR is on the
order of 2 seconds. However, depending on the research question values can
vary from anywhere between 0.1− 6 seconds.
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FIGURE 1.4
Example of a structural T1-weighted image and corresponding T ∗

2 -weighted
functional images meaured during two conditions.

During the course of the scanning session the subject is either asked to per-
form a certain task, experience an induced psychological or behavioral state,
or simply rest. The types of tasks that are performed depend upon the research
question and can vary from the relatively mundane (e.g. tapping your fingers)
to the complex. Fig. 1.4 shows an example of a T1-weighted structural scan,
as well as T ∗

2 -weighted functional images collected under two conditions. In
recent years it has become increasingly common to perform so-called resting-
state scans, where the subject lies still without actually performing an explicit
task. These types of studies have been used to investigate synchronous acti-
vations in spatially distinct regions of the brain, which are thought to reflect
functional systems supporting cognitive processes, and this will be discussed
further in Section 1.8.

A standard fMRI experiment gives rise to massive amounts of data. It
can consist of multiple subjects (usually 10 − 50, though some larger studies
now include hundreds or thousands of participants) potentially brought in for
multiple scanning sessions. Each session consists of a number of runs, or repli-
cations of a certain experimental task. Each run consists of a series of brain
volumes, each volume is made up of multiple slices, and each slice contains
many voxels that has an intensity values associated with it. On top of that,
multiple high-resolution structural scans are collected for pre-processing and



Principles of functional Magnetic Resonance Imaging 13

presentation purposes, and often diffusion tensor imaging (DTI) is also col-
lected to inform subsequent network analyses. Hence, the amount of available
data from a single experiment is enormous.

There are a number of critical determinations that go into designing the
manner in which fMRI data is acquired. Certain issues directly related to the
type of magnet and pulse sequences that are used, may ultimately depend on
the particular lab where the data is being collected and could be outside of the
researchers control. However, there still remain many decisions that should be
carefully discussed within the research team before beginning the process of
acquiring the data.

One set of decisions concerns the desired spatial and temporal resolution
of the study. The temporal resolution determines our ability to separate brain
events in time. In fMRI its value depends upon how quickly each individual
image is acquired, i.e. the TR. In contrast, the spatial resolution determines
our ability to distinguish changes in an image across different spatial locations.
The manner in which fMRI data is collected makes it impossible to simulta-
neously increase both, as increases in temporal resolution limit the number of
k-space measurements that can be made in the allocated sampling window and
thereby directly influence the spatial resolution of the image. Therefore there
are inherent trade-offs required when determining the appropriate spatial and
temporal resolutions used in an fMRI experiment.

FOV 

FO
V 

FIGURE 1.5
Each brain volume consists of multiple axial slices measured over a certain
spatial extent, denoted the field-of-view (FOV). The matrix size, or the num-
ber of voxels acquired in the xy-plane, determines the spatial resolution with
higher values giving better resolution. Together the slice thickness, FOV and
matrix size determine the size of the voxel.

As previously mentioned, 3-D brain volumes are typically acquired in a
series of axial slices (over the xy-plane with a fixed z value) of a certain slice
thickness. Each slice is measured over a certain spatial extent, referred to as
the field-of-view (FOV). The matrix size, or the number of voxels acquired



14 Book title goes here

in the xy-plane, determines the spatial resolution with higher values giving
better resolution. Together the slice thickness, FOV and matrix size determine
the size of the voxel. See Fig. 1.5 for an illustration. For example, consider
that we choose to acquire a series of thirty 5mm slices with a FOV of 192mm,
as this is typically sufficient to cover the entire brain. In addition, suppose the
matrix size is 64 × 64, corresponding to 4096 voxels in the brain. Thus, the
dimensions of each voxel will be 3× 3× 5mm.

Structural images tend to have high spatial resolution, but as they are
static images, they lack any temporal resolution and generally do not reflect
function at all. These are typically T1-weighted images, as these are useful for
distinguishing between different types of tissue. One of the benefits of MRI
as an imaging technique is its ability to provide detailed anatomical scans of
gray and white matter with a spatial resolution well below 1mm3. However,
the time needed to acquire such an image is prohibitively high and currently
not feasible for use in functional studies. Hence, by necessity functional im-
ages have lower spatial resolution, but higher temporal resolution. As such
they can be used to relate changes in signal to an experimental manipulation.
The spatial resolution is typically on the order of 3× 3× 5mm, corresponding
roughly to image dimensions on the order of 64 × 64 × 30, which can read-
ily be sampled with a resolution of approximately 2 seconds. However, with
modern high-resolution imaging, combined with higher field strengths and
new acquisition techniques, it is possible to achieve much higher resolution.
For example, with simultaneous multi-slice acquisition at 7T, it is possible to
acquire 2× 2× 2mm data across the brain in less than 1 second.

Regardless of these limitations, fMRI still provides relatively high spatial
resolution compared with many other functional imaging techniques, includ-
ing positron emission tomography (PET), electroencephalography (EEG), and
magnetoencephalography (MEG). This balance of spatial and temporal reso-
lution, together with its non-invasiveness, accounts for the popularity of the
technique compared to other modalities. Advances in high-field imaging and
parallel acquisition methods promise to further push the boundaries of both
spatial and temporal resolution.

1.3 BOLD fMRI

The ability to connect measures of brain activation, obtained using fMRI, with
the underlying neuronal activity that caused them, will greatly impact the
choice of statistical procedure as well as the subsequent conclusions that can be
made from the experiment. Therefore from a modeling perspective, it is critical
to gain some basic understanding of brain physiology to better understand
the data at hand. Again, the overview presented here is by necessity brief
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and interested readers are referred to textbooks dealing specifically with the
subject (e.g., [23]).

1.3.1 Understanding BOLD fMRI

The most popular approach for performing fMRI uses the Blood Oxygenation
Level Dependent (BOLD) contrast ([50, 28]), measured using the difference in
signal between a series of T ∗

2 -weighted images. Other methods for performing
fMRI are available, but less widely used. These include several varieties of
Arterial Spin Labeling (ASL), which use pulse sequences sensitive to blood
volume or cerebral perfusion. Because it is by far the most common method
currently used, our focus in this Chapter is exclusively on BOLD physiology.

BOLD imaging takes advantage of differences in the magnetic properties
of oxygenated and deoxygenated hemoglobin. As neural activity increases, so
do the metabolic demands for oxygen and nutrients in affected regions of the
brain. Neural firing signals the extraction of oxygen from hemoglobin in the
blood. This extraction causes the hemoglobin to become paramagnetic as iron
atoms are more exposed to the surrounding water. This creates small distor-
tions in the magnetic field that cause a decrease in T ∗

2 , leading to a faster
decay of the signal and a local decrease in BOLD signal. A subsequent over-
compensation in blood flow increases the amount of oxygenated hemoglobin,
leading to reduced signal loss and increased BOLD signal in the affected re-
gion.

Initially, fMRI was performed by injection of contrast agents with para-
magnetic properties such as iron. However, the discovery that the T ∗

2 relax-
ation rate of oxygenated hemoglobin was longer than that of deoxygenated
hemoglobin led to the advent of BOLD imaging, which has since come to
dominate the field.

BOLD fMRI allows us to study the hemodynamic responses to neural
firing. The change in the MR signal caused by a neural event is typically
referred to as the hemodynamic response function (HRF); see Fig. 1.6A for
an illustration. The increased metabolic demands due to neuronal activity lead
to increases in the inflow of oxygenated blood to active regions of the brain.
Since more oxygen is supplied than actually consumed, this leads to a decrease
in the concentration of deoxygenated hemoglobin, which leads to an increase
in signal. This positive rise in signal has an onset approximately 1−2 seconds
after the onset of neural activity and peaks 5 − 8 seconds after peak neural
activity. After reaching its peak level, the BOLD signal decreases to a below
baseline level which is sustained for roughly 10 seconds. This effect, known
as the post-stimulus undershoot, is due to the fact that blood flow decreases
more rapidly than blood volume thereby allowing for a greater concentration
of deoxygenated hemoglobin in previously active brain regions.

A number of studies have shown evidence of a decrease in oxygenation
levels in the time immediately following neural activity, giving rise to decreased
BOLD signal in the first half second following activation. This is believed to
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FIGURE 1.6
(A) The standard canonical HRF model used in fMRI data analysis. (B) The
BOLD response modeled as the convolution of the stimulus function and the
HRF. Here we see examples using both a block and event-related design.

be due to oxygen extraction taking place prior to the inflow of oxygenated
blood, and is usually referred to as the initial dip ([45, 41]). The ratio of the
amplitude of the dip compared to the positive BOLD signal depends on the
strength of the magnet and has been reported to be roughly 20% at 3 Tesla.
There is also evidence that the dip may be more localized to areas of neural
activity (e.g., [70, 34]) than the subsequent rise, which appears less spatially
specific. Due in part to these reasons, the negative response has so far not
been reliably observed and its existence remains controversial ([37]).

