DIFFERENTIALS IN THE ρ-BOCKSTEIN SPECTRAL SEQUENCE

EVA BELMONT AND DANIEL C. ISAKSEN

1. ρ-Bockstein table

The accompanying table displays differentials in the ρ-Bockstein spectral sequence
\[\text{Ext}^{**}_{A^*_2}(M^C_2, M^C_2)[\rho] \Rightarrow \text{Ext}^{**}_{A^R_2}(M^R_2, M^R_2) \]
discussed in [1]. It is a more complete version of [1, Table 5]. For an explanation of the general strategy of the computation, see [1, §5].

The d_1 differentials are omitted from the table because there is a large number of them, and they are simple to describe: in the range of $s + f - w$ degrees considered in the table, the d_1 differentials are described entirely by multiplicative relations applied to the following d_1 differentials.

<table>
<thead>
<tr>
<th>source</th>
<th>target</th>
<th>s</th>
<th>f</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>ρh_0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>τg</td>
<td>$\rho h_0 g$</td>
<td>20</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>τg^2</td>
<td>$\rho h_0 g^2$</td>
<td>40</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>$\Delta c_0 d_0$</td>
<td>$\rho h_0 d_0 l$</td>
<td>46</td>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>$\Delta c_0 e_0$</td>
<td>$\rho h_0 e_0 l$</td>
<td>49</td>
<td>11</td>
<td>27</td>
</tr>
</tbody>
</table>

Description of the columns: A Bockstein differential $d_r(x) = \rho^r y$ is recorded by a line in the table as follows.

- **source**: x
- **target**: y
- **s**: stem of x
- **f**: Adams filtration of x
- **s-w**: coweight of x
- **s+f-w**: see f, $s - w$
- **diff length**: r, unless the class is a permanent cycle, in which case this field is 0

Some notes about shorthand employed in the table:

- Names of elements correspond to names in \mathbb{C}-motivic Ext. See https://s.wayne.edu/isaksen/files/2020/04/Adamscharts.pdf
for the names and degrees of C-motivic elements. In particular, t means \(\tau \) and D means \(\Delta \).

- If an element has \texttt{diff length} = 0, this means that the element is \(\rho \)-local.
- Starting in degree \(s + f - w = 18 \), the differentials are presented in the order they were computed. (This is relevant because there are many process of elimination arguments used in the computation.)

References