The motivic slice spectral sequence

Oliver Röndigs

Universität Osnabrück
есht Seminar, November 2019
(1) Lecture 1: The setup

Motivation and introduction

\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence Higher differentials
Slice completion
Vanishing results

Motivation

For a scheme X let

$$
\mathcal{K}(X)=\Omega \mathrm{BQ}\left(\text { Vect }_{X}\right)
$$

be Quillen's K-theory space. It is the loop space of the classifying space of the categorical group completion of the exact category of vector bundles over X. Its homotopy groups are the algebraic K-groups of X.

Motivation

For a scheme X let

$$
\mathcal{K}(X)=\Omega \mathrm{BQ}\left(\text { Vect }_{X}\right)
$$

be Quillen's K-theory space. It is the loop space of the classifying space of the categorical group completion of the exact category of vector bundles over X. Its homotopy groups are the algebraic K-groups of X.
For example, if $X=\operatorname{Spec}(R)$ is an affine scheme, $K_{0}(X)$ is the Grothendieck group of finitely generated projective R-modules. If $X=\operatorname{Spec}(F)$ is the spectrum of a field,

$$
K_{0}(F) \stackrel{\operatorname{dim}}{\cong} \mathbb{Z} \quad K_{1}(F) \cong F^{\times} \quad K_{2}(F) \cong F^{\times} \otimes F^{\times} /\langle u \otimes(1-u)\rangle
$$

Motivation

The only fields for which all K-groups are known explicitly are finite, thanks to Quillen. The situation for topological K-theory is much better. One reason is the Atiyah-Hirzebruch spectral sequence which employs singular cohomology to compute topological K-theory.

Motivation

The only fields for which all K-groups are known explicitly are finite, thanks to Quillen. The situation for topological K-theory is much better. One reason is the Atiyah-Hirzebruch spectral sequence which employs singular cohomology to compute topological K-theory.

Conjecture (Beilinson 1982)

"I hope very much, that in fact it [motivic cohomology] exists, and may be defined by elementary means. ... One should have Atiyah-Hirzebruch spectral sequence, converging to Quillen's K-theory at least for smooth schemes."

Properties of K-theory

Theorem (Quillen 1972)
If X is regular, the projection $X \times \mathbb{A}^{1} \rightarrow X$ induces an equivalence $\mathcal{K}(X) \rightarrow \mathcal{K}\left(X \times \mathbb{A}^{1}\right)$.

Properties of K-theory

Theorem (Quillen 1972)

If X is regular, the projection $X \times \mathbb{A}^{1} \rightarrow X$ induces an equivalence $\mathcal{K}(X) \rightarrow \mathcal{K}\left(X \times \mathbb{A}^{1}\right)$.

For the next property, a Nisnevich square is a pullback square

of schemes, where $U \hookrightarrow X$ is an open embedding and $p: Y \rightarrow X$ is an étale morphism such that the induced morphism $Y \backslash p^{-1}(U) \rightarrow X \backslash U$ of reduced closed subschemes is an isomorphism.

Properties of K-theory

Theorem (Thomason-Trobaugh 1990)

For every Nisnevich square of regular schemes, the square

is a homotopy pullback square.
This theorem holds for quasi-compact and quasi-separated schemes, provided \mathcal{K} is interpreted as a not necessarily connective spectrum.

The Nisnevich topology

Let $f: \mathbb{A}_{\mathbb{C}}^{1} \rightarrow \mathbb{A}_{\mathbb{R}}^{1}$ be the étale morphism induced by the field extension $\mathbb{R} \hookrightarrow \mathbb{C}$, and let $x \in \mathbb{A}_{\mathbb{R}}^{1}=\operatorname{Spec}(\mathbb{R}[t])$ be the closed point given by the prime ideal $\left(t^{2}+1\right)$. It has residue field \mathbb{C}.

The Nisnevich topology

Let $f: \mathbb{A}_{\mathbb{C}}^{1} \rightarrow \mathbb{A}_{\mathbb{R}}^{1}$ be the étale morphism induced by the field extension $\mathbb{R} \hookrightarrow \mathbb{C}$, and let $x \in \mathbb{A}_{\mathbb{R}}^{1}=\operatorname{Spec}(\mathbb{R}[t])$ be the closed point given by the prime ideal $\left(t^{2}+1\right)$. It has residue field \mathbb{C}. Consider the open complement $\mathbb{A}_{\mathbb{R}}^{1} \backslash\{x\} \hookrightarrow \mathbb{A}_{\mathbb{R}}^{1}$. Then