Clearly, the BOLD signal only provides an indirect measure of the quan-
tity we actually seek to measure, which is the underlying neural activation. It
is therefore important to understand how well the BOLD signal reflects ac-
tual increases in neuronal firing. The answer to this question is complex, and
understanding the physiological basis of the BOLD response has long been a
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topic of intense research interest (e.g. [7]). In short, it has been shown that
the BOLD signal corresponds closely to the local electrical field potential sur-
rounding a group of cells, which is likely to reflect changes in post-synaptic
activity under many conditions ([38]). However, neural activity and BOLD
signal may under other conditions become decoupled. Thus, BOLD signal is
only likely to reflect a portion of the changes in neural activity in response
to a task or psychological state. For this reason many regions may exhibit
changes in neural activity that is missed because they do not change the net
metabolic demand of the region.

1.3.2 Spatial Limitations

One of the primary benefits of fMRI is that it provides relatively high spatial
resolution compared with many other functional imaging modalities, such as
PET, MEG and EEG. The spatial resolution of fMRI can be made to be less
than 1mm3 in high-field imaging of animals, but is typically on the order of
27 − 36mm3 for human studies. For these reasons, features such as cortical
columns and sub-nuclei cannot easily be identified, and it may be difficult to
study certain small-scale features using fMRI.

The limiting factors in fMRI include signal strength and the point-spread
function of BOLD imaging, which typically extends beyond the actual neural
activation sites into draining veins. The fact that only a fraction of the oxygen
that flows to an active region is actually extracted, leads to oxygen rich blood
entering the venous system, thus increasing the BOLD signal in areas removed
from the active neurons. This point-spread function decreases as the magnetic
field strength increases, and interacts with head movement and physiological
noise.

In addition, there are multiple analysis choices that ultimately limit the
spatial resolution in most studies. First, it is common to spatially smooth fMRI
data prior to analysis, which leads to a decrease in the effective resolution of
the data. Second, making inferences about populations of subjects requires an-
alyzing groups of individuals, each with inherent differences in brain structure.
Usually, individual brains are aligned to one another through a registration or
warping process, which introduces substantial blurring and noise in the group
average.

One can potentially improve inferences in space by advances in both the
manner data is acquired and preprocessed. For example, an important innova-
tion in the area of acquisition has been the use of multiple coils with different
spatial sensitivities to simultaneously measure k-space ([61, 54]). This ap-
proach, known as parallel imaging, allows for an increase in the amount of
data that can be collected in a given time window. Hence, it can be used to
either increase the spatial resolution of an image or decrease the amount of
time required to sample an image with a certain specified spatial resolution.
Parallel imaging techniques have already had a great influence on the way data
is collected, and their role will only increase. The appropriate manner to deal
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with the acquisition and reconstruction of multi-coil data is a key direction
for future research.

Similarly, in the area of preprocessing, the introduction of enhanced spatial
inter-subject normalization techniques and improved smoothing techniques
could help researchers avoid the most dramatic effects of blurring the data. In
addition, adaptive smoothing techniques can be used to more efficiently retain
boundaries between different tissue types.

1.3.3 Temporal Limitations

The temporal resolution of an fMRI study depends on the TR, which in most
fMRI studies ranges from 0.5 − 4.0 seconds. Clearly, these values indicate a
fundamental disconnect between the underlying neuronal activity, which takes
place on the order of tens of milliseconds, and the temporal resolution of the
study. However, the statistical analysis of fMRI data is primarily focused on
using the positive rise in the BOLD response to study the underlying neural
activity. Hence, the limiting factor in determining the appropriate temporal
resolution is generally not considered the speed of data acquisition, but instead
the speed of the underlying evoked hemodynamic response to a neuronal event.
Since inference is based on oxygenation patterns taking place 5 − 8 seconds
after activation, TR values in the range of 2 seconds have generally been
considered adequate.

However, the currently used resolutions are not conducive to efficient mod-
eling of physiological artifacts present in the fMRI signal. For example, heart-
rate and respiration give rise to periodic fluctuations that are difficult to model
due to violations of the Nyquist criteria, which states that it is necessary to
have a sampling rate at least twice as high as the frequency of the periodic
function one seeks to model. At standard temporal resolutions this is clearly
violated, and heart rate and respiration are often left un-modeled. Because of
aliasing, these fluctuations tend to be distributed throughout the time course,
giving rise to temporal autocorrelation in the signal. As fMRI signal gener-
ally suffers from low signal-to-noise ratio (SNR) and physiological artifacts
potentially make up a large portion of the noise component, this may be a
serious impediment. There has recently been active research in increasing the
temporal resolution of fMRI studies, making TRs on the order of hundreds of
milliseconds possible ([34, 29, 48]). These advances may ultimately allow us
to circumvent many of these issues.

Because of the relatively low temporal resolution and the sluggish nature
of the hemodynamic response, inference regarding when and where activation
is taking place is based on oxygenation patterns outside of the immediate
vicinity of the underlying neural activity we want to base our conclusions on.
Since the time-to-peak positive BOLD response occurs in a larger time scale
than the speed of brain operations, there is a risk of unknown confounding fac-
tors influencing the ordering of time-to-peak relative to the ordering of brain
activation in different regions of interest. For these reasons it is difficult to
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determine the absolute timing of brain activity using fMRI. However, studies
have shown ([46, 47]) that the relative timing within a voxel in response to dif-
ferent stimuli can be accurately captured in a well-designed experiment. There
are also indications that focusing inference on features related to the initial
dip can help alleviate concerns ([33]) regarding possible confounders. However,
these types of studies require significant increases in temporal resolution and
the ability to rapidly acquire data becomes increasingly important.

Another way of improving inferences in time is through appropriate ex-
perimental design. In principal it is possible to measure the HRF at a finer
temporal resolution than the TR as long as the onsets of repeated stimuli
are jittered in time relative to when the data is collected ([12]). For example,
if the onset of a repeated stimulus is shifted by half a TR in a fraction of
the stimuli, it may possible to estimate the HRF at a temporal resolution of
TR/2, compared to a resolution of TR if jittering is not performed.

A series of recent technological developments referred to as “multiband” or
“simultaneous multi-slice” MRI ([29, 48]), have sped up the temporal resolu-
tion of fMRI acquisitions by approximately an order of magnitude (i.e., from
2 s to 0.2 s, for whole-brain imaging), and appear likely to offer the possibility
for even further acceleration. In contrast to standard acquisition techniques,
multiband MRI excites multiple slices simultaneously, and the MR signals
from these slices are then separated using multiple receiver coils and the aid
of special encoding techniques. The introduction of multiband MRI promises
to change the manner in which fMRI data is acquired and how it is analyzed.

1.3.4 Acquisition artifacts

As with almost all types of physical measurements, fMRI data can be cor-
rupted by acquisition artifacts. These artifacts arise from a variety of sources,
including head movement, brain movement and vascular effects related to
periodic physiological fluctuations, and reconstruction and interpolation pro-
cesses. In particular, fMRI data often contain transient spike artifacts and slow
drift over time related to a variety of sources, including magnetic gradient in-
stability, RF interference, and movement-induced and physiologically induced
inhomogeneities in the magnetic field. These artifacts will likely lead to vio-
lations of the assumptions of normally and identically distributed errors that
are commonly made in subsequent statistical analysis. Unless they are prop-
erly dealt with, the consequences will include reduced power in group-level
analysis and potentially increased false positives in single-subject inference.
As always it is critical to examine the data (preferably in as raw a form as
possible), in order to diagnose problems. However, this can be challenging
given the massive amount of fMRI data collected.

A significant source of signal variations includes the substantial slow drift
of the signal across time. The presence of this low-frequency noise component
in fMRI can obscure results related to a psychological process of interest and
produce false positive results. Therefore, it is usually removed statistically
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prior to or during analysis. A consequence of slow drift is that it is often im-
practical to use fMRI for designs in which a process of interest only unfolds
slowly over time or only happens once, such as the experience of strong emo-
tions, though alternative techniques such as Arterial Spin Labeling or BOLD
functional connectivity may be suitable for this purpose. The vast majority
of fMRI designs use discrete events that can be repeated many times over the
course of the experiment. For example, the most common method for study-
ing emotional responses in fMRI is the repeated presentation of pictures with
emotional content.

Susceptibility artifacts in fMRI occur because magnetic gradients near air
and fluid sinuses and at the edges of the brain cause local inhomogeneities
in the magnetic field that affects the signal, causing distortion in echo-planar
sequences and blurring and dropout in spiral sequences. These problems in-
crease at higher field strengths and provide a significant barrier for performing
effective high-field fMRI studies. Not all scanner/sequence combinations can
reliably detect BOLD activity near these sinuses. The regions most affected
include the orbitofrontal cortex, inferior temporal cortex, hypothalamus, and
amygdala. Some signal may be recovered by using optimized sequences or
improved reconstruction algorithms.

Figure 1.7 shows examples of several types of artifacts, including suscep-
tibility artifacts that are endemic to fMRI and several other types that can
usually be controlled.

1.4 Modeling Signal and Noise in fMRI

In order to appropriately model fMRI data, it is important to gain a better
understanding of the components present in a BOLD fMRI time series. In
general, it consists of the BOLD signal, which is the component of interest,
a number of nuisance parameters and noise. Here we discuss each component
in detail and discuss modeling strategies.

