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@ Lecture 1: The setup
Motivation and introduction



Motivation

For a scheme X let
K(X) = QBQ(Vecty)

be Quillen’s K-theory space. It is the loop space of the
classifying space of the categorical group completion of the
exact category of vector bundles over X. Its homotopy groups
are the algebraic K-groups of X.



Motivation

For a scheme X let
K(X) = QBQ(Vecty)

be Quillen’s K-theory space. It is the loop space of the
classifying space of the categorical group completion of the
exact category of vector bundles over X. Its homotopy groups
are the algebraic K-groups of X.

For example, if X = Spec(R) is an affine scheme, Ky(X) is the
Grothendieck group of finitely generated projective R-modules.
If X = Spec(F) is the spectrum of a field,

dim

Ko(F) 2 Z Ki(F)XF* K)F)XF*@F*/(uz(1-u)).



Motivation

The only fields for which all K-groups are known explicitly are
finite, thanks to Quillen. The situation for topological K-theory is
much better. One reason is the Atiyah-Hirzebruch spectral
sequence which employs singular cohomology to compute
topological K-theory.



Motivation

The only fields for which all K-groups are known explicitly are
finite, thanks to Quillen. The situation for topological K-theory is
much better. One reason is the Atiyah-Hirzebruch spectral
sequence which employs singular cohomology to compute
topological K-theory.

Conjecture (Beilinson 1982)

“I hope very much, that in fact it [motivic cohomology] exists,
and may be defined by elementary means. ... One should have
Atiyah-Hirzebruch spectral sequence, converging to Quillen’s
K-theory at least for smooth schemes.”




Properties of K-theory

Theorem (Quillen 1972)

If X is regular, the projection X x A" — X induces an
equivalence KK(X) — KK(X x A").




Properties of K-theory

Theorem (Quillen 1972)

If X is regular, the projection X x A" — X induces an
equivalence KK(X) — KK(X x A").

For the next property, a Nisnevich square is a pullback square

p'(U)— Y

|

U—X

of schemes, where U — X is an open embedding and
p: Y — X is an étale morphism such that the induced
morphism Y ~ p~'(U) — X . U of reduced closed
subschemes is an isomorphism.



Properties of K-theory

Theorem (Thomason-Trobaugh 1990)
For every Nisnevich square of regular schemes, the square

K(X) —— K(U)

|

K(Y)— K(p~ (V)

is a homotopy pullback square.

This theorem holds for quasi-compact and quasi-separated
schemes, provided K is interpreted as a not necessarily
connective spectrum.



The Nisnevich topology

Let f: AL — A} be the étale morphism induced by the field
extension R — C, and let x € A}, = Spec(R[t]) be the closed
point given by the prime ideal (#° + 1). It has residue field C.



The Nisnevich topology

Let f: AL — A} be the étale morphism induced by the field
extension R — C, and let x € A}, = Spec(R[t]) be the closed
point given by the prime ideal (#° + 1). It has residue field C.
Consider the open complement A}, \ {x} < Al. Then

AL X)) = AL T (x) = AL {(E+ 1), (t— i)}
which shows that

AL +0),(t =)} —— AL

J l

AL {(R+1)) —— AL

is not a Nisnevich square.



The Nisnevich topology

However, the pullback square

AL+ 1), (t =)} —— AL {(t— i)}

J J

AL+ 1)) Al

is a Nisnevich square. Both reduced closed complements are
Spec(C), and f induces the identity.



Why the Nisnevich topology?

The Nisnevich topology (invented by Nisnevich in 1989 as
“completely decomposed topology”) sits between the Zariski
topology and the étale topology. It shares the good properties
of both and avoids the bad properties of both.

Zariski | Nisnevich | étale
smooth implies locally A9 || false true true
f. is exact for f finite false true true
fields are points true true false
cohom. dim. is Krull dim. true true false
K-theory has descent true true false
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P'-stable A'-homotopy theory



The motivic stable homotopy category
(Morel-Voevodsky)

Let S be a scheme. The motivic stable homotopy category
SH(S) of S contains P'-spectra or motivic spectra as objects:
e E=(Eo,E;,...,E,...)and structure maps
E, AP! = Ep,1, Wwhere
e E,: Smgp — sSet, is a pointed simplicial presheaf on the
category Smg of smooth S-schemes.
 Any smooth S-scheme with a rational point (like (P!, oc))
defines a (representable discrete) pointed simplicial
presheaf on Smg.
e The smash product of pointed simplicial presheaves is
BANC=BxC/Bv_C.



Motivic suspension spectra

Every smooth S-scheme X (which may not have a rational
point) defines a motivic suspension spectrum

ZOOX+:(X+,X+/\P1,X+/\P1 /\]:P)1,)

with identities as structure maps, where X, = X [[ Spec(S). In
particular, 1 := £ S, is the motivic sphere spectrum over S.



Motivic suspension spectra

Every smooth S-scheme X (which may not have a rational
point) defines a motivic suspension spectrum

ZOOX+:(X+,X+/\P1,X+/\P1 /\]:P)1,)

with identities as structure maps, where X, = X[ Spec(S). In
particular, 1 := £ S, is the motivic sphere spectrum over S.
Every pointed simplicial set L defines a motivic suspension
spectrum

YL =(LLAP,LAP' AP, ...)

with identities as structure maps, where L: Sm‘ép — sSet, is the
constant pointed simplicial presheaf with value L. Note that
Y°(S,idg) = £ = x is the zero object in SH(S).



Equivalences

Equivalences in the motivic stable homotopy category are

determined by the following conditions:

Al-invariance The projection ¥®(X x A" — X), is an
equivalence for every X € Smg.

Nisnevich descent Every Nisnevich square of smooth
S-schemes induces a homotopy pushout square

of P'-spectra.
P'-stability The functor P! A — is an equivalence.



Spheres

Let > denote suspension with the simplicial circle.

S' = A'/0A". Then A'-invariance and Nisnevich descent
imply that P! ~ ¥G,,, where G, = (A" ~ {0},1). Let X1+(1)
denote suspension with S'+(1) .= P! Then for every s, w € Z,
there exists St(") ¢ SH(S) and the corresponding suspension
functor ZS+(W),

S
1
SO
& ~—
K./ A {0}(R)
AT {0}(C)

For example, A” <. {0} ~ S"~'+(") and
A/AT {0} = PP/PI-T & SO,

~




Structural properties of SH(S)

The motivic stable homotopy category SH(S) admits the
following structures:

¢ A closed symmetric monoidal structure (D,E) — D A E,
with unit 1.

¢ A compatible triangulated structure, with shift functor
and homotopy cofiber sequences defining distinguished
triangles.