$$
f^{-1}\left(\mathbb{A}_{\mathbb{R}}^{1} \backslash\{x\}\right)=\mathbb{A}_{\mathbb{C}}^{1} \backslash f^{-1}(x)=\mathbb{A}_{\mathbb{C}}^{1} \backslash\{(t+i),(t-i)\}
$$

which shows that

$$
\begin{gathered}
\mathbb{A}_{\mathbb{C}}^{1} \backslash\{(t+i),(t-i)\} \longrightarrow \mathbb{A}_{\mathbb{C}}^{1} \\
\\
\underset{\mathbb{A}_{\mathbb{R}}^{1}}{\downarrow} \backslash\left\{\left(t^{2}+1\right)\right\} \longrightarrow \mathbb{A}_{\mathbb{R}}^{1}
\end{gathered}
$$

is not a Nisnevich square.

The Nisnevich topology

However, the pullback square

$$
\begin{gathered}
\mathbb{A}_{\mathbb{C}}^{1} \backslash\{(t+i),(t-i)\} \longrightarrow \mathbb{A}_{\mathbb{C}}^{1} \backslash\{(t-i)\} \\
\underset{\mathbb{A}_{\mathbb{R}}^{1}}{ } \backslash\left\{\left(t^{2}+1\right)\right\} \longrightarrow \mathbb{A}_{\mathbb{R}}^{1}
\end{gathered}
$$

is a Nisnevich square. Both reduced closed complements are $\operatorname{Spec}(\mathbb{C})$, and f induces the identity.

Why the Nisnevich topology?

The Nisnevich topology (invented by Nisnevich in 1989 as "completely decomposed topology") sits between the Zariski topology and the étale topology. It shares the good properties of both and avoids the bad properties of both.

	Zariski	Nisnevich	étale
smooth implies locally \mathbb{A}^{d}	false	true	true
$f_{\text {f }}$ is exact for f finite	false	true	true
fields are points	true	true	false
cohom. dim. is Krull dim.	true	true	false
K-theory has descent	true	true	false

(1) Lecture 1: The setup

Motivation and introduction \mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence Higher differentials
Slice completion
Vanishing results

The motivic stable homotopy category (Morel-Voevodsky)

Let S be a scheme. The motivic stable homotopy category $\mathrm{SH}(S)$ of S contains \mathbb{P}^{1}-spectra or motivic spectra as objects:

- $\mathbf{E}=\left(\mathbf{E}_{0}, \mathbf{E}_{1}, \ldots, \mathbf{E}_{n} \ldots\right)$ and structure maps
$\mathbf{E}_{n} \wedge \mathbb{P}^{1} \rightarrow \mathbf{E}_{n+1}$, where
- $\mathbf{E}_{n}: \mathrm{Sm}_{S}^{\mathrm{op}} \rightarrow$ sSet. is a pointed simplicial presheaf on the category Sm_{S} of smooth S-schemes.
- Any smooth S-scheme with a rational point (like $\left(\mathbb{P}^{1}, \infty\right)$) defines a (representable discrete) pointed simplicial presheaf on Sm_{s}.
- The smash product of pointed simplicial presheaves is $B \wedge C=B \times C / B \vee C$.

Motivic suspension spectra

Every smooth S-scheme X (which may not have a rational point) defines a motivic suspension spectrum

$$
\Sigma^{\infty} X_{+}=\left(X_{+}, X_{+} \wedge \mathbb{P}^{1}, X_{+} \wedge \mathbb{P}^{1} \wedge \mathbb{P}^{1}, \ldots\right)
$$

with identities as structure maps, where $X_{+}=X \amalg \operatorname{Spec}(S)$. In particular, $1_{S}:=\Sigma^{\infty} S_{+}$is the motivic sphere spectrum over S.

Motivic suspension spectra

Every smooth S-scheme X (which may not have a rational point) defines a motivic suspension spectrum

$$
\Sigma^{\infty} X_{+}=\left(X_{+}, X_{+} \wedge \mathbb{P}^{1}, X_{+} \wedge \mathbb{P}^{1} \wedge \mathbb{P}^{1}, \ldots\right)
$$

with identities as structure maps, where $X_{+}=X \amalg \operatorname{Spec}(S)$. In particular, $\mathbf{1}_{S}:=\Sigma^{\infty} S_{+}$is the motivic sphere spectrum over S. Every pointed simplicial set L defines a motivic suspension spectrum

$$
\Sigma^{\infty} L=\left(L, L \wedge \mathbb{P}^{1}, L \wedge \mathbb{P}^{1} \wedge \mathbb{P}^{1}, \ldots\right)
$$

with identities as structure maps, where $L: \operatorname{Sm}_{S}^{\mathrm{op}} \rightarrow \mathrm{sSet}$. is the constant pointed simplicial presheaf with value L. Note that $\Sigma^{\infty}\left(S, \mathrm{id}_{S}\right)=\Sigma^{\infty} *=*$ is the zero object in $\mathrm{SH}(S)$.

