
All stars, including our own sun, produce
energy by the process of nuclear fusion.
After several billion years, when our sun

has exhausted all its nuclear fuel, it will consist of
a dense core surrounded by an envelope of hydro-
gen and helium. Eventually the outer envelope is
lost into space and only the stellar core remains.
This core is called a white dwarf and is the final
evolutionary stage for all stars with a core mass
less than 1.4 times the mass of our sun. In gener-
al, a white dwarf is comprised of two components:
a gas of dense electrons and the positively charged
nuclei, which are the product of nuclear fusion.
The internal structure of a white dwarf, and indeed
its very existence, depends upon the quantum
nature of its constituent electrons which are dense
enough to form a degenerate gas. Quantum effects
also influence the behavior of the nuclei found in
the white dwarf and affect the way the star cools.
This paper will begin with a brief discussion on
how degeneracy pressure arises from the Pauli
exclusion principle. A discussion on how this sup-
ports the star from gravitational collapse and
affects its structure follows. Finally, quantum
mechanical behavior of the thermal ions and its
effects on the cooling of the white dwarf are dis-
cussed.

I. Pauli Exclusion, Electron Gases, & the
Degenerate Equation of State

In quantum mechanics, a particle like an
electron is not considered a classical object, like a
billiard ball, but is instead expressed as a wave-
function, usually denoted by the symbol ψ. This
wavefunction represents the probability that the
particle will be found at a point in space. At first
this sounds like an abstract idea, but its implica-
tions are very real, as we will see. Given a two par-
ticle system, the total wavefunction of the system
can be represented by the product of the individ-
ual wavefunctions of each particle:

(Griffiths, 1995) Eq. 5.9
The left side of the equation represents the com-

bined wavefunction of the system, while the right
is a product of particle 1 in state ‘a’ and particle
two in state ‘b’. For electrons, which are indistin-
guishable fermions, the wavefunction must be
modified to account for the fact that we cannot
know which particle is in which state, so the
wavefunction now takes the general form:

(Griffiths, 1995) Eq. 5.10
One can see that the particles cannot be in identi-
cal states, ψa = ψb, otherwise the total wavefunc-

tion would be zero. This is the Pauli exclusion
principle.

Electrons in a dense gas, like those found
in a white dwarf, must obey the exclusion princi-
ple. If the density, n, of the electron gas exceeds
the quantum concentration, given by

(Phillips, 1994) Eq. 2.22
the gas is said to be degenerate. Here, m is the
mass of the electron, kT is the thermal energy of
the gas, and h is Planck’s constant. In this case, the
energy distribution of the electrons is no longer a
thermal distribution, but one governed by the
exclusion principle. The electrons fill states up to
a certain energy, EF, called the Fermi energy

(Griffiths, 1995) Eq. 5.43
This energy has a pressure associated with it; we
can see that work must be done (energy must be
added) on a degenerate gas to change its volume
(and hence its density, n). This pressure, called the
degeneracy pressure, is what keeps the white
dwarf from collapsing under its own gravity and is
given by the degenerate equation of state:

(Phillips, 1994) Eq. 2.31
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An alternative explanation of degeneracy pressure,
presented by Shu (1982), can be made in terms of
the Heisenberg uncertainty principle. At the high
densities inside a white dwarf, the electrons are
confined to a small volume, corresponding to a
small ∆x. In order to satisfy the uncertainty princi-
ple, ∆x∆p > h/4π, the momenta of the particles
must be large. The momenta of the particles results
in a degeneracy pressure which is much greater
than the thermal pressure.

II. The Structure of White Dwarfs
The fact that the electrons inside a white

dwarf are described by a degenerate equation of
state has several implications regarding its struc-
ture. First, it can be found that white dwarfs of
increasing mass are smaller in size. This is coun-
terintuitive because we expect that more massive
objects are larger. However, in white dwarfs the
opposite is true. This is the case because a greater
mass will result in a greater gravitational force,
necessitating a greater degeneracy pressure to
counteract it. A greater degeneracy pressure
requires a greater density of electrons, hence a
smaller volume (Griffiths, 1995; Shu, 1982). A typ-
ical white dwarf has a radius about one hundredth
that of our sun (Griffiths, 1995).

Another implication of the degenerate
equation of state is the existence of a theoretical
mass limit for white dwarfs. Above a certain mass
(M ≈ 1.4 Msun), the Chandrasekhar mass, the inter-

nal pressure of the white dwarf is high enough for
the electrons to have sufficient momenta that rela-
tivistic effects become significant. Relativistic elec-
trons follow a different equation of state,

(Phillips, 1994) Eq. 2.34
where the degeneracy pressure is less than the non-
relativistic case. Gravitational forces will therefore no
longer be counteracted by a sufficient degeneracy
pressure, and the white dwarf will collapse under
self-gravitation. In some cases, this collapse and sub-
sequent release of gravitational potential energy will
ignite the fusion of oxygen and carbon in the stellar
interior, eventually resulting in a supernova, the
explosive death of a star (Binney, 1998; Phillips,
1994). Another end state of this collapse is a neutron
star, which is comprised of neutrons at nuclear densi-
ties and is supported from further collapse by neutron
degeneracy pressure in a situation similar to electron
degeneracy (Griffiths, 1995).