¢ A six functor formalism expanding on the base change
functor f*: SH(R) — SH(S) for f: S — R. The functor f* is
strong symmetric monoidal, always has a right adjoint £,
and a left adjoint £ if f is smooth.



Homotopy groups and sheaves

For a P'-spectrum E € SH(S) and integers s, w, let
Tor(u)E 1= [E57 (1, E]

and let
7Ts+(*)E = @ 7TS+(W)E

WEZ
denote the direct sum.



Homotopy groups and sheaves

For a P'-spectrum E € SH(S) and integers s, w, let
Tor(u)E 1= [E57 (1, E]

and let
7Ts+(*)E = @ 7TS+(W)E

WEZ

denote the direct sum.
The associated Nisnevich sheaf of U — [ZStT(W) U, E] for
U € Smg is denoted 75 (,)E, which gives rise to =g, (,)E.

If S = Spec(F) is the spectrum of a field, 7¢, (,)E(F) = 75 (4)E.



Algebraic K-theory KGL

Voevodsky et. al. constructed a P'-spectrum
KGL = (K, K, K,...)

via the structure map K A P! — K which corresponds to
multiplication with [O] — [O(—1)]. If Sis regular, it represents
Quillen’s higher algebraic K-groups:

[ZPHO X, KGL] = K2 (X)



Algebraic bordism MGL

Let MGL be Voevodsky’s Thom P'-spectrum, with MGL, the
Thom space of the tautological vector bundle over the infinite
Grassmannian Gr, = BGL,. The structure maps are the
obvious ones. lts “universal” orientation induces a graded ring
homomorphism from the Lazard ring:

LIZ[X1,X2,...] —)7T*+(*)MGL deg(Xk) = k+(k)



Voevodsky’s motivic Eilenberg-MaclLane spectrum

Let S = Spec(F) for a field F. For any abelian group A there is
a motivic Eilenberg-MacLane spectrum HA over F,
representing motivic cohomology with coefficients in A. In
particular, for every smooth F-variety X one has

[X,, ZSTMHA] = HStWW(X; A)
H2MN(X; Z) = CH"(X)
Hn’n(F; Z) o~ K,17\4i1n0r(F)



Voevodsky’s motivic Eilenberg-MaclLane spectrum

Let S = Spec(F) for a field F. For any abelian group A there is
a motivic Eilenberg-MacLane spectrum HA over F,
representing motivic cohomology with coefficients in A. In
particular, for every smooth F-variety X one has

(X, ZSTWHA] = HSTY(X; A)
H2MN(X; Z) = CH"(X)
Hn’n(F; Z) o~ K,17\4i1n0r(F)
A nice motivic Eilenberg-MacLane spectrum which is invariant
under base change exists over any scheme, by pulling back

Spitzweck’s motivic Eilenberg-MacLane spectrum over
Spec(Z).
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Stable homotopy groups of spheres



Major question?

What is 7r*_,_(*)1 S?



Major question?

What is 7r*_,_(*)1 3?

Partial answers by: Morel, Hopkins, Isaksen, Dugger, Levine,
Ananyevskiy, Panin, Guillou, Ormsby, @stveer, Heller, Wilson,
Bachmann, ...



Ring structure on 7, ()15

Since 1 is the unit in a symmetric monoidal category, 7, (,)1s
admits a ring structure via smash product. It coincides with the
ring structure defined by composition.
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Since 1 is the unit in a symmetric monoidal category, 7, (,)1s
admits a ring structure via smash product. It coincides with the
ring structure defined by composition. Let e: 1 — 1 be induced
by the commutativity isomorphism G, A Gy, = Gy A G- Then

- /B ( )st wxﬁ o

where a € s (yy1 and 3 € myy (1.



Ring structure on 7, ()15

Since 1 is the unit in a symmetric monoidal category, 7, (,)1s
admits a ring structure via smash product. It coincides with the
ring structure defined by composition. Let e: 1 — 1 be induced
by the commutativity isomorphism G, A Gy, = Gy A G- Then

- /B ( )st wxﬁ o

where a € 75 (yy1 and 3 € my (1. In particular, 75, Eis a
Z-graded module over the Z-graded e-commutative ring
mo+(»)1s for every motivic spectrum E € SH(S).



Obvious maps of spheres

Units Let u € Og be a unit. Viewed as a morphism
S — A"~ {0}, it defines a map [u]: 1 — £(1)1,
hence [u] € 7(_1)1.
Hopf map The canonical morphism A2 < {0} — P! defines a
map n: £'+®)1 - £1+(1, hence n € m(4)1.



Obvious maps of spheres

Units Let u € Og be a unit. Viewed as a morphism
S — A"~ {0}, it defines a map [u]: 1 — £(1)1,
hence [u] € 7(_1)1.

Hopf map The canonical morphism A2 < {0} — P! defines a
map n: £'+®)1 - £1+(1, hence n € m(4)1.
Equivalently, n is obtained from the Hopf
construction on the group G,.



Not so obvious relations

The following relations hold:
Steinberg For every u € Og with 1 — u € Og, one has
[Ul[l —u] =0 € m(_21.
Commutativity For every u € Og, one has [u]n = n[u] € 1.
Twisted logarithm For every u,v € (’)g, one has
[uv] = [u] + [v] + nlu][v] € (1)1
Hyperbolic plane n(n[-1] +1) = —n € m(1)1.



Milnor-Witt K-theory

Let F be a field. Let KMV (F) denote the Z-graded associative
ring generated by elements [u],u € F ~ {0}, of degree 1 and
an element n of degree —1, subject to the following relations:

O [u]-[1—u=0forallue F~ {0,1}

@ [u-n=mn-[ulforalue F~ {0}:

O [u]=[ul+[v]+n-[u]-[v]forallu,v e F~ {0}:
O -(n-[-1+1)=-n
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By definition, KMY(F)/(n) = KMilnor(F).



Milnor-Witt K-theory

Let F be a field. Let KMV (F) denote the Z-graded associative
ring generated by elements [u],u € F ~ {0}, of degree 1 and
an element n of degree —1, subject to the following relations:
O [u-[1—u=0forallue F~{0,1}
@ [u-n=mn-[ulforalue F~ {0}:
O [u]=[ul+[v]+n-[u]-[v]forallu,v e F~ {0}:
On (n[-1]+1)=-
By definition, KMY(F)/(n) = KMilnor(F).
Moreover, K}V (F) is the Grothendieck-Witt ring of symmetric

bilinear forms over F, and KMY(F) is isomorphic to the Witt
ring of symmetric bilinear forms over F for n < 0.