Equivalences

Equivalences in the motivic stable homotopy category are determined by the following conditions:
\mathbb{A}^{1}-invariance The projection $\Sigma^{\infty}\left(X \times \mathbb{A}^{1} \rightarrow X\right)_{+}$is an equivalence for every $X \in \operatorname{Sm}_{S}$.
Nisnevich descent Every Nisnevich square of smooth S-schemes induces a homotopy pushout square of \mathbb{P}^{1}-spectra.
\mathbb{P}^{1}-stability The functor $\mathbb{P}^{1} \wedge$ - is an equivalence.

Spheres

Let Σ denote suspension with the simplicial circle. $S^{1}=\Delta^{1} / \partial \Delta^{1}$. Then \mathbb{A}^{1}-invariance and Nisnevich descent imply that $\mathbb{P}^{1} \simeq \Sigma \mathbb{G}_{\mathrm{m}}$, where $\mathbb{G}_{\mathrm{m}}=\left(\mathbb{A}^{1} \backslash\{0\}, 1\right)$. Let $\Sigma^{1+(1)}$ denote suspension with $S^{1+(1)}:=\mathbb{P}^{1}$. Then for every $s, w \in \mathbb{Z}$, there exists $S^{s+(w)} \in \mathrm{SH}(S)$ and the corresponding suspension functor $\Sigma^{s+(w)}$.

For example, $\mathbb{A}^{n} \backslash\{0\} \simeq S^{n-1+(n)}$, and $\mathbb{A}^{n} / \mathbb{A}^{n} \backslash\{0\} \simeq \mathbb{P}^{n} / \mathbb{P}^{n-1} \simeq S^{n+(n)}$.

Structural properties of $\mathrm{SH}(S)$

The motivic stable homotopy category $\mathrm{SH}(\mathrm{S})$ admits the following structures:

- A closed symmetric monoidal structure $(\mathbf{D}, \mathbf{E}) \mapsto \mathbf{D} \wedge \mathbf{E}$, with unit $\mathbf{1}_{s}$.
- A compatible triangulated structure, with shift functor Σ and homotopy cofiber sequences defining distinguished triangles.
- A six functor formalism expanding on the base change functor $f^{*}: \mathrm{SH}(R) \rightarrow \mathrm{SH}(S)$ for $f: S \rightarrow R$. The functor f^{*} is strong symmetric monoidal, always has a right adjoint f_{*}, and a left adjoint f_{\sharp} if f is smooth.

Homotopy groups and sheaves

For a \mathbb{P}^{1}-spectrum $\mathbf{E} \in \operatorname{SH}(S)$ and integers s, w, let

$$
\pi_{s+(w)} \mathbf{E}:=\left[\Sigma^{s+(w)} \mathbf{1}, \mathbf{E}\right]
$$

and let

$$
\pi_{s+(\star)} \mathbf{E}=\bigoplus_{w \in \mathbb{Z}} \pi_{s+(w)} \mathbf{E}
$$

denote the direct sum.

Homotopy groups and sheaves

For a \mathbb{P}^{1}-spectrum $\mathbf{E} \in \operatorname{SH}(S)$ and integers s, w, let

$$
\pi_{s+(w)} \mathbf{E}:=\left[\Sigma^{s+(w)} \mathbf{1}, \mathbf{E}\right]
$$

and let

$$
\pi_{s+(\star)} \mathbf{E}=\bigoplus_{w \in \mathbb{Z}} \pi_{s+(w)} \mathbf{E}
$$

denote the direct sum.
The associated Nisnevich sheaf of $U \mapsto\left[\Sigma^{s+(w)} U_{+}, \mathbf{E}\right]$ for
$U \in \operatorname{Sm}_{S}$ is denoted $\underline{\pi}_{s+(w)} \mathbf{E}$, which gives rise to $\underline{\pi}_{s+(\star)} \mathbf{E}$.
If $S=\operatorname{Spec}(F)$ is the spectrum of a field, $\underline{\pi}_{s+(\star)} \mathbf{E}(F)=\pi_{s+(\star)} \mathbf{E}$.