1.4.1 BOLD signal

The evoked BOLD response is a complex, nonlinear function of the results of
neuronal and vascular changes ([66, 7]), which complicates our ability to ap-
propriately model its behavior. The shape of the response depends both upon
the applied stimulus and the hemodynamic response to neuronal events. A
number of methods for modeling the BOLD response, as well as the underly-
ing HRF, exist in the literature. A major difference between the methods lies
in how the relationship between the stimulus and BOLD response is modeled.
In particular, we differentiate between non-linear physiological-based models,
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FIGURE 1.7
Examples of common fMRI artifacts: (A) k-space artifact; (B) ghosting in a
phantom; (C) susceptibility artifact (dropout); and (D) Normalization arti-
fact.

such as the Balloon model ([7, 56]), and models that assume a linear time
invariant (LTI) system.

The Balloon model describes the dynamics of cerebral blood volume and
de-oxygenation and their effects on the resulting BOLD signal. It consists of
a set of ordinary differential equations that model changes in blood volume,
blood inflow, deoxyhemoglobin and flow-inducing signal and describes how
these changes impact the observed BOLD response. While models of this type
tend to be more biophysically plausible than their linear counterparts, they
have a number of drawbacks. First, they require the estimation of a large
number of model parameters. Second, they do not always provide reliable es-
timates with noisy data, and third, they do not provide a direct framework
for performing inference. In general, they are not yet considered feasible al-
ternatives for performing whole-brain multi-subject analysis of fMRI data in
cognitive neuroscience studies. However, they are a critical component in the
study of brain connectivity using Dynamic Causal Modeling (DCM). This is
discussed in Section and in more detail in Chapter ** (cite EC CHAPTER).
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While the flexibility of nonlinear models is attractive, linear models allow
for robust and interpretable characterizations in noisy systems. It is common
to assume a linear relationship between neuronal activity and BOLD response,
where linearity implies that the magnitude and shape of the evoked HRF does
not depend on any of the preceding stimuli. Studies have shown that under
certain conditions the BOLD response can be considered approximately linear
with respect to the stimulus ([6]), particularly if events are spaced at least 5
seconds apart, though there are still some nonlinearities (10%) at 5 second
spacing ([47]). However, other studies have found that nonlinear effects in
rapid sequences (e.g., stimuli spaced less than 2 seconds apart) can be quite
large ([3, 66]).

The ability to assume linearity is important, as it allows the relationship
between stimuli and the BOLD response to be modeled using a linear time
invariant system, in which assumed neuronal activity (based on task manipu-
lations) constitutes the input, or impulse, and the HRF is the impulse response
function. In a linear system framework the signal at time t, x(t), is modeled
as the convolution of a stimulus function v(t) and the hemodynamic response
h(t), i.e. x(t) = (v ∗ h)(t). Here h(t) is either assumed to take a canonical
form, or alternatively modeled using a set of linear basis functions. See Fig.
6B for two examples.

An LTI system is characterized by its scaling, superposition and time-
invariance properties. Scaling implies that if the input is scaled by a factor b
then the BOLD response will be scaled by the same factor. This is important
as it implies that the amplitude of the measured signal provides a measure of
the amplitude of neuronal activity. Therefore the relative difference in ampli-
tude between two conditions can be used to infer that the neuronal activity
was similarly different. For this reason much of the activation analyses per-
formed on fMRI data is focused on studying contrasts between the responses
to stimuli at different levels. Superposition implies that the response to two
different stimuli applied together is equal to the sum of the individual re-
sponses. Finally, time-invariance implies that if a stimulus is shifted by a time
t, then the response is similarly shifted by t. These three properties allow us
to differentiate between responses in various brain regions to multiple closely
spaced stimuli.

When using an LTI system, as with any model, one makes a number of
assumptions. First, it is assumed that the BOLD response is linear. Studies
have shown that this is reasonable [6], though some departures from linear-
ity have been observed. For example, there is some evidence of refractory
effects, which are reductions in amplitude of a response as a function of inter-
stimulus intervals. This may cause the amplitude of closely spaced stimuli
to be overestimated. Second, it is assumed that the neural activity function
is correctly modeled. As this is typically assumed to be equal to the experi-
mental paradigm, one must assume this provides a reasonable proxy for the
underlying neuronal activity. Third, it is assumed that the HRF is correctly
modeled. Often researchers assume a canonical shape for the HRF. A popular
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choice is the linear combination of two gamma functions, i.e.

h(t) = (
tα1−1βα1

1 e−β1t

Γ(α1)
c
tα2−1βα2

2 e−β2t

Γ(α2)
) (1.3)

where α1 = 6, α2 = 16, β1 = β2 = 1, c = 1/6 and Γ represents the gamma
function. This particular shape, seen in Fig. 1.6A, is based on empirical find-
ings from data extracted from the visual cortex.

However, it is critically important to note that the timing and shape of
the HRF are known to vary across the brain, within an individual and across
individuals [1, 59]. Part of the variability is due to the underlying configuration
of the vascular bed, which may cause differences in the HRF across brain
regions in the same task for purely physiological reasons ([64]). Another source
of variability is differences in the pattern of evoked neural activity in regions
performing different functions related to the same task.

One of the major shortfalls when analyzing fMRI data is that users typi-
cally assume a canonical HRF ([19]), which may lead to mis-modeling of the
signal in large portions of the brain ([39]). It is therefore important that these
regional variations are accounted for when modeling the BOLD signal. This
is often handled by modeling the HRF using multiple basis functions, and
using a linear combination to better fit the evoked BOLD responses. To illus-
trate, suppose we model the HRF as a linear combination of temporal basis
functions, fi(t), such that

h(t) =
∑

βifi(t). (1.4)

Then the BOLD response can be rewritten:

x(t) =
∑

βi(s ∗ fi)(t) (1.5)

where each corresponding βi describes the weight of the ith component.
The ability to use basis sets to capture variations in hemodynamic re-

sponses depends both on the number and shape of the reference waveforms
that are used in the model. For example, the finite impulse response (FIR)
basis set, consists of one free parameter for every time-point following stim-
ulation in every cognitive event-type that is modeled [16, 18]. It can be used
to estimate HRFs of arbitrary shape for each event type in every voxel of
the brain. Another approach is to use the canonical HRF together with its
temporal and dispersion derivatives to allow for small shifts in both the onset
and width of the HRF. Other choices of basis sets include those composed of
principal components [1, 68], cosine functions [71], radial basis functions [56],
spectral basis sets [30] and inverse logit functions [32]. For a critical evaluation
of a number of commonly used basis sets, see [32] and [31].

1.4.2 Noise and nuisance signal

The measured fMRI signal is corrupted by random noise and various nuisance
components that arise from hardware limitations and the subjects themselves.
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One source of variability are the fluctuations in the MR signal intensity caused
by thermal motion of electrons within the subject and the scanner gives rise
to noise that tends to be highly random and independent of the experimental
task. The amount of thermal noise increases linearly as a function of the field
strength of the scanner, with higher field strengths giving rise to more noise.
However, it does not tend to exhibit spatial structure and averaging the signal
over multiple voxels can minimize the effects.

Another source of variability in the signal is due to scanner drift, caused by
scanner instabilities, which result in slow changes in voxel intensity over time,
so-called low-frequency noise. The amount of drift varies across space, and it is
important to include this source of variation in your models. Because of drift
most of the power in the time course lies in the low-frequency portion of the
signal. To remove the effects of drift it is common to remove fluctuations below
a specified frequency cutoff using a high-pass filter. This can be performed
either by applying a temporal filter as a preprocessing step, or by including
covariates of no interest into the model. As an example of the latter, the
drift can be modeled using a pth order polynomial function or a series of low
frequency cosine functions. The most important issue when using a high-pass
filter is to ensure that the fluctuations induced by the task design are not in
the range of frequencies removed by the filter, as this may cause us to throw
out the signal of interest. Hence, the ultimate choice in how to model the drift
needs to be made with the experimental design in mind.

When subjects move their heads in the MRI scanner, the sequence of mea-
surements corresponding to a given voxel in the resulting images may actually
be composed of values originating from different brain locations. This neces-
sitates motion correction, in which, prior to analysis, researchers estimate the
between scan movement using a rigid body transformation, and then realign
the images. However, this procedure does not correct for so-called spin history
artifacts, or changes in the magnetic field caused by head motion that lead
to nonlinear, time-varying distortion of the resulting brain images, and there
has been some debate on how to deal with these residual artifacts [25].

Some researchers ([25, 40]) suggest including motion regressors as nuisance
covariates in the model for the BOLD response to adjust for this error, arguing
that this yields estimates that seem more reasonable than those obtained when
these covariates are omitted. But as head motion tends to be task related, there
is concern that inclusion of these covariates can lead to underestimating the
signal component due to genuine activiation [53]. [10] argue that inclusion of
motion regressors has a generally detrimental effect on activation for subjects
with minimal head motion. In contrast, in recent work we have shown [60] that
omitting signal components due to systematic error correlated with the task
will generally lead to biased estimates of the effects of interest in a standard
GLM analysis. Thus, we recommend that motion regressors be included in
models of the BOLD response.