In addition to preventing a white dwarf’s
gravitational collapse, the electrons in a white dwarf
have other effects on the structure of the star. The pri-
mary energy source in a white dwarf is the thermal
(non-degenerate) ions in the star’s interior. The
degenerate electron gas efficiently conducts this ener-
gy throughout the star, making the star nearly isother-
mal (the star is the same temperature throughout).
Near the surface of the star, however, the density of
stellar material is not high enough to satisfy the con-
ditions necessary for electron degeneracy. In this
layer, called the envelope, energy transfer takes place
through radiative transfer and convection and is not
as efficient as in the interior. Hence this layer is char-
acterized by a steep temperature gradient where the

temperature drops from ~107 K to ~104 K over 50 km.
The envelope insulates the star from rapid energy loss
(Kawaler & Winget, 1987). Along with certain quan-
tum effects in the star’s internally contained ions, this
has a significant effect on the timescales of white
dwarf cooling.

III. Ion Interactions and White Dwarf Cooling
Up to this point, we have concentrated on

electrons and the effect that their degeneracy has on
the structure of a white dwarf. However, the interiors
of white dwarfs are also comprised of ions. The prop-
erties of these ions cannot be ignored, since it is their
thermal energy which is the primary source of ener-
gy in the star. As the thermal energy of the white
dwarf is slowly lost to space and the stellar material
cools, the ions begin to behave differently. Their
behavior can be understood in a classical manner, but
under certain conditions, this behavior is significantly
modified by quantum effects. Let us first examine the
classical picture of white dwarf cooling.

Initially, the thermal energy of the ions is
great enough to overcome Coulomb forces between
the ions, and thus the gas can be treated as almost
ideal. As the gas cools, however, Coulomb interac-
tions (electric repulsion) become important. The ions
first form a Coulomb liquid, and as more energy is
lost, the ions form a lattice within the star’s interior, a
crystalline Coulomb solid (Kawaler & Winget, 1987).
The strength of Coulomb interactions between
ions can be quantified by the “classical coupling
parameter” (Chabrier et al., 1992):

This parameter is the ratio of the potential to thermal
energy, where Ze is the ionic charge and a is the aver-
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age interionic distance. It has been shown through
numerical simulations that Coulomb crystallization
occurs at a value of about Γ = 180 (Chabrier et al.,
1992).

Normally, quantum effects are treated as
insignificant in the derivation of the freezing point
from a Coulomb liquid to a solid. It has been shown
by Chabrier et al., however, that quantum mechanical
effects in ion interaction can change the character-
istics of this phase transition in white dwarfs with a
mass greater than one solar mass. A “quantum solid”
is a solid in which the oscillatory motion of ions
around the lattice sites is dominated by quantum
zero-point energy rather than by the classical thermal
energy of the particle (Chabrier et al., 1992; Kittel,
1996). It was found by Chabrier et al. (1992) that this
characteristic is not only observed in the solid phase
of white dwarf ions, but in the liquid phase as well.
Thus, the crystallization can no longer be considered
classical, but instead as a transition from a quantum
liquid to a quantum solid. The average zero-point
energy per particle is therefore greater than the value
predicted by a classical model. For example, given a
mean interionic distance of 10-2 ao, where ao = 5.29 x
10-11 meters (the Bohr radius), the ratio of zero-point
(quantum) energy to thermal (classical) energy, Eo/kT,
is ~2. If the distance between ions is decreased to 10-
3 ao, then Eo/kT increases to ~5 - 8. The increased
energy per particle due to quantum zero-point ener-
gy impedes crystallization, resulting in a depression of
the freezing point. For the above interionic distances
of 10-2 ao and 10-3 ao, the values of Γ become 183
and 199, respectively, an increase from the afore-
mentioned classical value of 180. For massive white
dwarfs (M > 1 Msun) the freezing temperature can be

depressed by up to 10%, though for the typical white
dwarf (M ≈ 0.6 Msun ) the freezing temperature is

nearly unaffected (Chabrier et al., 1992).
Quantum effects in the crystallization of

white dwarfs change the timescale over which a
white dwarf cools. During crystallization of the
ions, the release of latent heat temporarily delays
energy loss in the star (Chabrier et al., 1992;
Kawaler & Winget, 1987). However, a decrease in
freezing temperature will result in a corresponding
decrease in the cooling time of the star. For a 1.3 Msun

white dwarf, the decrease in cooling time is about
30% (Chabrier, 1993). 

IV. Summary
Electron degeneracy in white dwarf matter

has several implications for its structure. First, the
degeneracy pressure allows the star to balance itself

against gravitation, preventing its collapse. It is found
that for white dwarfs of increasing mass, the size
decreases. Additionally, a theoretical upper limit of
the mass of a white dwarf, the Chandrasekhar mass,
can be calculated to be M ≈ 1.4 Msun. Above this mass,
electron degeneracy pressure is insufficient to support
the star from gravitational collapse. The interior of a
white dwarf is nearly isothermal, with a temperature
of ~107 K, due to the highly efficient thermal conduc-
tion properties of the degenerate electron gas. This
isothermal region is surrounded by an insulating,
non-degenerate outer envelope characterized by a
steep temperature gradient. The envelope regulates
energy loss, and thus controls the rate at which the
white dwarf cools.

The cooling mechanism of a white dwarf is
modified by quantum effects on the non-degenerate
ions. These effects are found to depress the tempera-
ture of ion crystallization and shorten the timescale
over which the star cools. This change in the theory
of white dwarf cooling could have an affect on our
estimation of galactic age, since observations of white
dwarfs correlated to theoretical white dwarf cooling
regimes are used as an indicator of galactic age. �
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