Algebraic K-theory KGL

Voevodsky et. al. constructed a \mathbb{P}^{1}-spectrum

$$
\mathbf{K G L}=(\mathcal{K}, \mathcal{K}, \mathcal{K}, \ldots)
$$

via the structure map $\mathcal{K} \wedge \mathbb{P}^{1} \rightarrow \mathcal{K}$ which corresponds to multiplication with $[\mathcal{O}]-[\mathcal{O}(-1)]$. If S is regular, it represents Quillen's higher algebraic K-groups:

$$
\left[\Sigma^{p+(q)} X_{+}, \mathrm{KGL}\right] \cong K_{p-q}^{\text {Quillen }}(X)
$$

Algebraic bordism MGL

Let MGL be Voevodsky's Thom \mathbb{P}^{1}-spectrum, with MGL_{n} the Thom space of the tautological vector bundle over the infinite Grassmannian $\mathrm{Gr}_{n}=\mathrm{BGL}_{n}$. The structure maps are the obvious ones. Its "universal" orientation induces a graded ring homomorphism from the Lazard ring:

$$
\mathbb{L}=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] \rightarrow \pi_{*+(\star)} \mathbf{M G L} \quad \operatorname{deg}\left(x_{k}\right)=k+(k)
$$

Voevodsky's motivic Eilenberg-MacLane spectrum

Let $S=\operatorname{Spec}(F)$ for a field F. For any abelian group A there is a motivic Eilenberg-MacLane spectrum HA over F, representing motivic cohomology with coefficients in A. In particular, for every smooth F-variety X one has

$$
\begin{aligned}
{\left[X_{+}, \Sigma^{s+(w)} \mathbf{H} A\right] } & =H^{s+w, w}(X ; A) \\
H^{2 n, n}(X ; \mathbb{Z}) & \cong \mathrm{CH}^{n}(X) \\
H^{n, n}(F ; \mathbb{Z}) & \cong K_{n}^{\text {Milnor }}(F)
\end{aligned}
$$

Voevodsky's motivic Eilenberg-MacLane spectrum

Let $S=\operatorname{Spec}(F)$ for a field F. For any abelian group A there is a motivic Eilenberg-MacLane spectrum HA over F, representing motivic cohomology with coefficients in A. In particular, for every smooth F-variety X one has

$$
\begin{aligned}
{\left[X_{+}, \Sigma^{s+(w)} \mathbf{H} A\right] } & =H^{s+w, w}(X ; A) \\
H^{2 n, n}(X ; \mathbb{Z}) & \cong \mathrm{CH}^{n}(X) \\
H^{n, n}(F ; \mathbb{Z}) & \cong K_{n}^{\text {Milnor }}(F)
\end{aligned}
$$

A nice motivic Eilenberg-MacLane spectrum which is invariant under base change exists over any scheme, by pulling back Spitzweck's motivic Eilenberg-MacLane spectrum over $\operatorname{Spec}(\mathbb{Z})$.
(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on SH(S)
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence

Higher differentials
Slice completion
Vanishing results

Major question?

What is $\pi_{*+(\star)} \mathbf{1}_{S}$?

Major question?

What is $\pi_{*+(\star)} \mathbf{1}_{S}$?
Partial answers by: Morel, Hopkins, Isaksen, Dugger, Levine, Ananyevskiy, Panin, Guillou, Ormsby, Østvær, Heller, Wilson, Bachmann, ...

Ring structure on $\pi_{*+(\star)} \mathbf{1}_{S}$

Since 1 is the unit in a symmetric monoidal category, $\pi_{*+(\star)} \mathbf{1}_{s}$ admits a ring structure via smash product. It coincides with the ring structure defined by composition.

Ring structure on $\pi_{*+(\star)} 1_{S}$

Since $\mathbf{1}$ is the unit in a symmetric monoidal category, $\pi_{*+(*)} \mathbf{1}_{s}$ admits a ring structure via smash product. It coincides with the ring structure defined by composition. Let $\epsilon: \mathbf{1} \rightarrow \mathbf{1}$ be induced by the commutativity isomorphism $\mathbb{G}_{\mathrm{m}} \wedge \mathbb{G}_{\mathrm{m}} \cong \mathbb{G}_{\mathrm{m}} \wedge \mathbb{G}_{\mathrm{m}}$. Then

$$
\alpha \cdot \beta=(-1)^{s t} \epsilon^{w x} \beta \cdot \alpha
$$

where $\alpha \in \pi_{s+(w)} \mathbf{1}$ and $\beta \in \pi_{t+(x)} \mathbf{1}$.