Partial answers: The zeroth line

KMWY(F) is designed to produce a homomorphism

K}(VIW(F) — 71'0_(*)1 F-

Theorem (Morel)
This homomorphism is an isomorphism

of graded rings for any field.

In particular, 7o, (0)1 is the Grothendieck-Witt ring of symmetric
bilinear forms, and 7o ()1 is the Witt ring of symmetric bilinear
forms for n > 0.
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Filtrations on SH(S)



Morel's homotopy t-structure

e For g € Z, SH>4(S) is the full subcategory of SH(S)
closed under homotopy colimits and extensions, which
contains Y9t(MWyY>X, X € Smg, n € Z.

o A P'-spectrum in SHx4(X) is called g-connective.

o If S= Spec(F) where F is afield, E is g-connective if and
only if 7g, (wWE=0forall s < gq.
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e For g € Z, SH>4(S) is the full subcategory of SH(S)
closed under homotopy colimits and extensions, which
contains Y9t(MWyY>X, X € Smg, n € Z.

o A P'-spectrum in SHx4(X) is called g-connective.

o If S= Spec(F) where F is afield, E is g-connective if and
only if 7g, (wWE=0forall s < gq.

1 and MGL are connective (0-connective). Over a field, HZ is
connective. For all g € Z, 74, (qKGLF = Z, whence KGL is not
g-connective.



Morel's homotopy t-structure

e For g € Z, SH>4(S) is the full subcategory of SH(S)
closed under homotopy colimits and extensions, which
contains Y9t(MWyY>X, X € Smg, n € Z.

o A P'-spectrum in SHx4(X) is called g-connective.

o If S= Spec(F) where F is afield, E is g-connective if and
only if 7g, (wWE=0forall s < gq.

1 and MGL are connective (0-connective). Over a field, HZ is
connective. For all g € Z, 74, (qKGLF = Z, whence KGL is not
g-connective.

The homotopy t-structure is exhaustive and Hausdorff.



Voevodsky'’s slice filtration

For g € Z, ¥(9 SH(S) is the full subcategory of SH(S)
closed under homotopy colimits and extensions, which
contains T @Y* X, X € Smg, n € Z.

ig: £(@ SH(S) < SH(S) has a right adjoint, denoted
rg: SH(S) — (9 SH(S) (Neeman)

Motivic spectra in £(9) SH(S) are called g-effective.



Voevodsky'’s slice filtration

For g € Z, ¥(9 SH(S) is the full subcategory of SH(S)
closed under homotopy colimits and extensions, which
contains T @Y* X, X € Smg, n € Z.

ig: £(@ SH(S) < SH(S) has a right adjoint, denoted
rg: SH(S) — (9 SH(S) (Neeman)
Motivic spectra in £(9) SH(S) are called g-effective. Both 1

and MGL are effective, but KGL is not g-effective for any q € Z.
Any E € SH(F) induces a natural homotopy cofiber sequence

fgr1E = fqE — sqE — Xfy4E

defining the g-th slice s4E of E.



Voevodsky'’s slice filtration

The slice filtration is triangulated and exhaustive. However, it is
not Hausdorff: Let F be of characteristic not two, and let

7= —1 € my_1)HZ/2 = ker(F* 225, Fx).

Then « # HZ/2[r~1] € £9+(a) SH(F) for all g € Z.



Voevodsky'’s slice filtration

The slice filtration is triangulated and exhaustive. However, it is
not Hausdorff: Let F be of characteristic not two, and let

7= —1 € my_1)HZ/2 = ker(F* 225, Fx).

Then x # HZ/2[r 1] € £9+(@ SH(F) for all g € Z. This
P'-spectrum is not g-connective for any g. On the other hand,
the n-inverted motivic sphere spectrum 1[~'] is connective,
but not g-effective for any q € Z.



Slices and smash product

Theorem (Pelaez 2008, Gutiérrez-R.-Spitzweck-Jstveer
2010)

The slice filtration is multiplicative: There are natural pairings
fopD ANTgE — fp1g(DAE) and spD ASqE — Spq(DAE).

In particular, if E is a motivic ring spectrum, so are foE and sgE,
and f.E and s.E are graded motivic ring spectra.

Every motivic spectrum is a module over 1, whence every slice
is a module over sp1.



Spitzweck’s very effective slice filtration

e For g € Z, ¥97(@ SH"(S) is the full subcategory of SH(S)
closed under homotopy colimits and extensions, which
contains £9t(@¥>X, X € Smg.

o vig: Y99 SH™M(F) < SH(F) has a right adjoint, denoted
o vrg: SH(F) — 9@ SH™"(F) (Neeman)
e Vvig 1= vigovrg: SH(F) — SH(F)



Spitzweck’s very effective slice filtration

For g € Z, ¥.9+(3) SH"*(S) is the full subcategory of SH(S)
closed under homotopy colimits and extensions, which
contains £9t(@¥>X, X € Smg.

Vig: £ SH"*"(F) — SH(F) has a right adjoint, denoted
vrg: SH(F) — £9+(@ SH*M(F) (Neeman)

Motivic spectra in ¥9(9) SH*(S) are called very g-effective.
Both 1 and MGL are very effective. The effective motivic
spectrum ¥ ~'1 is not very effective, but very —1-effective.



Spitzweck’s very effective slice filtration

Again any E € SH(F) yields a natural homotopy cofiber
sequence
Vig1E — VIgE — vsqE — Yvfq 4E

defining the g-th very effective slice of E. The very effective

slice filtration is exhaustive and Hausdorff. However, it is not
triangulated. In particular, the very effective slices are often

harder to determine than the slices.



The slice spectral sequence

For every E € SH(F) and every integer n there is a slice
spectral sequence

To+(n)Sq(E) = mp4(n)E
which might converge strongly to the exhaustive filtration
Image(ﬂp+(n)fq(E) — 7Tp+(n)E).
The first differential is (induced by) the following composition:



The motivic Atiyah-Hirzebruch spectral sequence

The next lecture will provide that the slice spectral sequence for
KGL is the motivic Atiyah-Hirzebruch spectral sequence
Beilinson hoped for. It will also give information on the slice
spectral sequence for the motivic sphere spectrum.



® Lecture 2: Some slices
Recollection from Lecture 1



Three filtrations

For a set M of objects in SH(S), let (M) denote the full
subcategory of SH(S) closed under homotopy colimits and
extensions containing M. Fix g € Z.

g-connective g-effective very g-effective
(ZIHEX ) e | (BT OTX) I | (TR, ) xesmg
Hausdorff not Hausdorff Hausdorff

not triangulated triangulated not triangulated
Ny HZ/2[r ]

EM(7q 4 (0E) sqE vsqE

A very g-effective motivic spectrum is g-effective and
g-connective.