Physiological noise due to patient respiration and heartbeat can, as pre-
viously discussed, cause fluctuations in signal across both space and time.
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Physiological noise can in certain situations be directly estimated from the
data ([33]). Some of it can be removed using a properly designed band-pass
filter. However, in most studies, with TR values ranging from 2− 4s, one can-
not hope to estimate and remove the effects of heart rate and respiration based
solely on the observed fMRI time series. According to the Nyquist theorem, it
is necessary to have a sampling rate at least twice as high as the frequency of
the periodic function one seeks to model. If the TR is too slow, which is true in
most fMRI studies, there will be problems with aliasing. In this situation the
periodic fluctuations will be distributed throughout the time course, giving
rise to temporal autocorrelation. Some groups have therefore begun directly
measuring heartbeat and respiration during scanning and using this informa-
tion to remove signal related to physiological fluctuations from the data [9].
This is done either as a pre-processing step, or by including these terms as
covariates in the model.

In standard time series analysis, model identification techniques are used
to determine the appropriate type and order of a noise process. In fMRI data
analysis this approach is not feasible due to the large number of time series
being analyzed, and noise models are typically specified a priori. Noise in fMRI
is typically modeled using either an AR(p), with p set to either 1 or 2, or an
ARMA(1,1) process [55]. Here the autocorrelation is generally thought to be
due to unmodeled nuisance signal. If these terms are properly removed there
is evidence that the resulting error term corresponds to white noise citelund.

In our own work, we typically use an auto-regressive process of order 2. The
reason we choose an AR model over an ARMA model is that it allows us to use
method of moments rather than maximum likelihood procedures to estimate
the noise parameters. This significantly speeds-up computation time when
repeatedly fitting the model to tens of thousands of time series. Choosing the
order of the AR process to be 2 has been empirically determined to provide the
most parsimonious model that is able to account for autocorrelation present
in the signal due to aliased physiological artifacts.

1.5 Experimental Design

The experimental design of an fMRI study is complicated as it not only in-
volves the standard issues relevant to all psychological experiments, but also
issues related to data acquisition and stimulus presentation. Not all designs
with the same number of trials of a given set of conditions are equal, and
the spacing and ordering of events is critical. What constitutes an optimal
experimental design depends on the psychological nature of the task, the abil-
ity of the fMRI signal to track changes introduced by the task over time,
and the specific comparisons that one is interested in making. In addition,
as the efficiency of the subsequent statistical analysis is directly related to
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the experimental design, it needs to be carefully considered during the design
process.

A good experimental design attempts to maximize both statistical power
and psychological validity. The statistical performance can be characterized
by its estimation efficiency (the ability to estimate the shape of the HRF),
or its detection power (the ability to detect which voxels are active). The
psychological validity is often measured by the randomness of the stimulus
presentation (e.g., balanced transitional probabilities across trial types), as
this helps control for issues related to anticipation, habituation and boredom;
however, whether a predictable vs. unpredictable design is psychologically un-
desirable depends heavily on the particular paradigm and task. Thus, when
designing an experiment there is inherent trade-offs between estimation effi-
ciency, detection power and randomness. The optimal balance between the
three ultimately depends on the goals of the experiment and the combina-
tion of conditions that are of primary interest. For example, a design used
to localize areas of brain activation may stress high detection power at the
expensive of estimation efficiency and randomness. Conversely, designs that
attempt to link activity to particular events or time periods during processing
may emphasize estimation efficiency at the expense of detection power.

There are two major classes of designs used in most fMRI experiments,
namely blocked designs and event-related designs (though these can be inter-
mixed or hybridized); see Fig. 6B for examples of each. In a blocked design,
experimental conditions are separated into extended time intervals, or blocks.
For example, one might repeat the process of interest during an experimen-
tal block (A) and have the subject rest during a control block (B). The A-B
comparison can than be used to compare differences in signal between the two
conditions. Increasing the length of each block will lead to a larger evoked re-
sponse during the task. This increases the separation in signal between blocks,
which in turn leads to higher detection power. However, it is still important
to include multiple transitions between conditions as otherwise differences in
signal due to low-frequency drift may be confused for differences in task con-
ditions and to ensure that the same mental processes are evoked throughout
each block. If block lengths are too long, this assumption may be violated due
to the effects of fatigue and/or boredom.

Another benefit of blocked designs is that they are robust to uncertainties
in the shape of the HRF. This holds because the predicted response depends
upon the total activation caused by a series of stimuli, making it less sensitive
to variations in the shape of responses to individual stimulus. However in
contrast, block designs provide imprecise information about the particular
processes that activated a brain region and cannot readably be used to directly
estimate important features of the HRF, such as the onset, width or time-to-
peak.

In an event-related design the stimulus consists of short discrete events,
such as brief light flashes, whose timing can be randomized. These types of
designs are flexible and allow for the estimation of key features of the HRF
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(e.g., onset and width) that can be used to make inference about the relative
timing of activation across conditions and about sustained activity. Event-
related designs allow one to discriminate the effects of different conditions as
long as one either inter-mix events of different types or vary the inter-stimulus
interval between trials. Another advantage to event-related designs is that the
effects of fatigue, boredom, and systematic patterns of thought unrelated to
the task during long inter-trial intervals can be avoided. A drawback is that
the power to detect activation is typically lower than for block designs, though
the ability to obtain data over more trials per unit time can counter this loss
of power.

What constitutes an optimal experimental design ultimately depends on
the task, as well as on the ability of the fMRI signal to track changes intro-
duced by the task over time. It also depends on what types of comparisons
are of interest. The delay and shape of the BOLD response, scanner drift and
physiological noise all conspire to complicate experimental design for fMRI.
Several methods have been introduced that allow researchers to optimally se-
lect the design parameters, as well as the sequencing of events that should be
used in an experiment ([65, 36, 26, 27]). These methods define fitness measures
for the estimation efficiency, detection power and randomness of the experi-
ment, and apply search algorithms (e.g., the genetic algorithm) to optimize
the design according to certain specified criteria. When defining the fitness
metrics it is typically assumed that the subsequent data analysis will be per-
formed in the general linear model (GLM) framework described in Section
1.7.1.

The use of more complex nonlinear models requires different considerations
when defining appropriate fitness metrics. An important consideration relates
to assumptions made regarding the shape of the HRF and the noise structure.
The inclusion of flexible basis functions and correlated noise into the model will
modify the trade-offs between estimation efficiency and detection power, and
potentially alter what constitutes an optimal design. Hence, even seemingly
minor changes to the model formulation can potentially have a large impact
on the efficiency of the design. Together these issues complicate the design
of experiments and significant work remains to find the appropriate balance
between them. As research hypotheses ultimately become more complicated,
the need for more advanced experimental designs will only increase further.

1.6 Preprocessing

Prior to statistical analysis, fMRI data typically undergoes a series of prepro-
cessing steps aimed at removing artifacts and validating model assumptions.
The main goals are to minimize the influence of data acquisition and phys-
iological artifacts, to validate statistical assumptions and to standardize the
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locations of brain regions across subjects in order to achieve increased validity
and sensitivity in group-level analysis.

When analyzing fMRI data it is typically assumed that all of the voxels
in a particular 3-D brain volume were acquired simultaneously. Further, it is
assumed that each data point in a specific voxel’s time series only consists of
signal from that particular voxel; an assumption that is invalid if the subject
moves between scans. Finally, when performing group analysis and making
population inference, all individual brains are assumed to be registered, so
that each voxel is located in the same anatomical region for all subjects. Pre-
processing is used to condition the data in ways that increase the plausibility
of all of these assumptions. Without appropriate pre-processing of the data
prior to analysis, none of these assumptions hold and the resulting statistical
analysis would be invalid.

The major steps in the fMRI preprocessing pipeline are slice acquisition-
timing correction (‘slice-time’ correction), realignment, co-registration of
structural and functional images, normalization of brains to a group tem-
plate, and smoothing. Below we briefly describe each step. For more detail see
Chapter ** (cite PREPROCESSING CHAPTER).

Slice-time Correction: A typical assumption in the analysis of fMRI
data is that all voxels within a 3-D image are acquired simultaneously. In re-
ality, different slices from the same volume are acquired sequentially in time
relative one another. Thus, many researchers seek to estimate the signal in-
tensity in all voxels at a common standardized time point in the acquisition
period. This can be done by interpolating the signal intensity at the cho-
sen time point from the same voxel in previous and subsequent acquisitions.
Some researchers do not use slice timing, as it adds interpolation error to the
data, and instead use (a) more flexible hemodynamic models to account for
variations in acquisition time across the brain, or (b) more rapid acquisition
sequences in which multiple slices are acquired simultaneously.

Realignment: A major source of error is subject movement during the
course of the experiment. Excessive motion may cause the intensity in a given
voxel to be contaminated by signal from neighboring voxels. For these reasons
it is critical to realign each individual image to compensate for movement. This
is typically done by first choosing a reference image, either the first or mean
image, and than applying a rigid body transformation to all other images in
the time series to match it. This allows the images to be translated (shifted
in the x, y, and z directions) and rotated (altered roll, pitch, and yaw) to
match the reference image. An iterative algorithm is used to search for the
parameter estimates that provide the best match between a target image and
the reference image. Matching is typically performed by minimizing the sums
of the squared differences between the two images. Once the best match is
found, the data is interpolated into the new space.