Ring structure on $\pi_{*+(\star)} \mathbf{1}_{S}$

Since 1 is the unit in a symmetric monoidal category, $\pi_{*+(*)} \mathbf{1}_{s}$ admits a ring structure via smash product. It coincides with the ring structure defined by composition. Let $\epsilon: \mathbf{1} \rightarrow \mathbf{1}$ be induced by the commutativity isomorphism $\mathbb{G}_{\mathrm{m}} \wedge \mathbb{G}_{\mathrm{m}} \cong \mathbb{G}_{\mathrm{m}} \wedge \mathbb{G}_{\mathrm{m}}$. Then

$$
\alpha \cdot \beta=(-1)^{s t} \epsilon^{w x} \beta \cdot \alpha
$$

where $\alpha \in \pi_{s+(w)} \mathbf{1}$ and $\beta \in \pi_{t+(x)} \mathbf{1}$. In particular, $\pi_{s+(\star)} \mathbf{E}$ is a \mathbb{Z}-graded module over the \mathbb{Z}-graded ϵ-commutative ring $\pi_{0+(\star)} \mathbf{1}_{s}$ for every motivic spectrum $\mathbf{E} \in \mathrm{SH}(S)$.

Obvious maps of spheres

Units Let $u \in \mathcal{O}_{S}^{\times}$be a unit. Viewed as a morphism $S \rightarrow \mathbb{A}^{1} \backslash\{0\}$, it defines a map $[u]: \mathbf{1} \rightarrow \Sigma^{(1)} \mathbf{1}$, hence $[u] \in \pi_{(-1)} \mathbf{1}$.
Hopf map The canonical morphism $\mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ defines a map $\eta: \Sigma^{1+(2)} \mathbf{1} \rightarrow \Sigma^{1+(1)} \mathbf{1}$, hence $\eta \in \pi_{(1)} \mathbf{1}$.

Obvious maps of spheres

Units Let $u \in \mathcal{O}_{S}^{\times}$be a unit. Viewed as a morphism $S \rightarrow \mathbb{A}^{1} \backslash\{0\}$, it defines a map $[u]: \mathbf{1} \rightarrow \Sigma^{(1)} \mathbf{1}$, hence $[u] \in \pi_{(-1)} \mathbf{1}$.
Hopf map The canonical morphism $\mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}$ defines a map $\eta: \Sigma^{1+(2)} \mathbf{1} \rightarrow \Sigma^{1+(1)} \mathbf{1}$, hence $\eta \in \pi_{(1)} \mathbf{1}$. Equivalently, η is obtained from the Hopf construction on the group \mathbb{G}_{m}.

Not so obvious relations

The following relations hold:
Steinberg For every $u \in \mathcal{O}_{S}^{\times}$with $1-u \in \mathcal{O}_{S}^{\times}$, one has

$$
[u][1-u]=0 \in \pi_{(-2)} \mathbf{1}
$$

Commutativity For every $u \in \mathcal{O}_{S}^{\times}$, one has $[u] \eta=\eta[u] \in \pi_{0} \mathbf{1}$.
Twisted logarithm For every $u, v \in \mathcal{O}_{S}^{\times}$, one has

$$
[u v]=[u]+[v]+\eta[u][v] \in \pi_{(-1)} \mathbf{1} .
$$

Hyperbolic plane $\eta(\eta[-1]+1)=-\eta \in \pi_{(1)} \mathbf{1}$.

Milnor-Witt K-theory

Let F be a field. Let $K_{\star}^{\mathrm{MW}}(F)$ denote the \mathbb{Z}-graded associative ring generated by elements $[u], u \in F \backslash\{0\}$, of degree 1 and an element η of degree -1 , subject to the following relations:
(1) $[u] \cdot[1-u]=0$ for all $u \in F \backslash\{0,1\}$
(2) $[u] \cdot \eta=\eta \cdot[u]$ for all $u \in F \backslash\{0\}$:
(3) $[u v]=[u]+[v]+\eta \cdot[u] \cdot[v]$ for all $u, v \in F \backslash\{0\}$:
(4) $\eta \cdot(\eta \cdot[-1]+1)=-\eta$

Milnor-Witt K-theory

Let F be a field. Let $K_{\star}^{\mathrm{MW}}(F)$ denote the \mathbb{Z}-graded associative ring generated by elements $[u], u \in F \backslash\{0\}$, of degree 1 and an element η of degree -1 , subject to the following relations:
(1) $[u] \cdot[1-u]=0$ for all $u \in F \backslash\{0,1\}$
(2) $[u] \cdot \eta=\eta \cdot[u]$ for all $u \in F \backslash\{0\}$:
(3) $[u v]=[u]+[v]+\eta \cdot[u] \cdot[v]$ for all $u, v \in F \backslash\{0\}$:
(4) $\eta \cdot(\eta \cdot[-1]+1)=-\eta$

By definition, $K_{\star}^{\text {MW }}(F) /(\eta) \cong K_{\star}^{\text {Millnor }}(F)$.