The slice spectral sequence

For every E € SH(F) and every integer n there is a slice
spectral sequence

To+(n)Sq(E) = mpi(mE
which might converge strongly to the exhaustive filtration

Image (7Tp+(n)fq(E) — Tp+(n) E) .



The slice spectral sequence

For every E € SH(F) and every integer n there is a slice
spectral sequence

Tp+(n)Sq(E) = mp1(n)E
which might converge strongly to the exhaustive filtration
Image(mp+(n)fq(E) = 7. (n)E)-
More generally, one may insert a motivic spectrum D to obtain
[D,sqE] = [D, E].
The first differential is (induced by) the following composition:



The slice spectral sequence

The first differential
To+(x)8qE = Tp_14(x)Sq+1E
induced by the composition
SqE — Xfg1E — YsgqE

is a mo_(,)1F = KMV (F)-module homomorphism.



The slice spectral sequence

The first differential
To+(x)8qE = Tp_14(x)Sq+1E
induced by the composition
SqE — Xfg1E — YsgqE
is a mo_(,)1F = KMV (F)-module homomorphism.

(The identification of sp1 will imply that all differentials in the
slice spectral sequence are even KMi"or(F)-homomorphisms.)
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Identifications of slices



The motivic Atiyah-Hirzebruch spectral sequence

Recall KGL = (K, K, ...), so P'AKGL ~ KGL (Bott periodicity).

Theorem (Levine 2005, Voevodsky 2000)

Let F be a field. Then soKGL ~ HZ in SH(F). In particular,
sqKGL =~ Y 9+(DHZ for all g € Z by Bott periodicity. The
associated slice spectral sequence converges strongly.




The motivic Atiyah-Hirzebruch spectral sequence

Recall KGL = (K, K, ...), so P'AKGL ~ KGL (Bott periodicity).

Theorem (Levine 2005, Voevodsky 2000)

Let F be a field. Then soKGL ~ HZ in SH(F). In particular,
sqKGL =~ Y 9+(DHZ for all g € Z by Bott periodicity. The
associated slice spectral sequence converges strongly.

Levine’s proof uses his homotopy coniveau filtration. Note that
far1(P' AE) =~ P! Afg(E) and sqy1(P' AE) ~ P! Asg(E).

Slices of KGL compare well with the homotopy groups of the
corresponding topological spectrum KU.



A picture of s, KGL

Squares denote suspensions of HZ.

M
3 |5
= fum|
5 2 5R
w
2
w
S 1 0
7))
m
0 R
1 m
L

) —1 0 1 2 3 SIMPLICIAL

DEGREE



Slices of motivic cohomology

Motivic conomology vanishes in negative weights, thus
f{HZ ~ x. Hence if HZ is effective, the maps

HZ + foHZ — soHZ

are isomorphisms. Over a field of characteristic zero, effectivity
can be shown by expressing HZ via infinite symmetric products
of spheres.



Slices of motivic cohomology

Motivic conomology vanishes in negative weights, thus
f{HZ ~ x. Hence if HZ is effective, the maps

HZ + foHZ — SoHZ

are isomorphisms. Over a field of characteristic zero, effectivity
can be shown by expressing HZ via infinite symmetric products
of spheres.

Theorem (Voevodsky 2003, Levine 2005)

For every field F, the motivic spectrum HZ coincides with its
zero slice.




Slices of motivic cohomology

Motivic conomology vanishes in negative weights, thus
f{HZ ~ x. Hence if HZ is effective, the maps

HZ + foHZ — soHZ

are isomorphisms. Over a field of characteristic zero, effectivity
can be shown by expressing HZ via infinite symmetric products
of spheres.

Theorem (Voevodsky 2003, Levine 2005)

For every field F, the motivic spectrum HZ coincides with its
zero slice.

Work of Spitzweck and Bachmann-Hoyois generalizes this to
any Dedekind domain.

Slices of HZ compare well with the homotopy groups of the
corresponding topological Eilenberg-MacLane spectrum HZ.



Algebraic bordism MGL

Let MGL be Voevodsky’s motivic Thom spectrum. Its
“universal” orientation induces a graded ring homomorphism:

L=Z[x,%,...] = 7 (yMGL  deg(x) = k + (k)
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Let MGL be Voevodsky’s motivic Thom spectrum. Its
“universal” orientation induces a graded ring homomorphism:
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Let F be a field of characteristic zero. Then the map
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induced by the canonical orientation of HZ is an equivalence.




Algebraic bordism MGL

Let MGL be Voevodsky’s motivic Thom spectrum. Its
“universal” orientation induces a graded ring homomorphism:

L=Z[x,%,...] = 7 (yMGL  deg(x) = k + (k)

Theorem (Hopkins-Morel, Hoyois 2012)
Let F be a field of characteristic zero. Then the map

(0K MGL/(X1,X2,...)—)HZ

induced by the canonical orientation of HZ is an equivalence.
The same is true over any field, at least after inverting the
exponential characteristic e.




Sketch of proof of Theorem (Hopkins-Morel, Hoyois)

e & AHZ is an equivalence, because
o & AHQ is an equivalence by motivic Landweber exactness
e & AHZ/¢is an equivalence by motivic Steenrod algebra
computation, cellularity, “motives are HZ-modules”,
provided ¢ # e is prime.
e MGL/(x1, x2,...) is HZ-local, because
e MGL-, — HZ<( is an equivalence, the map on nontrivial
homotopy sheaves being m,_(,)MGL = KMilnor o To_(mHZ
e homotopy f-structure truncations of MGL/(x1, X2, ... ) are
MGL <,-local by GRS@.



Slices of MGL

Consequences for a field of exponential characteristic e:
o HZ[e "] is (very) effective
e sol[e"'] = soMGL[e~ '] = HZ[e™ ]
o sqMGL[e" '] = £9H(DHZ[e | @ L, for all
e vigMGL = f;MGL and vsqMGL = s;MGL for all q

Slices of MGL compare well with the homotopy groups of the
corresponding topological spectrum MU.



Slices of MGL

Consequences for a field of exponential characteristic e:
o HZ[e "] is (very) effective
e sol[e"'] = soMGL[e~ '] = HZ[e™ ]
o sqMGL[e" '] = £9H(DHZ[e | @ L, for all
e vigMGL = f;MGL and vsqMGL = s;MGL for all q

Slices of MGL compare well with the homotopy groups of the

corresponding topological spectrum MU.
The identification so(1) ~ so(HZ) ~ HZ holds over a Dedekind

domain (Bachmann-Hoyois).