Realignment is critically important when analyzing fMRI data. It is able
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to correct for small movements of the head. However, it is important to note
that it is unable to correct for the more complex spin-history artifacts created
by the motion. For this reason the estimated motion parameters at each time
point are saved for later inspection and are often included in subsequent anal-
ysis as covariates. It is not uncommon to have to exclude subjects that move
their heads too much during the course of the scan. While there do not exist
firm rules stating how much movement should be considered too much, more
than 1.5mm displacement within a scanning session is typically considered to
be problematic.

Co-registration: Functional MRI data is typically of low spatial resolu-
tion and therefore provides relatively little anatomical detail. It is therefore
common to map the results obtained from the analysis of functional data onto
a high-resolution structural MR image for presentation purposes. This process
is referred to as co-registration, and is typically performed using either a rigid
body (6 parameters) or an affine (12 parameters) transformation. Because
functional and structural images are collected with different sequences and
different tissue classes have different average intensities, using a least squares
difference method to match images is often not appropriate. Instead, it is
preferable to estimate the parameters of the transformation by maximizing
the mutual information between the two images. Typically, a single structural
image is co-registered to the first or mean functional image. Co-registration
is also a necessary step for subsequent normalization procedures (described
below). Here high-resolution structural images (T1 and/or T2) are used for
warping to a standard template and localization. The same transformations
are thereafter applied to the functional images, which produce the activation
statistics, so the results can be mapped onto a standard space.

Normalization: For group analysis, it is necessary for each voxel to lie
within the same brain structure for all subjects. However, individual brains
clearly have differences in both shapes and features. That said there are cer-
tain regularities shared by every non-pathological brain, and normalization
attempts to register each subjects anatomy with a standardized atlas space
defined by a template brain, reported in the standard coordinate systems of
the Montreal Neurologic Institute (MNI), or that of Talairach and Tournoux
[63]. Normalization can be linear, involving simple registration of the gross
shape of the brain, or nonlinear, involving warping to match local features.
This warping consists of shifting the locations of voxels by different amounts
depending on their original location.

Inter-subject registration is perhaps the largest source of error in group-
level analysis of fMRI data. For these reasons it is important to inspect each
normalized brain as a quality control step. This can be done in a number
of ways, and researchers should develop a set of standardized procedures to
assess the results.
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Smoothing: Many researchers apply a spatial smoothing kernel to the
functional data, blurring the image intensities in space. One reason is to im-
prove inter-subject registration, by eliminating intra-subject differences. A
second reason is that Gaussian Random Field Theory, a popular multiple-
comparisons correction procedure, assumes that the variations across space
are continuous and normally distributed. Smoothing typically involves con-
volution with a Gaussian kernel, which is a 3-D normal probability density
function often described by the full width of the kernel at half its maximum
height (FWHM) in mm. One estimate of the amount of smoothing required
to meet the assumption is a FWHM of 3 times the voxel size (e.g., 9mm for
3mm voxels).

1.7 Data Analysis

There are several common objectives in the analysis of fMRI data. These in-
clude localizing regions of the brain activated by a certain task, determining
distributed networks that correspond to brain function and making predic-
tions about psychological or disease states. Many of these objectives are re-
lated to understanding how induced or measured psychological states leads
to changes in brain activity (a combination of neural and glial function), and
others are related to the analysis of ongoing spontaneous fluctuations. All
these objectives are intrinsically statistical in nature, and this area is the pri-
mary domain of statisticians currently involved in the field. For this reason,
the material covered in this section is the focus of many subsequent chapters
of this book. Here we simply provide a brief overview of relevant topics, but
refer to future chapters for a more in-depth treatment.

1.7.1 Localization

To date, the most common use of fMRI has been to localize areas of the
brain that activate in response to a certain task. These types of human brain
mapping studies are instrumental for increasing our understanding of brain
function. The general linear model (GLM) approach is the most common sta-
tistical method for assessing relationships between tasks and brain activity
[69]. Here the data is considered to be a linear combination of model func-
tions plus noise. The model functions are assumed to have known shapes, but
with unknown amplitudes that need to be estimated. The GLM can be used
to estimate whether the brain responds to a single event type, to compare
different types of events, and to assess correlations between brain activity and
behavioral or other psychological variables.

In a typical fMRI experiment, the predictors are related to psychological
events, and the outcome variable is the signal from a certain brain voxel
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or a region of interest. Analysis is typically massively univariate, meaning
that a separate GLM analysis is performed at every voxel in the brain, and
summary statistics are saved in maps of statistic values across the brain. This
approach assumes an improbable independence between voxel pairs. Typically
dependencies between voxels are dealt with later using random field theory,
which makes assumptions about the spatial dependencies between voxels.

Using the GLM, the data at each voxel can be expressed as

Y = Xβ + ε, (1.6)

where ε ∼ N(0,V). Here Y represents the data (a vector of length T ), X
is a design matrix containing information about various signal components,
and V is a covariance matrix that incorporates information about temporal
autocorrelations in the data. The latter is typically modeled using either an
autoregressive (AR) or auto-regressive moving-average (ARMA) model.

Though the model formulation is simple, difficulties arise when attempting
to construct an appropriate design matrix X. This process is complicated by
a number of factors, including the fact that the BOLD response contains low-
frequency drift and artifacts related to head movement and cardiopulmonary-
induced brain movement, the neural response shape may not be known, and
the hemodynamic response varies in shape across the brain. For these reasons
the design matrix X usually consists of both nuisance parameters (correspond-
ing to drift components and the estimated motion parameters) and signal of
interest.

The simplest version of the GLM assumes that both the stimulus function
and the HRF are known. As discussed in Section 1.4.1 the stimulus is assumed
to be equivalent to the experimental paradigm, while the HRF is typically
modeled using a canonical HRF; see Fig. 1.6A. If unwilling to assume a fixed
canonical HRF, it is possible to model the shape by expressing the HRF as the
linear combination of a number of basis functions. Here each basis function is
convolved with the stimulus and entered as a separate column of the design.
See Chapter **** (cite GLM CHAPTER) for more information about the
GLM.

Often we are interested in combining the results for individual subjects in
order to perform group-level inference. Because of the hierarchical structure
of the data, an appropriate approach towards analyzing multi-subject fMRI
data is to use either a multi-level or mixed-effects GLM model. For example,
we can express the first-level model for subject i as Yi = Xβi + εi, where
εi ∼ N(0,Vi). The second level model can in turn be written, βi = β + ηi,
where ηi ∼ N(0, σ2). This can easily be fit using most statistical software
packages. However, in the neuroimaging community it is often approximated
by performing a GLM on each subject, and thereafter using the resulting
activation parameter estimates in a ‘second level’ group analysis; see Chapter
**** (cite GROUP ANALYSIS CHAPTER).

Regardless of whether one performs single-subject or group-level analysis,
the procedure follows the same general format. First one fits a statistical model
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FIGURE 1.8
(Left) An example of a statistical image consisting of test statistic values at
each voxel of the brain. (Right) The thresholded statistical map indicates
active regions of the brain.

(e.g., the GLM) to data from a certain voxel in the brain. Next, the estimated
model parameters are used to test for an effect of interest, for example H0 :
β1 − β2 = 0. This procedure is then repeated for each voxel across the brain,
and the results are summarized in a statistical image; see the left panel of Fig.
1.8. The final step is to determine which voxels actually show a statistically
significant effect. The results of neuroimaging studies are often summarized
as a set of activated regions, such as those shown in the right panel of Fig.
1.8. These types of summaries describe brain activation by color-coding voxels
whose test statistics exceed a certain statistical threshold for significance. The
implication is that these voxels are activated by the experimental task.

Of course, a crucial decision is the choice of which threshold to use when
deciding whether voxels should be deemed ‘active’ or not. In many fields,
test statistics whose p-values are below 0.05 are considered sufficient evidence
to reject the null hypothesis, with an acceptable false positive rate of 0.05.
However, in brain imaging on the order of 100, 000 hypothesis tests (one for
each voxel) are tested at a single time. Hence, using a voxel-wise alpha of 0.05
implies that 5% of the voxels on average will show false positive results. Hence,
we would actually expect on the order of 5, 000 false positive results. Thus,
even if an experiment produces no true activation, there is a good chance
that without a more conservative correction for multiple comparisons, the
activation map will show a number of activated regions, leading to erroneous
conclusions.

The traditional way to deal with this multiplicity problem is to adjust the
threshold so that the probability of obtaining a false positive is simultaneously
controlled for every voxel (i.e., statistical test) in the brain. In neuroimaging,
a variety of different approaches towards controlling the false positive rate are
commonly used; see [22] and Chapter ** for more detail (cite MC CHAPTER).
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The fundamental difference between methods used is whether they control for
the family-wise error rate (FWER) or the false discovery rate (FDR).