Milnor-Witt K-theory

Let F be a field. Let $K_{\star}^{\mathrm{MW}}(F)$ denote the \mathbb{Z}-graded associative ring generated by elements $[u], u \in F \backslash\{0\}$, of degree 1 and an element η of degree -1 , subject to the following relations:
(1) $[u] \cdot[1-u]=0$ for all $u \in F \backslash\{0,1\}$
(2) $[u] \cdot \eta=\eta \cdot[u]$ for all $u \in F \backslash\{0\}$:
(3) $[u v]=[u]+[v]+\eta \cdot[u] \cdot[v]$ for all $u, v \in F \backslash\{0\}$:
(4) $\eta \cdot(\eta \cdot[-1]+1)=-\eta$

By definition, $K_{\star}^{\text {MW }}(F) /(\eta) \cong K_{\star}^{\text {Milinor }}(F)$.
Moreover, $K_{0}^{\mathrm{MW}}(F)$ is the Grothendieck-Witt ring of symmetric bilinear forms over F, and $K_{n}^{\text {MW }}(F)$ is isomorphic to the Witt ring of symmetric bilinear forms over F for $n<0$.

Partial answers: The zeroth line

$K_{\star}^{\mathrm{MW}}(F)$ is designed to produce a homomorphism

$$
K_{\star}^{\mathrm{MW}}(F) \rightarrow \pi_{0-(\star)} \mathbf{1}_{F}
$$

Theorem (Morel)
This homomorphism is an isomorphism

$$
K_{n}^{\mathrm{MW}} \xrightarrow{\cong} \pi_{0-(n)} \mathbf{1}
$$

of graded rings for any field.
In particular, $\pi_{0+(0)} \mathbf{1}$ is the Grothendieck-Witt ring of symmetric bilinear forms, and $\pi_{0+(n)} \mathbf{1}$ is the Witt ring of symmetric bilinear forms for $n>0$.
(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence

Higher differentials
Slice completion
Vanishing results

Morel's homotopy t-structure

- For $q \in \mathbb{Z}, \mathrm{SH}_{\geq q}(S)$ is the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions, which contains $\Sigma^{q+(n)} \Sigma^{\infty} X_{+}, X \in \operatorname{Sm}_{S}, n \in \mathbb{Z}$.
- A \mathbb{P}^{1}-spectrum in $\mathrm{SH}_{\geq q}(X)$ is called q-connective.
- If $S=\operatorname{Spec}(F)$ where F is a field, \mathbf{E} is q-connective if and only if $\underline{\pi}_{s+(\star)} \mathbf{E}=0$ for all $s<q$.

Morel's homotopy t-structure

- For $q \in \mathbb{Z}, \mathrm{SH}_{\geq q}(S)$ is the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions, which contains $\Sigma^{q+(n)} \Sigma^{\infty} X_{+}, X \in \operatorname{Sm}_{S}, n \in \mathbb{Z}$.
- A \mathbb{P}^{1}-spectrum in $\mathrm{SH}_{\geq q}(X)$ is called q-connective.
- If $S=\operatorname{Spec}(F)$ where F is a field, \mathbf{E} is q-connective if and only if $\underline{\pi}_{s+(\star)} \mathbf{E}=0$ for all $s<q$.
1 and MGL are connective (0-connective). Over a field, $\mathbf{H Z}$ is connective. For all $q \in \mathbb{Z}, \pi_{q+(q)} K_{G L}=\mathbb{Z}$, whence $K G L$ is not q-connective.

Morel's homotopy t-structure

- For $q \in \mathbb{Z}, \mathrm{SH}_{\geq q}(S)$ is the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions, which contains $\Sigma^{q+(n)} \Sigma^{\infty} X_{+}, X \in \operatorname{Sm}_{S}, n \in \mathbb{Z}$.
- A \mathbb{P}^{1}-spectrum in $\mathrm{SH}_{\geq q}(X)$ is called q-connective.
- If $S=\operatorname{Spec}(F)$ where F is a field, \mathbf{E} is q-connective if and only if $\underline{\pi}_{s+(\star)} \mathbf{E}=0$ for all $s<q$.
1 and MGL are connective (0-connective). Over a field, $\mathbf{H Z}$ is connective. For all $q \in \mathbb{Z}, \pi_{q+(q)} K_{G L}=\mathbb{Z}$, whence $K G L$ is not q-connective.
The homotopy t-structure is exhaustive and Hausdorff.