Slices of MGL

Consequences for a field of exponential characteristic e:

o HZ[e "] is (very) effective

e sp1[e™"] = soMGL[e '] = HZ[e ]

o sqMGL[e" '] = £9H(DHZ[e | @ L, for all

e vigMGL = f;MGL and vsqMGL = s;MGL for all q
Slices of MGL compare well with the homotopy groups of the
corresponding topological spectrum MU.
The identification so(1) ~ so(HZ) ~ HZ holds over a Dedekind
domain (Bachmann-Hoyois).
Convention: From now on, [e~'] may be removed from the
notation. Hence over a field of positive characteristic e, we may
implicitly invert e.



A picture of s,MGL

e Squares denote suspensions of HZ.
e sqMGL is the sum of all “dots” on the g-th horizontal line.
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Slices of KGL via MGL

Let kgl := vfypKGL. The canonical orientation on KGL defines a
map MGL — KGL which factors over kgl. Over a field one
obtains equivalences

kgl ~ MGL/(x2, X3,...) and KGL =~ MGL/(x2,Xs,...)[x; ']

at least after inverting its exponential characteristic e.



Slices of KGL via MGL

Let kgl := vfypKGL. The canonical orientation on KGL defines a
map MGL — KGL which factors over kgl. Over a field one
obtains equivalences

kgl ~ MGL/(x2, X3,...) and KGL =~ MGL/(x2,Xs,...)[x; ']

at least after inverting its exponential characteristic e.
Consequences:

o VigKGL = f,KGL = x9+(9kgI
o v§qKGL = s4KGL = Y 9+(DHZ for all g
o ho(l7iquKGL ~ x (slice convergence)



Slices of the motivic sphere spectrum 1

The MGL-Adams resolution of 1 computes its slices.

1—— MGLZ=——MGL A MGL &=— MGL A MGL A MGL - - -

Lemma
The canonical map sq1 — hoﬂm sqMGL"*"" s an equivalence.




Slices of the motivic sphere spectrum 1

Lemma
The canonical map sq1 — hoﬂm sqMGL"*"" s an equivalence.

Proof.
Consider ¢(E, q): SqE — holim se(E A MGL"**"), which is an

equivalence if E is an MGL-module. In the homotopy cofiber

sequence
1 - MGL — MGL — X1

MGL is 1-effective, whence MGL"" is m-effective. The map
gb(MGLAm, q) is an equivalence for g < m. Since sq is a
triangulated functor, downward induction on m applies. O




Slices of the motivic sphere spectrum 1

Theorem (Voevodsky-Levine, RSQ)
sq(1) =~ 9 DHZ © P Extf 77 (MU, MU,)
PEZ

This identification is compatible with the canonical multiplicative
structures on each side.

4

Sketch of proof:
Sq1 =~ holim sqMGL"*""
~ holim TINDHZ @ mogMU !

~ yHDHZ @ Tot(wquUA°+1)

~ Y9 DHZ © (P Exthy T30 (MU, MU.)
pEZ



Slices of the motivic sphere spectrum 1

Theorem (Voevodsky-Levine, RSQ)

sq(1) =~ 29 DHZ & P Extf 757 (MU, MU,)

pEZ

This identification is compatible with the canonical multiplicative
structures on each side.

Slices of 1 do not compare well with the homotopy groups of
the corresponding topological spectrum S.



Slices of the motivic sphere spectrum 1

Theorem (Voevodsky-Levine, RSQ)

sq(1) =~ 29 DHZ & P Extf 757 (MU, MU,)

pEZ

This identification is compatible with the canonical multiplicative
structures on each side.

Slices of 1 do not compare well with the homotopy groups of
the corresponding topological spectrum S.

Since homotopy theorists (Zahler, Ravenel, ...) computed
Ext,f;lfJ*MU(MU*, MU,) in a certain range, small slices sq(1) are
known explicitly, and some summands are known in all slices.



Zahler: The ANSS for the spheres

500 RAPHAEL ZAHLER

Table 2. Spectral sequences for e
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A picture of s41 for g <7

Square: HZ, small circle: HZ/2
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The slice spectral sequences of 1

The following abbreviations are used:
e Integral motivic conomology: HS" = 7, _s, (_w)HZ

If ¢ > 2 is a natural number, h3"" = (HZ/¢)5"(F) denotes
motivic cohomology with coefficients in Z/¢.

hsW = (HZ/2)>"(F)
hsy = (H(Z/2))™(F)
Recall 7= -1 € h%'and p = —1 € h"!
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The —n-th slice spectral sequence for 1
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Hermitian K-theory KQ

From now on, F is a field of characteristic not two. Let KQ be
Hornbostel’s hermitian K-theory spectrum. It is a motivic ring
spectrum with the following properties:

e There is a homotopy cofiber sequence:

nAKQ

YKQ 25 kQ 4 KGL 4 x'(IKQ

e The forgetful map u is a ring map, and v factors as

KGL & s1+(WKGL =%, s1+(1)KQ, h the hyperbolic
map.



Slices of KQ

These properties and the determination of s, KGL imply:

Theorem (R.-Ostveer 2013)

Let F be a field of char(F) # 2 and q € Z. The g-th slice of the
hermitian K -theory spectrum KQ over F is given as

(@) (X9HZ) v Vi g **HZ/2 q=0mod 2
Va1t T2HZ/2 g=1mod2
2

Slices of KQ do not compare well with the homotopy groups of
the corresponding topological spectrum KO.



A picture of s.KQ

Small circles denote suspensions of HZ/2.
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® Lecture 2: Some slices

The first slice differential



The motivic Steenrod algebra

Recall that the first slice differential is (induced by) the following
composition:

In the previous examples all slices are (sums of) motivic
Eilenberg-MacLane spectra.



The motivic Steenrod algebra

Recall that the first slice differential is (induced by) the following
composition:

In the previous examples all slices are (sums of) motivic
Eilenberg-MacLane spectra.

For every prime ¢, Voevodsky determined all endomorphisms of
HZ/¢ in SH(F) over a field F with char(F) = 0. This was
extended to char(F) # ¢ by Hoyois-Kelly-@stvaer, and to
Dedekind rings having ¢ as a unit by Spitzweck.



The motivic Steenrod algebra

Recall that the first slice differential is (induced by) the following
composition:

In the previous examples all slices are (sums of) motivic
Eilenberg-MacLane spectra.

For every prime ¢, Voevodsky determined all endomorphisms of
HZ/¢ in SH(F) over a field F with char(F) = 0. This was
extended to char(F) # ¢ by Hoyois-Kelly-@stvaer, and to
Dedekind rings having ¢ as a unit by Spitzweck.

The following arguments require endomorphisms of weight < 2.



