ADAMS-NOVIKOV CHARTS

DANIEL C. ISAKSEN, GUOZHEN WANG, AND ZHOULI XU

ABSTRACT. This document contains large-format Adams-Novikov charts that compute the classical 2-complete stable homotopy groups. The charts are essentially complete through the 90-stem.

This document contains large-format Adams-Novikov charts that compute the classical 2-complete stable homotopy groups. The charts are essentially complete through the 90-stem.

The charts are intended to be viewed electronically. The authors can supply versions that are suitable for printing.

Justifications for these computations appear in [1] and [3]. In essence, they are entirely determined by an analysis of the C-motivic Adams spectral sequences for the sphere spectrum and for the cofiber of τ. See also [4] and [5] for computations in a smaller range.

This document supersedes [2].

1. v_1-periodic elements in the Adams-Novikov spectral sequence

This chart shows the v_1-periodic part of the Adams-Novikov E_2-page through the 110-stem. Traditionally, these elements have names involving the symbol α, but our notation for elements is incompatible with the Greek letter system. Rather, our names for elements are consistent with the names of elements in the C-motivic Adams spectral sequence for the cofiber of τ.

We have separated the v_1-periodic elements from the main Adams-Novikov E_2-page for legibility, since they are entirely understood.

1. Solid dots indicate copies of $\mathbb{Z}/2$.
2. Open circles indicate copies of $\mathbb{Z}/2^k$, for some $k \geq 2$. The value of k is shown next to each circle.
3. Lines of slope 1 indicate h_1 multiplications.
4. Arrows of slope 1 indicate infinitely many h_1 multiplications.
5. Lines of slope $1/3$ indicate h_2 multiplications.

2000 Mathematics Subject Classification. 55T15, 55Q45, 14F42.
Key words and phrases. Adams-Novikov spectral sequence, stable homotopy group, motivic stable homotopy group.

The first author was supported by NSF grant DMS-1606290. The second author was supported by grant NSFC-11801082. The third author was supported by NSF grant DMS-1810638. Many of the associated machine computations were performed on the Wayne State University Grid high performance computing cluster.

1
2. v_1-periodic elements in the Adams-Novikov E_∞-page

This chart shows the v_1-periodic part of the Adams-Novikov E_2-page through the 110-stem. Traditionally, these elements have names involving the symbol α, but our notation for elements is incompatible with the Greek letter system. Rather, our names for elements are consistent with the names of elements in the \mathbb{C}-motivic Adams spectral sequence for the cofiber of τ.

We have separated the v_1-periodic elements from the main Adams-Novikov E_∞-page for legibility, since they are entirely understood.

See Section 1 for instructions on interpreting the chart. In addition:

1. Green lines indicate hidden 2 extensions.

3. E_2-page of the Adams-Novikov spectral sequence

This chart shows the Adams-Novikov E_2-page through the 110-stem, excluding the v_1-periodic elements. Our names for elements are consistent with the names of elements in the \mathbb{C}-motivic Adams spectral sequence for the cofiber of τ. Our notation is incompatible with the Greek letter system.

1. Black dots indicate copies of $\mathbb{Z}/2$.
2. Red dots indicate copies of $\mathbb{Z}/4$.
3. Blue dots indicate copies of $\mathbb{Z}/8$.
4. Green dots indicate copies of $\mathbb{Z}/16$.
5. Purple dots indicate copies of $\mathbb{Z}/32$.
6. Lines of slope 1 indicate h_1 multiplications.
7. Lines of slope $1/3$ indicate h_2 multiplications.
8. Magenta lines indicate that an extension equals 2 times a generator. For example, $h_2 \cdot h_2 d_0$ equals $2 \cdot h_0 g$ in the 20-stem.
9. With one exception, orange lines indicate that an extension equals 4 times a generator. For example, $h_1 \cdot \tau g$ equals $4 \cdot h_2 g$ in the 23-stem. The exception is that $h_2 \cdot P^2 h_1 h_6 c_0$ equals $8 \cdot h_0 ^2 \cdot \Delta h_2 ^2 h_6$ in the 93-stem.