1.7.2 Connectivity

Previously, fMRI data was primarily used to construct maps representing
regions of the brain activated by specific tasks. In recent years there has been
increased interest in augmenting this type of analysis with connectivity studies
that describe how various brain regions interact and how these interactions
depend on experimental conditions. A number of methods have been suggested
in the fMRI literature to quantify brain connectivity. Their appropriateness
depend upon (i) what type of conclusions one is interested in making; (ii)
what type of assumptions one is willing to make; (iii) the level of the analysis;
(iv) the modality used to obtain the data; and (v) the number of brain regions
that are included in the analysis.

The term connectivity is an umbrella term that has been used to refer to a
number of related aspects of brain organization. In the neuroimaging literature
it is common to distinguish between anatomical, functional and effective con-
nectivity [14, 62]. Anatomical connectivity deals with the description of how
different brain regions are physically connected, and can be approached using
techniques such as diffusion tensor imaging (DTI; see Chapter ****). Func-
tional connectivity (see Chapter ***) and effective connectivity (see Chapter
***) study the functional relationships between different brain regions.

Functional Connectivity is defined as the undirected association between
two or more fMRI time series and/or performance and physiological variables.
It makes statements about the structure of relationships among brain regions.
However, methods used to access functional connectivity usually do not make
any assumptions about the underlying biology and tend to be data-driven in
nature.

A wide variety of methods have been proposed to study functional con-
nectivity. The simplest approaches simply compare the bivariate correlations
between regions of interest, or between a seed region and all other voxels across
the brain. Recently, inverse covariance estimation methods have been applied,
using the fact that for multivariate normal data, conditional independence be-
tween variables (regions) corresponds to zero entries in the inverse covariance
matrix. This allows for the efficient investigation of a large number of regions
simultaneously.

Other approaches towards investigating functional connectivity include us-
ing various multivariate decomposition methods, to identify task-related pat-
terns of brain activation without making a priori assumptions about its form.
These methods include principal components analysis (PCA) [2]) and indepen-
dent components analysis (ICA) ([8, 44]). These methods involve decomposing
the time-by-voxel data matrix, Y, into a set of spatial and temporal compo-
nents according to some criteria (e.g., independence between components).
They are discussed in detail in Chapter ** (cite MVDECOMP CHAPTER)



34 Book title goes here

and have been especially fruitful for analyzing so-called resting-state data,
where the subjects do not perform an explicit task. This is an area of in-
tense research where standard methods for localizing brain activation are not
applicable due to the lack of stimulus.

Effective Connectivity is defined as the directed influence of one brain re-
gion on the physiological activity recorded in other brain regions. It claims to
make statements about causal effects among tasks and regions. Usually meth-
ods that assess effective connectivity make anatomically motivated assump-
tions and restrict inference to networks comprising of a number of pre-selected
regions of interest.

Effective connectivity analyses are inherently model-dependent. Typically,
a small set of regions and a proposed set of connections are specified a priori,
and tests of fit are used to compare a small number of alternative models
and assess the statistical significance of individual connections. Because con-
nections may be specified directionally (with hypothesized causal influences
of one area on another), the models are typically thought to imply causal
relationships. Because there are many possible models, the choice of regions
and connections must be anatomically motivated. Thus, most effective con-
nectivity depends upon a neuroanatomical model that describes which areas
are connected, and a mathematical model that describes how areas are con-
nected. Popular methods for assessing effective connectivity include structural
equation modeling (SEM) [43], Granger causality [57], and dynamic causal
modeling (DCM) [13].

Effective connectivity is popular because it is thought to provide powerful
conclusions. However, the validity of these conclusions depends on certain
assumptions being correct. They are often poorly specified and difficult to
check, which is a major shortcoming of the field. The main problem is that
results are discussed in terms of the applied estimation algorithm rather than
carefully defined estimands of interest. This is discussed in more detail in
Chapter ** (EC CHAPTER).

In many situations we seek to create networks consisting of a large number
of non-overlapping brain regions. Networks can be represented using graphs,
which are mathematical structures that can be used to model pair-wise re-
lationships between variables. They consist of sets of nodes (or vertices) V
and corresponding links (or edges) E that connect pairs of vertices. A graph
G = (V,E) may be defined as being either undirected or directed with respect
to how the edges connect one vertex to another; see Fig. 1.9 for an example.

As the number of regions included in the analysis approaches the hundreds,
it can often be difficult to make sense of these vast amounts of data. Net-
work analysis attempts to characterize these networks using a small number
of meaningful summary measures. The hope is that comparisons of network
topologies between groups of subjects may reveal connectivity abnormalities
related to neurological or psychiatric disorders. As an example, there is a grow-
ing interest in using graph theoretical approaches to investigate the organiza-
tional principles of large-scale brain networks. These studies have shown clear
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FIGURE 1.9
(A) A functional connectivity-based parcellation of the brain. (B) Co-
activations in studies of disgust, from a meta-analysis of 148 neuroimaging
studies. The nodes (circles) are regions or networks, color-coded by anatomi-
cal system. The edges (lines) reflect co-activation between pairs of regions or
networks, assessed based on the joint distribution of activation intensity. The
size of each circle reflects how strongly it connects disparate networks. C) The
same connections in the anatomical space of the brain.

topological organization of the brain, including modularity, small-worldness,
and the existence of highly connected network hubs. These network properties
are thought to provide important implications for health and disease. See [58]
or Chapter ** for more detail (cite NETWORK CHAPTER).

1.7.3 Prediction

There is a growing interest in using fMRI data for the classification of mental
disorders and predicting the early onset of disease. In addition, there is interest
in developing methods for predicting stimuli directly from functional data. The
ability to do so opens the possibility of inferring information about subjective
human experience directly from brain activation patterns.

Predicting brain states is challenging and requires the application of novel
statistical and machine learning techniques [52]. Various techniques have suc-
cessfully been applied to fMRI data in which a classifier is trained to discrimi-
nate between different brain states and then used to predict the states in a new
set of fMRI data. The application of machine learning methods to fMRI data
is often referred to as multi-voxel pattern analysis (MVPA). As the name in-
dicates, instead of focusing on single voxels, MVPA uses pattern-classification
algorithms applied to multiple voxels to decode patterns of activity. In MVPA
the goal is to determine the model parameters that allow for the most accurate
prediction of new observations.

When applied to fMRI data the result is often a pattern of weights across
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wT x  >  0   Group A 

Voxel-weights: 
w =(w1,….wV) 

Data: 
x =(x1,….xV) 

wT x  <  0   Group B 

FIGURE 1.10
An MVPA example from [67]. The input features are measurements over all
V voxels in the brain contained in the vector x. These voxels are weighted by
the vector w of length V , so that if xw > 0 we categorize a subject as belong
to group A and if xw < 0 we categorize them as belonging to group B.

brain regions that can be applied to new brain activation maps in order to
quantify the degree to which the pattern responds to a particular type of event.
For example, consider the situation where we want to categorize subjects into
two groups (A or B) based on their brain activation. Here the input features
are measurements over all V voxels in the brain contained in the vector x. We
now seek to find a weighting of these voxels, represented by the vector w of
length V , so that if xw > 0 we categorize a subject as belong to group A and
if xw < 0 we categorize them as belonging to group B. Here the elements of
the vector w consists of voxel-specific weights that can be mapped back onto
3D space and interpreted for scientific reasons; see Fig. 1.10.

When applying MVPA methods to fMRI data it is particularly important
to make analysis choices that balance interpretability with predictive power.
Certain methods may give good predictions but the resulting voxel weights
may be difficult to interpret and may not generalize well to new subjects. In
these situations the scientific value of the results may be unclear. MVPA is
discussed in more detail in Chapter *** (cite MachineLearning).

Currently, one of the most exciting areas in neuroimaging is the work being
done in decoding our thoughts based on brain activity. Here the idea is to study
a persons activation and thereafter try to recreate what the subject is seeing
or doing. In order to do this properly researchers need a good mathematical
model of how the brain functions and high-speed computing. Although there
are a number of companies that are starting to pursue brain decoding for
purposes ranging from market research to lie detection, most researchers are
more excited about what this process can teach us about the way the brain
functions.



Principles of functional Magnetic Resonance Imaging 37

1.8 Resting-state fMRI

Clearly the brain is always at work, even in the absence of an explicit
task. In fact, according to certain estimates, task-related changes in neuronal
metabolism only account for about 5% of the brains total energy consumption.
Resting state fMRI (rs-fMRI) is a relatively new approach towards functional
imaging that is used to identify synchronous BOLD changes in multiple brain
regions while subjects lie in the scanner but do not perform a task [4].

Using rs-fMRI it has been shown that fluctuations in the low-frequency
portion of the BOLD signal show strong correlations in spatially distant re-
gions of the brain. While the exact mechanisms driving these correlations
remain unclear, it is hypothesized that it may be due to fluctuations in spon-
taneous neural activity. Neuroscientists are increasingly interested in study-
ing the correlation between spontaneous BOLD signals from different brain
regions in order to learn more about the intrinsic functional connectivity of
the brain.

Already rs-fMRI has revealed several large-scale spatial patterns of co-
herent signal in the brain during rest, corresponding to functionally relevant
resting-state networks (RSNs). These networks are thought to reflect the base-
line neuronal activity of the brain. A number of RSNs have been consistently
observed both across groups of subjects and in repeated scanning sessions on
the same subject. RSNs are localized to grey matter, and are thought to re-
flect functional systems supporting core perceptual and cognitive processes.
Many regions that are co-activated during active tasks also show resting state
connectivity, as brain regions with similar functionality tend to express similar
patterns of spontaneous BOLD activation. Sometimes subsets of RSNs appear
to be either up or down-regulated during specific cognitive tasks.