The first differential for KGL /2

dl(KGL/2)

sqKGL/2 TSq+1KGL/2
TI+H@DHzZ/2 Sa® Sq' +Sa' Sa® Ta+2+(a+)Hz /2
¢ Bott periodicity for KGL

Voevodsky’s motivic Steenrod algebra
Motivic Adem relations

Slice convergence for KGL
Suslin’s computation of 75, (,)KGL/2 over R

Base change from Spec(Z[%])



The first differential for KQ

1 KQ 2 KGLis a ring map and sg preserves ring maps.

so0KQ — B HZ = s)KGL 2 s,KGL /2

d (KQ)J Jqu opr laﬂ (KGL/2)
r 1
rs1 — " sMHzZ/2 — %, 55,KGL/2

Hence df (KQ) restricted to HZ is Sq? opr.



The first differential for KQ
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The first differential for KQ

SLICE (WEIGHT)
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The first differential for KQ

T Tpr So?pr So°  8S9°Sq'  Sg°Sq’
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The first differential for KQ

T TPr Sqg®+pSq’ Sofpr Sq° 9Sq?Sq’ SoPSq
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Restriction to very effective covers

Since 1 is very effective, the unit map 1 — KQ factors over
kq := vfpKQ. Taking very effective covers produces a
homotopy cofiber sequence

y(kq %% kq % kgl % £1+(Dkq

where kgl = vigpKGL ~ foKGL.



The first differential for kq
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The unit map 1 — kq on slices

Lemma

Letq > 1. The map spq_11 — sp4-1kq is the inclusion on the
summand ¥29-2+(a-1Hz /2 corresponding to

aog—1 € Extyj Ty (MU, MU).

The map szq1 — $2qKQ sends the summand Y29~ '+CNHZ / ay,
corresponding to apq € Ext;,if'J‘ZMU(MU*, MU.) to the summand
¥29+(29HZ in such a way that the composition

524-1+2NHz,/ a5, — ¥29+(2Hz, P y2a+aHz /2

coincides with the unique nontrivial element.




The first differential for 1 by comparison with kq ...
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... and multiplicative properties ...
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... and Adem relations ...

SLICE (WEIGHT)
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... and topology (which detects 7).
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The E2-page for 1

5 hn+5,n+5

.hn+4,n+4
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12
[ ]
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@
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@
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h”+2’ n+2
2 @
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@ Lecture 3: Abutment and convergence
Higher differentials



Milnor conjecture on Galois cohomology (Voevodsky)

Multiplication with
7. —: hSW 5 pSwH

is an isomorphism for all 0 < s < w, whence every a € h5" is
of the form a = 7% ~Sb with b € hs:S = KMilnor /2,



Milnor conjecture on Galois cohomology (Voevodsky)

Multiplication with
7. —: hSW 5 pSwH

is an isomorphism for all 0 < s < w, whence every a € %% is
of the form a = 7%=$b with b € hS = KMilnor /2 Since

8q'() = p.8¢%(r) = 0,8¢%(r?) = ?
one obtains

0 W — S even

{p-— w — s odd

(Sq1: hSW hS+1,W)

1

0 w—s=0,1(4)

S 2: hSW _s pSH2wH1y ~
(5q ) PP — w—s=23(4)



Higher differentials for 1

Lemma

Let F be a field of characteristic different from two. Consider
the slice spectral sequence of 1.

© All differentials ending in the column for 7y (,)1F are zero.

® All differentials of degree > 2 ending in the column for
T4+ 1F are zero.




Higher differentials for 1

Lemma

Let F be a field of characteristic different from two. Consider
the slice spectral sequence of 1.

@ All differentials ending in the column for 7y (,)1F are zero.

® All differentials of degree > 2 ending in the column for
T14+(x)1F are zero.

Proof ingredients: The first statement follows by comparison
with kq. The second statement: A theorem of
Orlov-Vishik-Voevodsky shows that one may reduce from F to
fields of small cohomological dimension, or F = R. For the
latter one uses real realization. Triviality of one d? follows from
the multiplicative structure. For differentials originating in sy one
compares with appropriate motivic Moore specitra, like

1/12 + 61[—1].



The E~-page for 1
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@ Lecture 3: Abutment and convergence

Slice completion



What has been computed?

What is the target of the slice spectral sequence?



What has been computed?

What is the target of the slice spectral sequence?
Let g4 be defined by the natural homotopy cofiber sequence:
fq(E) = E — gq(E) — Xf4(E)

The natural map fg1 — fq induces a natural map gq+1 — 9gg
whose homotopy fiber is sg.



What has been computed?

What is the target of the slice spectral sequence?
Let g4 be defined by the natural homotopy cofiber sequence:

fq(E) = E — gq(E) — Xfy(E)

The natural map fg1 — fq induces a natural map gq+1 — 9gg
whose homotopy fiber is sq. Let

sc(E) := ho(lzim 9q(E)

denote the slice completion of E. Then

holim fg(E) — E — sc(E) — X holimf4(E)

is @ homotopy cofiber sequence. The slice spectral sequence
for E converges conditionally to sc(E).



Slice completion

E is slice complete if E — sc(E) is an equivalence. Since

holim fg(E) — E — sc(E) — X holim fq(E)

is a homotopy cofiber sequence, E is slice complete if and only
if hoCI,iquE ~ .



Slice completion

E is slice complete if E — sc(E) is an equivalence. Since

holim fg(E) — E — sc(E) — X holim fq(E)

is a homotopy cofiber sequence, E is slice complete if and only
if hoCI,iquE ~ .

e KGL and MGL are slice complete.

o sc(HZ/2[r~"]) ~ %, whence HZ/2[r~] is not slice
complete.

 The motivic spectrum KQ[;~'] represents Balmer’s higher
Witt groups. Every slice of KQ[n~'] is a sum of
suspensions of HZ/2. Hence all slices of KQ[~']/3 , and
also sc(KQ[n~1]/3), are contractible. But KQ[1~']/3 is not
contractible for F C R.



Levine’s convergence theorem

Recall E € SH(S) is compact if [E, —] commutes with direct
sums.

Theorem (Levine 2011)

Let F be a field of finite cohomological dimension. Then every
compact motivic spectrum in SH(F) is slice complete, after
inverting the exponential characteristic of F.

This is a very strong theorem, but we would like to have a
convergence result which applies to all fields.