4. d_3 differentials in the Adams-Novikov spectral sequence

This chart shows the Adams-Novikov d_3 differentials through the 90-stem, excluding the v_1-periodic differentials. Our names for elements are consistent with the names of elements in the \mathbb{C}-motivic Adams spectral sequence for the cofiber of τ. Our notation is incompatible with the Greek letter system.

See Section 3 for instructions on interpreting the chart. In addition,

1. Blue lines of slope -3 indicate Adams-Novikov d_3 differentials.
2. Dashed blue lines indicate possible differentials.

5. E_4-page of the Adams-Novikov spectral sequence

This chart shows the Adams-Novikov E_4-page through the 90-stem, excluding the v_1-periodic elements. The Adams-Novikov d_3 differentials are also indicated. Our names for elements are consistent with the names of elements in the \mathbb{C}-motivic Adams spectral sequence for the cofiber of τ. Our notation is incompatible with the Greek letter system.

1. Black dots indicate copies of $\mathbb{Z}/2$.
2. Red dots indicate copies of $\mathbb{Z}/4$.
(3) Blue dots indicate copies of $\mathbb{Z}/8$.
(4) Green dots indicate copies of $\mathbb{Z}/16$.
(5) Lines of slope 1 indicate h_1 multiplications.
(6) Lines of slope $1/3$ indicate h_2 multiplications.
(7) Magenta lines indicate that an extension equals 2 times a generator. For example, $h_2 \cdot h_2 d_0$ equals $2 \cdot h_0 g$ in the 20-stem.
(8) With one exception, orange lines indicate that an extension equals 4 times a generator. For example, $h_3 \cdot \tau g$ equals $4 \cdot h_2 g$ in the 23-stem. The exception is that $h_2 \cdot Ph_2 h_5$ equals $8 \cdot h_3^2 h_5$ in the 45-stem.
(9) Blue lines of slope -5 indicate Adams-Novikov d_5 differentials.
(10) Dashed blue lines indicate possible differentials.

For clarity, the chart also shows the possible d_3 differentials.

6. E_6-PAGE OF THE ADAMS-NOVIKOV SPECTRAL SEQUENCE

This chart shows the Adams-Novikov E_6-page through the 90-stem, excluding the v_1-periodic elements. The Adams-Novikov d_r differentials for $r \geq 7$ are also indicated. Our names for elements are consistent with the names of elements in the \mathbb{C}-motivic Adams spectral sequence for the cofiber of τ. Our notation is incompatible with the Greek letter system.

See Section 5 for instructions on interpreting the chart. In addition,

(1) Blue lines of indicate Adams-Novikov d_r differentials for $r \geq 7$.
(2) Dashed blue lines indicate possible differentials.

For clarity, the chart also shows the possible d_3 and d_5 differentials.

7. THE E_∞-PAGE OF THE ADAMS-NOVIKOV SPECTRAL SEQUENCE

This chart shows the Adams-Novikov E_∞-page through the 90-stem, excluding the v_1-periodic elements. Our names for elements are consistent with the names of elements in the \mathbb{C}-motivic Adams spectral sequence for the cofiber of τ. Our notation is incompatible with the Greek letter system.

See Section 5 for instructions on interpreting the chart. In addition,

(1) Red lines indicate hidden extensions by 2. The dashed red lines in the 54-stem indicate that there is a hidden 2 extension, but its target is not known precisely.
(2) Blue lines indicate hidden extensions by η.
(3) Green lines indicate hidden extensions by ν.
(4) Dashed light blue lines indicate possible differentials.

Beyond the 64-stem, not all hidden extensions have been resolved; see [3] for more details.

For clarity, the chart also shows possible differentials as dashed lines.

REFERENCES

The α family in the Adams-Novikov spectral sequence.
The α-family in the Adams-Novikov E^∞-page