Resting-state fMRI is based on studying low-frequency BOLD fluctuations.
Functionally relevant, spontaneous BOLD oscillations have been found in the
lower frequency ranges (0.01 − 0.08 Hz). This is separable from frequencies
corresponding to respiratory (0.1− 0.5 Hz) and cardiovascular (0.6− 1.2 Hz)
signal. Typical resting experiments are of the order of 5− 10 min, though the
identification of an optimal duration of an rs-fMRI session and the possible
need for multiple sessions remains an open issue. In addition, there is no
consensus as to whether data should be collected while subjects are asleep or
awake, and with eyes open or closed.

Pre-processing of rs-fMRI data typically follows the same pipeline applied
to standard task-related BOLD FMRI. However, there are a few important
differences. High pass temporal filtering applied to task FMRI data may be
overly aggressive with respect to removing some of the relevant frequency
information. Often the data is band-pass filtered at (0.01−0.08 Hz). As it has
been shown that non-neuronal physiological signals may interfere with resting
state BOLD data, the removal of confounding signals, such as respiratory or
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cardiovascular noise has been shown to considerably improve the quality of
data attributable to neural activity. It has therefore become common practice
in rs-fMRI research to explicitly monitor these signals, and retrospectively
correct for their confounding effects post-acquisition.

In addition the global mean signal, at least six motion parameters es-
timated in the pre-processing stage, the cerebrospinal fluid (CSF), and the
white matter signals are also commonly removed prior to analysis in order
to reduce the effects of head motion and non-neuronal BOLD fluctuations.
However, the removal of the global signal has proven to be particularly con-
troversial. In the past few years, there has been increased attention given to
observed anti-correlations between RSNs. Anti-correlations between the com-
ponents of the default-mode and attention networks have been consistently
observed. However, recently there has been a lot of debate about these find-
ings (e.g., [49]), as it is thought that global signal regression will induce a bias
towards finding anti-correlations between RSNs.

Because of the lack of task, rs-fMRI is attractive as it removes the bur-
den of experimental design, subject compliance, and training demands. It is
particularly attractive for studies of development and clinical populations. In
addition, it is easy to tack on a resting state scan even when performing task-
based experiments. For these reasons, the amount of available resting state
data has exploded and there is a growing subfield around the acquisition and
analysis of rs-fMRI data.

As a final note, one of the primary benefits with R-fMRI is the ability to
compare data across research labs, as experiments do not need to be synchro-
nized. This has lead to a number of large-scale data sharing initiatives (e.g.
1000 Functional Connectomes Project).

1.9 Data Format, Databases & Software

It is critical that new researchers interested in getting involved in fMRI re-
search gain some basic understanding of the format of the data and have
access to the tools needed to read, analyze and visualize them. In this section
we discuss the formats that are typically used to store fMRI data, a variety
of databases that will allow researchers to access fMRI data, and a number
of freely available software packages that can be used to begin analyzing the
data.

MRI data is usually stored in binary data files as either 8- or 16-bit inte-
gers. Additional information about the data, called meta-data, which includes
image dimensions and type, are also stored. Structural MRI images are gen-
erally stored as 3-D data files, while functional MRI data can either be stored
as a series of 3-D files, or as a single 4-D file.

Most MRI scanners save their reconstructed data to a file format called
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DICOM (Digital Imaging and Communications in Medicine). The data is gen-
erally stored slice-wise and contains large amount of meta-data about image
acquisition settings and the subject. Although DICOM is the standard format
for outputting data from the MRI scanner, it is necessary to convert to other
formats before performing the actual data analysis.

There are two main file formats typically used for data analysis, namely
Analyze and NIFTI. The Analyze file format originates from the software
package with the same name. It stores each data set in two separate files. The
first is the data file, which contains the binary data and has the extension
.img. The second is the header file, which contains the header file and has the
extension .hdr. NIFTI (Neuroimaging Informatics Technology Initiative) is
another file format designed to promote compatibility among programs using
fMRI data sets. It extends Analyze by storing additional meta-data, such as
affine matrices, data arrangement, and slice order information. It comes in
two different formats. The first format combines the header and binary data
into a single file with the extension .nii. The second format uses the same
extensions as Analyze, i.e. .hdr and .img, keeping the meta- and binary data
separate from one another.

In recent years there has been an increased movement towards openly
sharing fMRI data between researchers in the field. The goal is to emulate
similar data sharing initiatives in other disciplines, such as genetics, that have
led to important advances. The first such effort was the fMRI Data Center
(fMRIDC) which has come to consist of 107 fMRI datasets. More recently,
there has been a particular focus on sharing rs-fMRI data, as this type of
data is particularly easy to compare data across research labs, as experiments
do not need to be synchronized. Perhaps, the most well known repository of
this kind is the 1000 Functional Connectomes Project (FCP), which to date
consists of resting-state data on roughly 5, 000 subjects from sites all around
the world. The OpenFMRI Project (openfmri.org) is a relatively recent project
that is particularly dedicated to the free and open sharing of data from task-
based fMRI studies. Finally, on an institutional level the Human Connectome
Project (HCT), is a project supported by the National Institute of Health with
the stated goal of mapping the human connectome. It will make available task-
based and rs-fMRI on over 1, 000 subjects, as well as data obtained using other
modalities.

In addition to the above mentioned efforts, there has been longstanding in-
terest in sharing the activation coordinates reported in papers for use in meta-
analysis; see Chapter **** (cite meta-analysis chapter). This data consists of
the spatial locations of peaks of activation (peak coordinates), reported in the
standard coordinate systems of the Montreal Neurologic Institute (MNI). This
information can be used to pool multiple separate but similar studies, which
can be used to evaluate the consistency of findings across labs, scanning proce-
dures, and task variants, as well as the specificity of findings in different brain
regions or networks to particular task types. There are several such databases
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containing peak coordinates that can be used for meta-analysis, including
Brainmap (http://brainmap.org) and Neurosynth (http://neurosynth.org).

Finally, there are a number of free open source software packages used in
the neuroimaging community that can downloaded freely from the web, that
are relatively easy to use. The three most popular are SPM, FSL and AFNI.
The most commonly used software is SPM (Statistical Parametric Mapping)
[51], which consists of a set of MATLAB functions for preprocessing, analyz-
ing, and displaying fMRI and PET data. It has a very active development
community and there exist a large variety of add-ons to the core tools. FSL
(FMRIB Software Library) [24] is written in C++, and has a number of unique
tools to its disposal. It provides a comprehensive library of image analysis and
statistical tools for fMRI, MRI and DTI brain imaging data. Finally, AFNI
(Analysis of Functional NeuroImages) [11] is written in C. It consists of a series
of programs for processing, analyzing, and displaying fMRI data. Of partic-
ular interest to statisticians might be its use of functions from the statistical
software package R.

1.10 Future Developments

It is truly an exciting time to be involved in neuroimaging research. More and
more increasingly ambitious experiments are being performed each day. This is
creating a significant new demand, and an unmatched opportunity, for quan-
titative researchers working in the neurosciences. Understanding the human
brain is arguably among the most complex, important and challenging issues
in science today. For this endeavor to be successful, a legion of neuro-quants
is needed to make sense of the massive amounts of data being generated.

With this rapid development, new research questions are opening up every
day. Below we have made a decidedly non-inclusive list of exciting research
areas that we feel will be increasingly important in coming years. However,
by the time this book is published this list could no doubt be expanded even
further!

Longitudinal Imaging Studies: Longitudinal neuroimaging studies
have become increasingly common in recent years. Here the same subjects
are repeatedly scanned over a prolonged period of time and changes in brain
structure and function is assessed. These types of studies promise to play an
important role as they have the potential to answer critical questions regarding
brain development, aging, neuro-degeneration, and recovery from traumatic
brain injuries or stroke.

However, in the hand with the increased amount of information, the re-
sulting data sets will be even larger and more complex than their single ses-
sion counterparts. In addition to the standard problems of modeling within-
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session relationships, there is here the additional problem of correctly mod-
eling the between-session variation and the appropriate inclusion of potential
time-varying covariates. The analysis of longitudinal and repeated measures
data has a long history in statistics, and it is time these ideas are moved into
the high-dimensional analysis of longitudinal fMRI data.

High Temporal Resolution Multiband Data: Recently, a series of
technological developments referred to as multiband MRI, have sped up the
temporal resolution of fMRI acquisitions by approximately an order of mag-
nitude (i.e., from 2 s to 0.2 s, for whole-brain imaging), and appear likely to
offer the possibility for even further acceleration. As previously, mentioned
most BOLD fMRI data are acquired by sequentially acquiring a series of two-
dimensional slices. In contrast, multiband MRI excites multiple slices simulta-
neously, and the MR signals from these slices are then separated using multiple
receiver coils and the aid of special encoding techniques. Thus, multiband MRI
combines hardware and software innovations to significantly speed-up fMRI
acquisitions.