Slice completion and n-completion

Since 7 is trivial on sp1 = HZ, it is trivial on every slice. It
follows that sc(E) is n-complete for every motivic spectrum E

satisfying fo(E) = E for some integer e. This implies the easy
part of the following:

Theorem (R.-Spitzweck-Jstveer 2016)

Let E be a cellular motivic spectrum of finite type over a field.
Then there is a natural equivalence:

sc(E) ~ E))




Slice completion and n-completion

Since 7 is trivial on sp1 = HZ, it is trivial on every slice. It
follows that sc(E) is n-complete for every motivic spectrum E
satisfying fo(E) = E for some integer e. This implies the easy
part of the following:

Theorem (R.-Spitzweck-Jstveer 2016)

Let E be a cellular motivic spectrum of finite type over a field.
Then there is a natural equivalence:

sc(E) ~ E))

Hence the slice spectral sequence for 1 computes 1;).



Cellular motivic spectra

Attaching a cell to a motivic spectrum E refers to taking the
homotopy cofiber of some map

¥t S E

in SH(F). The homotopy cofiber D consists of E and a cell of
dimension s + 1 + (w) and weight w. A motivic spectrum E is
cellular if it is the homotopy colimit of a sequence

x=E 1—>Ey—>E -+ —>E;—---

in which E,, is obtained by attaching cells to E,,_ for every n.



Cellular motivic spectra

Attaching a cell to a motivic spectrum E refers to taking the
homotopy cofiber of some map

¥t S E

in SH(F). The homotopy cofiber D consists of E and a cell of
dimension s + 1 + (w) and weight w. A motivic spectrum E is
cellular if it is the homotopy colimit of a sequence

x=E 1—>Ey—>E -+ —>E;—---

in which E,, is obtained by attaching cells to E,,_4 for every n. A
cellular motivic spectrum E is of finite type if

e there exists an integer k such that E contains no cells in
dimension s + (w) with s < k, and

e for every integer n, E contains at most finitely many cells of
dimension n+ (w).



Cellular of finite type

1 is cellular of finite type.
P> is not compact, but cellular of finite type.
MGL is cellular of finite type.

Theorem (Hopkins-Morel, Hoyois) implies that HZ is
cellular of finite type over a field of characteristic zero. If ¢
is a prime different from char(F), then HZ /¢ is cellular of
finite type.

1[n~ "] is cellular, but not of finite type.
KGL and KQ are cellular, but not of finite type.
If X is an elliptic curve, X is not cellular.



Finiteness conditions on slices

The basic problem in proving the convergence theorem is that
fq, and hence gp, does not necessarily commute with homotopy
limits (although it commutes with homotopy colimits by a result
of Spitzweck).

Definition

A motivic spectrum E is called slice-finitary if for every n € Z
there exist natural numbers a, < b, and a finite collection
{Cno,Cn1,-..,Cnp,) of finitely generated abelian groups with
the following properties:

© The n-th slice s,E is weakly equivalent to the sum

Za"H”)HCn,o V Za"“*(”)HCm VeV Zb”+(n)HCn7bn.
® The sequence (an) is non-decreasing and diverges to +oc.
® There exists an integer e such that f,E = E.




Slice-finitary motivic spectra

Example

e MGL is slice-finitary, with a, = n. (Also b, — n.)

1 is not slice-finitary. (a, =0, bp,=n—1forn>0.)
The Moore spectrum 1/p is slice-finitary for p odd.
1[1] is not slice-finitary.

f11[3] is slice-finitary.

The reason in the third and fifth case is that at the prime p,

Extgp gp(BP.,BP.) 22 0 for 2s(p — 1) > t.



Slice completion for slice-finitary motivic spectra

Lemma

Let E be a slice-finitary motivic spectrum over a field which is
cellular of finite type. Then sc(E) and holimq f4(E) are cellular of
finite type, respectively. The slices of holimg f4(E) are trivial.

Problem: 1 is not slice-finitary. However, the following holds:

Lemma
The motivic spectrum 1 /n is slice-finitary. J




The topological Adams-Novikov spectral sequence

In his 1972 Annals paper, Zahler stated: “We hope to prove that
h"~'ay, 4 generates Extgﬁfggk)(BP*, BP.) =~ 7Z/2 for all k (n
sufficiently large) ...” Zahler had already accomplished this for

k <6.



The topological Adams-Novikov spectral sequence

In his 1972 Annals paper, Zahler stated: “We hope to prove that
h"~'ay, 4 generates Extgﬁfgﬂ)(BP*, BP.) =~ 7Z/2 for all k (n
sufficiently large) ...” Zahler had already accomplished this for
k < 6. Here h = ay.

Theorem (Andrews-Miller 2014)

Let k > 2. Then Extgp 55 (BP.,BP.) = {0,a7 "ak,1} forn
sufficiently large.

This theorem implies that 1/7 is slice-finitary. The remaining
ingredient is a connectivity statement:

Lemma
The canonical map 1/n — sc(1/n) is 1-connective.




Slice completion and n-completion

Lemma

Let E be a cellular motivic spectrum of finite type over a field.
The canonical map

E/n — sc(E/n)
is an equivalence.

Proof.
holimg f4(E/7) E/n sc(E/n)

l | l

sc(holimg fq(E/n)) —— sc(E/n) —— sc(sc(E /7))




Slice completion and n-completion

Lemma

Let E be a cellular motivic spectrum of finite type over a field.
The canonical map

E/n — sc(E/n)
is an equivalence.

Proof.
holimg f4(E/7) E/n sc(E/n)

l | l

* o~ sc(holimg fq(E/n)) —— sc(E/n) —— sc(sc(E/n))




Slice completion and n-completion

Lemma

Let E be a cellular motivic spectrum of finite type over a field.
The canonical map

E/n — sc(E/n)
is an equivalence.

Proof.
holimg f4(E/7) E/n sc(E/n)

l | 5

x ~ sc(holimg fq(E/n)) — sc(E/n) — sc(sc(E/n))




Slice completion and n-completion

Lemma

Let E be a cellular motivic spectrum of finite type over a field.
The canonical map

E/n — sc(E/n)
is an equivalence.

Proof.

conn(E)—+1

holimg f4(E/7) E/n sc(E/n)

l loonn(E)+1 lN

x = sc(holimg fq(E/n)) —— sc(E/n) — sc(sc(E/n))




Slice completion and n-completion

Lemma

Let E be a cellular motivic spectrum of finite type over a field.
The canonical map

E/n — sc(E/n)
is an equivalence.

Proof.

conn(E)—+1

holimg f4(E/7) E/n sc(E/n)

conn(E)+2l loonn(E)+1 lN

x = sc(holimg fq(E/n)) —— sc(E/n) — sc(sc(E/n))




Slice completion and n-completion

Lemma

Let E be a cellular motivic spectrum of finite type over a field.
The canonical map

E/n — sc(E/n)
is an equivalence.