Voevodsky's slice filtration

- For $q \in \mathbb{Z}, \Sigma^{(q)} \mathrm{SH}^{\text {eff }}(S)$ is the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions, which contains $\Sigma^{n+(q)} \Sigma^{\infty} X_{+}, X \in \operatorname{Sm}_{S}, n \in \mathbb{Z}$.
- $i_{q}: \Sigma^{(q)} \mathrm{SH}^{\text {eff }}(S) \hookrightarrow \mathrm{SH}(S)$ has a right adjoint, denoted
- $r_{q}: \mathrm{SH}(S) \rightarrow \Sigma^{(q)} \mathrm{SH}^{\mathrm{eff}}(S)$ (Neeman)
- $\mathrm{f}_{q}:=i_{q} \circ r_{q}: \mathrm{SH}(S) \rightarrow \mathrm{SH}(S)$

Motivic spectra in $\Sigma^{(q)} \mathrm{SH}^{\mathrm{eff}}(S)$ are called q-effective.

Voevodsky's slice filtration

- For $q \in \mathbb{Z}, \Sigma^{(q)} \mathrm{SH}^{\text {eff }}(S)$ is the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions, which contains $\Sigma^{n+(q)} \Sigma^{\infty} X_{+}, X \in \operatorname{Sm}_{S}, n \in \mathbb{Z}$.
- $i_{q}: \Sigma^{(q)} \mathrm{SH}^{\mathrm{eff}}(S) \hookrightarrow \mathrm{SH}(S)$ has a right adjoint, denoted
- $r_{q}: \mathrm{SH}(S) \rightarrow \Sigma^{(q)} \mathrm{SH}^{\mathrm{eff}}(S)$ (Neeman)
- $\mathrm{f}_{q}:=i_{q} \circ r_{q}: \mathrm{SH}(S) \rightarrow \mathrm{SH}(S)$

Motivic spectra in $\Sigma^{(q)} \mathrm{SH}^{\mathrm{eff}}(S)$ are called q-effective. Both 1 and MGL are effective, but KGL is not q-effective for any $q \in \mathbb{Z}$. Any $\mathbf{E} \in \mathrm{SH}(F)$ induces a natural homotopy cofiber sequence

$$
\mathrm{f}_{q+1} \mathrm{E} \rightarrow \mathrm{f}_{q} \mathrm{E} \rightarrow \mathrm{~s}_{q} \mathrm{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathrm{E}
$$

defining the q-th slice $s_{q} E$ of \mathbf{E}.

Voevodsky's slice filtration

The slice filtration is triangulated and exhaustive. However, it is not Hausdorff: Let F be of characteristic not two, and let

$$
\tau:=-1 \in \pi_{0-(1)} \mathbf{H} \mathbb{Z} / 2=\operatorname{ker}\left(F^{\times} \xrightarrow{x \mapsto x^{2}} F^{\times}\right) .
$$

Then $* \neq \mathbf{H} \mathbb{Z} / 2\left[\tau^{-1}\right] \in \Sigma^{q+(q)} \mathrm{SH}^{\mathrm{eff}}(F)$ for all $q \in \mathbb{Z}$.

Voevodsky's slice filtration

The slice filtration is triangulated and exhaustive. However, it is not Hausdorff: Let F be of characteristic not two, and let

$$
\tau:=-1 \in \pi_{0-(1)} \mathbf{H} \mathbb{Z} / 2=\operatorname{ker}\left(F^{\times} \xrightarrow{x \mapsto x^{2}} F^{\times}\right) .
$$

Then $* \neq \mathbf{H} \mathbb{Z} / 2\left[\tau^{-1}\right] \in \Sigma^{q+(q)} \mathrm{SH}^{\text {eff }}(F)$ for all $q \in \mathbb{Z}$. This \mathbb{P}^{1}-spectrum is not q-connective for any q. On the other hand, the η-inverted motivic sphere spectrum $\mathbf{1}\left[\eta^{-1}\right]$ is connective, but not q-effective for any $q \in \mathbb{Z}$.

Slices and smash product

Theorem (Pelaez 2008, Gutiérrez-R.-Spitzweck-Østvær 2010)

The slice filtration is multiplicative: There are natural pairings

$$
\mathrm{f}_{p} \mathbf{D} \wedge \mathrm{f}_{q} \mathbf{E} \rightarrow \mathrm{f}_{p+q}(\mathbf{D} \wedge \mathbf{E}) \quad \text { and } \quad \mathbf{s}_{p} \mathbf{D} \wedge \mathrm{~s}_{q} \mathbf{E} \rightarrow \mathbf{s}_{p+q}(\mathbf{D} \wedge \mathbf{E})
$$

In particular, if \mathbf{E} is a motivic ring spectrum, so are $\mathrm{f}_{0} \mathbf{E}$ and $\mathrm{s}_{0} \mathbf{E}$, and $f_{*} E$ and $s_{*} \mathbf{E}$ are graded motivic ring spectra.