This unprecedented temporal resolution provides new challenges with re-
gards to statistical analysis, but also offers new opportunities. Most analytic
approaches to fMRI data are based on assumptions that may be inappro-
priate or suboptimal for the rapidly sampled data obtained using multiband
approaches. Therefore, there is an opportunity to create new methods for the
analysis of multiband data that will enhance the specificity and sensitivity of
BOLD fMRI outcome measures and harness the increased information con-
tent. This is an exciting area where quantitative scientists promise to play an
important role.

Harnessing Large-scale Data Bases: As previously mentioned, there
have been numerous efforts to construct large-scale imaging databases. These
endeavors have been performed on both a grassroots (e.g., the 1000 Functional
Connectomes Project) and institutional level (e.g., the Human Connectome
Project), and databases consisting of more than 1, 000 subjects are becoming
increasingly available.

Many times, the largest imaging data sets tend to be collected for reasons
other than a specific targeted scientific hypothesis. In these cases, data quality,
sampling bias, missing data, data quality and the availability of covariates or
outcomes tend to be problematic. This is in contrast to experiments consisting
of a small number of subjects, where tight experimental control leads to direct
measures for testing hypotheses of interest at the expense of lower power.
Broadly speaking, large data sets used in isolation are useful for exploratory
or predictive exercises, while small data sets, useful for knowledge creation
and confirmatory analyses are critically hampered by low power.

As the ultimate goal is to create new scientific knowledge, it would be ideal
to use information from large data sets to inform the analysis of small sample
data. Large data sets can be explored with the goal of establishing norms
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and priors for the use in small, more targeted data sets. To achieve this goal
we believe that there is a need for more quantitative researchers to become
involved in the field in order to make sense of the massive amounts of data
being generated.

Multi-modal Analysis: All methods used in the human neuro-behavioral
sciences have limitations, and fMRI is of course no exception. Therefore the
current trend is towards increasingly interdisciplinary approaches that use
multiple methodologies to overcome some of the limitations of each method
used in isolation. For example, fMRI data are increasingly combined with EEG
and MEG data to improve temporal precision, among other benefits. Advances
in engineering and signal processing, for example, allow EEG and fMRI data
to be collected simultaneously. Neuroimaging data is also being combined
with transcranial magnetic stimulation to integrate the powerful ability of
neuroimaging to observe brain activity with the ability afforded by TMS to
manipulate brain function and examine causal effects [5]. Finally, integrating
genetics with brain imaging is seen as a way to study how a particular subset of
polymorphisms may affect functional brain activity. In addition, quantitative
indicators of brain function could facilitate the identification of the genetic
determinants of complex brain-related disorders such as autism, dementia and
schizophrenia [15].

Each of these multi-modal approaches promise to be important topics of
future research, and to fully realize their promise, novel statistical techniques
will be needed. Ultimately, combining information from different modalities
will be challenging to data analysts, if for no other reason than that the
amount of data will significantly increase. In addition, since different modal-
ities are measuring fundamentally different quantities, it is not immediately
clear how to best combine the information. However, clearly, this is an ex-
tremely important problem that has already started to become a major area
of research.



Bibliography

[1] G. K. Aguirre, E. Zarahn, and M. D’Esposito. The variability of human,
BOLD hemodynamic responses. NeuroImage, 8(4):360–369, 1998.

[2] A.H. Andersen, D.M. Gash, and Avison M.J. Principal component analy-
sis of the dynamic response measured by fmri: a generalized linear systems
framework. Magnetic Resonance in Medicine, 17:785–815, 1999.

[3] R. M. Birn, Z. S. Saad, and P. A. Bandettini. Spatial heterogeneity of the
nonlinear dynamics in the fmri bold response. NeuroImage, 14:817–826,
2001.

[4] Bharat Biswal, F Zerrin Yetkin, Victor M Haughton, and James S Hyde.
Functional connectivity in the motor cortex of resting human brain using
echo-planar mri. Magnetic resonance in medicine, 34(4):537–541, 1995.

[5] D. E. Bohning, A. P. Pecheny, C. M. Epstein, A. M. Speer, D. J. Vincent,
W. Dannels, and M.S. George. Mapping transcranial magnetic stimula-
tion (tms) fields in vivo with mri. Neuroreport, 8:2535–2538, 1997.

[6] G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger. Linear
systems analysis of functional magnetic resonance imaging in human v1.
J. Neurosci, 16:4207–4221, 1996.

[7] R. B. Buxton, E. C. Wong, and L. R. Frank. Dynamics of blood flow and
oxygenation changes during brain activation: the balloon model. Mag-
netic Resonance in Medicine, 39:855–864, 1998.

[8] V. D. Calhoun, T. Adali, G.D. Pearlson, and J.J. Pekar. Spatial and tem-
poral independent component analysis of functional mri data containing
a pair of task-related waveforms. Human Brain Mapping, 13:43–53, 2001.

[9] Catie Chang, John P Cunningham, and Gary H Glover. Influence of
heart rate on the bold signal: the cardiac response function. Neuroimage,
44(3):857–869, 2009.

[10] Nathan W Churchill, Anita Oder, Herve Abdi, Fred Tam, Wayne Lee,
Christopher Thomas, Jon E Ween, Simon J Graham, and Stephen C
Strother. Optimizing preprocessing and analysis pipelines for single-
subject fmri. i. standard temporal motion and physiological noise cor-
rection methods. Human brain mapping, 33(3):609–627, 2012.

43



44 Book title goes here

[11] Robert W Cox. Afni: software for analysis and visualization of functional
magnetic resonance neuroimages. Computers and Biomedical research,
29(3):162–173, 1996.

[12] A. M. Dale. Optimal experimental design for event-related fmri. Human
Brain Mapping, 8:109–114, 1999.

[13] K. J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling.
NeuroImage, 19:1273–1302, 2003.

[14] K.J. Friston. Functional and effective connectivity in neuroimaging: A
synthesis. Human Brain Mapping, 2:56–78, 1994.

[15] D. C. Glahn, P. M. Thompson, and J. Blangero. Neuroimaging endophe-
notypes: strategies for finding genes influencing brain structure and func-
tion. Human Brain Mapping, 28:488–501, 2007.

[16] G. H. Glover. Deconvolution of impulse response in event-related BOLD
fMRI. NeuroImage, 9(4):416–429, 1999.

[17] G. H. Glover. Simple analytic spiral k-space algorithm. Magnetic Reso-
nance in Medicine, 42(2):412–415, 1999.

[18] C. Goutte, F. A. Nielsen, and L. K. Hansen. Modeling the haemody-
namic response in fmri using smooth fir filters. IEEE Trans Med Imaging,
19:1188–1201, 2000.

[19] J. Grinband, T. D. Wager, M. Lindquist, V. P. Ferrera, and J. Hirsch. De-
tection of time-varying signals in event-related fmri designs. NeuroImage,
43(3):509–520, 2008.

[20] H. Gudbjartsson and S. Patz. The Rician distribution of noisy MRI data.
Magnetic Resonance in Medicine, 34:910–914, 1995.

[21] Mark E. Haacke, Robert W. Brown, Michael R. Thompson, and
R. Venkatesan. Magnetic Resonance Imaging: Physical Principles and
Sequence Design. Wiley-Liss, June 1999.

[22] S. Hayasaka and T.E. Nichols. Combining voxel intensity and cluster
extent with permutation test framework. NeuroImage, 23:54–63, 2004.

[23] Scott A. Huettel, Allen W. Song, and Gregory Mccarthy. Functional
Magnetic Resonance Imaging. Sinauer Associates, April 2004.

[24] Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark W
Woolrich, and Stephen M Smith. Fsl. Neuroimage, 62(2):782–790, 2012.

[25] Tom Johnstone, Kathleen S Ores Walsh, Larry L Greischar, Andrew L
Alexander, Andrew S Fox, Richard J Davidson, and Terrence R Oakes.
Motion correction and the use of motion covariates in multiple-subject
fmri analysis. Human brain mapping, 27(10):779–788, 2006.



Principles of functional Magnetic Resonance Imaging 45

[26] Ming-Hung Kao, Abhyuday Mandal, Nicole Lazar, and John Stufken.
Multi-objective optimal experimental designs for event-related fmri stud-
ies. NeuroImage, 44(3):849–856, 2009.

[27] Ming-Hung Kao, Abhyuday Mandal, and John Stufken. Constrained
multiobjective designs for functional magnetic resonance imaging exper-
iments via a modified non-dominated sorting genetic algorithm. Journal
of the Royal Statistical Society: Series C (Applied Statistics), 61(4):515–
534, 2012.

[28] Kenneth K Kwong, John W Belliveau, David A Chesler, Inna E Goldberg,
Robert M Weisskoff, Brigitte P Poncelet, David N Kennedy, Bernice E
Hoppel, Mark S Cohen, and Robert Turner. Dynamic magnetic resonance
imaging of human brain activity during primary sensory stimulation. Pro-
ceedings of the National Academy of Sciences, 89(12):5675–5679, 1992.

[29] David J Larkman, Joseph V Hajnal, Amy H Herlihy, Glyn A Coutts,
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