Proof.

conn(E)+2

holimg f4(E/7) E/n sc(E/n)

conn(E)+3l loonn(E)+2 lN

x = sc(holimg fq(E/n)) —— sc(E/n) — sc(sc(E/n))




Slice completion and n-completion

Lemma

Let E be a cellular motivic spectrum of finite type over a field.
The canonical map

E/n — sc(E/n)
is an equivalence.

Proof.

conn(E)+3

holimg f4(E/7) E/n sc(E/n)

conn(E)+4l loonn(E)%»S lN

x = sc(holimg fq(E/n)) —— sc(E/n) — sc(sc(E/n))




The slice convergence theorem

By induction, E/n* — sc(E/n*) is an equivalence for E cellular
of finite type and k € N.



The slice convergence theorem

By induction, E/n* — sc(E/n*) is an equivalence for E cellular
of finite type and k € N. Since E;) is the homotopy limit of

oo 5 E/mf - - 5 E/m® - E/n

the induced map E; — (sc(E))Q is an equivalence.



The slice convergence theorem

By induction, E/n* — sc(E/n*) is an equivalence for E cellular
of finite type and k € N. Since E;) is the homotopy limit of

oo 5 E/mf - - 5 E/m® - E/n

the induced map E; — (sc(E));\ is an equivalence. As
mentioned already,

~

sc(E) = (sc(E))

which completes the proof. In particular, the slice spectral
sequence for 1 determines 1;).



@ Lecture 3: Abutment and convergence

Vanishing results



An arithmetic square

Consider the homotopy pullback square

1—— 1"

J

1
1,/]\ —)1%\[77 ]

and the induced long exact sequence of homotopy groups. The
slice spectral sequence allows to conclude that 71, (41, =0
for w > 3, and that 75 (41, = 0 for w > 5. Hence

T 1y =T w1yl 1= 0

for all w.



Another vanishing result

Theorem (R. 2016)
For all w, w1 (uw)1[n~'] = moi ) 1ln '] = 0.

Guillou-Isaksen: 73, (s)1[n'] is never zero.

Nevertheless, the map 773+(W)17/7\[7]_1] — T2, (w)1is zero. Hence
for all w:

7T1+(w)1 = 7T1+(w)17A] 7r2+(w)1 = 772+(w)1rA;



The 0-line for 1

The behaviour of the unit 1 — kq on slices shows that

To+() 1) = Mot kd)

is an isomorphism.



The 0-line for 1

The behaviour of the unit 1 — kq on slices shows that

To+() 1) = Mot kd)

is an isomorphism. By comparison with KQ, induction, and
Milnor’'s conjecture on quadratic forms, the composition

K}(\/IW — 71'0_(*)1 — 7T0_(*)kq

is an isomorphism.



The 0-line for 1

The behaviour of the unit 1 — kq on slices shows that

To+() 1) = Mot kd)

is an isomorphism. By comparison with KQ, induction, and
Milnor’'s conjecture on quadratic forms, the composition

K}(\/IW — 71'0_(*)1 — 7T0_(*)kq
is an isomorphism. Injectivity of the map
To—(x)1 = mo_(nkq = KMV

is equivalent to the n-filtration on mo_(,)1 being Hausdorff.



The E~-page for 1

hn+5,n+5
5 @

4 hn+4,n+4
@

® pnt+4,n+4

3 hn+3,n+3
®

n+2,n+3 /o pn+1,n42
h /rohi,
o

h”+2’ n+2
2 ®

n+2,n+2
*h12
hn+1 ’”+2/Sq2h"*1’”+1
@

hn,n+2/sq2hn72,n+1
[ J

1 An+1,0+1
o

hn,n+1/sq2ern—2,n
@

S 2
.ker(hn—1,n+1 q hn+1,n+2)

0 /'El*”

Hn—1.n
|

2
ker(Hn—Z,n Sq°pr hn,n+1)

7'1'07(,7)1

7'1'1,(,7)1

7'('2,(,7)1



The 1-line for 1

The behaviour of the unit 1 — kq on slices shows that
T 1 =91y = momkdy =™ ka

is surjective.



The 1-line for 1

The behaviour of the unit 1 — kq on slices shows that
Tl = Ty = T (okdy = m_(kq

is surjective. Its kernel is an extension of the KMW-modules

*4-2,%+3 k1,442 A pr+2,%+2 41,442
h JToRS T = h Joh’,

and
Hiy2 2 = KM /(. 12).

One can check that the kernel is even a KMi""-module. The
resulting Ext group is Z/2 over any field of characteristic not 2.
Topological realization (or alternatively the multiplicative
structure) implies that the extension is the unique nontrivial one.



The 1-line for 1

Theorem (R.-Spitzweck-Jstveer 2016)

Let F be a field of exponential characteristic e # 2 and w € Z.
The unit map 1 — kq induces a surjection 1 (y)1 — m14(w)Kd.
After inverting e, its kernel is given as follows:

0 — KYMoT/24 — 714 ()1 = 714 (kg — 0




The 1-line for 1

Theorem (R.-Spitzweck-Jstveer 2016)

Let F be a field of exponential characteristic e # 2 and w € Z.
The unit map 1 — kq induces a surjection 1 (y)1 — m14(w)Kd.
After inverting e, its kernel is given as follows:

0 — KYMoT/24 — 714 ()1 = 714 (kg — 0

Let v € 71 (2)1 denote the map S3+(*) — S2+(2) optained via
the Hopf construction on SLy ~ A% \ {0} ~ S'*(®)_ et
Np € T14(0)1 denote the topological first Hopf map.
e v generates w1, (21 =Z/24 (w = 2) and K}!rr /24,
e 12v = nznmp.
* 7Mop and v do not generate 7y, ()1 in general:
71— (2)1g[/—7) CONtains Z, coming from H2,




Finitely presented KMY-modules

One can check that the KMY-module homomorphism
KW @ KMY 7y (of41
sending (a, b) to a- v + b - n,p induces an isomorphism
Ky {vt @ KM {mhop }H/ (10, 21op, 1PTop — 120) 22 1y (49 f1 1

after inverting the exponential characteristic. The proof involves
that 7r1—(*)f‘| kq = K}(\/Iw{ntop}/(nzntop)-



Finitely presented KMY-modules

One can check that the KMY-module homomorphism
KYY @ KMY — my_(of11
sending (a, b) to a- v + b - n,p induces an isomorphism
Ko vy & K™Y {1op}/ (10, 210ps 1P hop — 1207) 22 74 _ 41
after inverting the exponential characteristic. The proof involves
that 5v>f1kq 2= KM {1top /(1P hop) -

The KMV-module m,_,f11 is not finitely generated for many
number fields, such as Q(¢p) where p = —1 mod 8 is prime.
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