Every motivic spectrum is a module over $\mathbf{1}$, whence every slice is a module over $\mathrm{s}_{0} 1$.

Spitzweck's very effective slice filtration

- For $q \in \mathbb{Z}, \Sigma^{q+(q)} \mathrm{SH}^{\text {veff }}(S)$ is the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions, which contains $\Sigma^{q+(q)} \Sigma^{\infty} X_{+}, X \in \operatorname{Sm}_{S}$.
- $v i_{q}: \Sigma^{q+(q)} \mathrm{SH}^{\text {veff }}(F) \hookrightarrow \mathrm{SH}(F)$ has a right adjoint, denoted
- $v r_{q}: \mathrm{SH}(F) \rightarrow \Sigma^{q+(q)} \mathrm{SH}^{\text {veff }}(F)$ (Neeman)
- $\mathrm{vf}_{q}:=v i_{q} \circ v r_{q}: \mathrm{SH}(F) \rightarrow \mathrm{SH}(F)$

Spitzweck's very effective slice filtration

- For $q \in \mathbb{Z}, \Sigma^{q+(q)} \mathrm{SH}^{\mathrm{veff}}(S)$ is the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions, which contains $\Sigma^{q+(q)} \Sigma^{\infty} X_{+}, X \in \operatorname{Sm}_{S}$.
- $v i_{q}: \Sigma^{q+(q)} \mathrm{SH}^{\text {veff }}(F) \hookrightarrow \mathrm{SH}(F)$ has a right adjoint, denoted
- $v r_{q}: \mathrm{SH}(F) \rightarrow \Sigma^{q+(q)} \mathrm{SH}^{\text {veff }}(F)$ (Neeman)
- $\mathrm{vf}_{q}:=v i_{q} \circ v r_{q}: \mathrm{SH}(F) \rightarrow \mathrm{SH}(F)$

Motivic spectra in $\Sigma^{q+(q)} \mathrm{SH}^{\text {veff }}(S)$ are called very q-effective. Both 1 and MGL are very effective. The effective motivic spectrum $\Sigma^{-1} 1$ is not very effective, but very - 1 -effective.

Spitzweck's very effective slice filtration

Again any $\mathbf{E} \in \mathrm{SH}(F)$ yields a natural homotopy cofiber sequence

$$
\mathrm{vf}_{q+1} \mathrm{E} \rightarrow \mathrm{vf}_{q} \mathrm{E} \rightarrow \mathrm{vs}_{q} \mathrm{E} \rightarrow \Sigma \mathrm{vf}_{q+1} \mathrm{E}
$$

defining the q-th very effective slice of \mathbf{E}. The very effective slice filtration is exhaustive and Hausdorff. However, it is not triangulated. In particular, the very effective slices are often harder to determine than the slices.

The slice spectral sequence

For every $\mathbf{E} \in \mathrm{SH}(F)$ and every integer n there is a slice spectral sequence

$$
\pi_{p+(n)} \mathbf{S}_{q}(\mathbf{E}) \Longrightarrow \pi_{p+(n)} \mathbf{E}
$$

which might converge strongly to the exhaustive filtration

$$
\operatorname{Image}\left(\pi_{p+(n)} \mathrm{f}_{q}(\mathbf{E}) \rightarrow \pi_{p+(n)} \mathbf{E}\right)
$$

The first differential is (induced by) the following composition:

$$
\mathrm{s}_{q} \mathbf{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathbf{E} \rightarrow \Sigma \mathrm{~s}_{q+1} \mathbf{E}
$$

The motivic Atiyah-Hirzebruch spectral sequence

The next lecture will provide that the slice spectral sequence for KGL is the motivic Atiyah-Hirzebruch spectral sequence Beilinson hoped for. It will also give information on the slice spectral sequence for the motivic sphere spectrum.
(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence

Higher differentials
Slice completion
Vanishing results

Three filtrations

For a set M of objects in $\mathrm{SH}(S)$, let $\langle M\rangle$ denote the full subcategory of $\mathrm{SH}(S)$ closed under homotopy colimits and extensions containing M. Fix $q \in \mathbb{Z}$.

q-connective	q-effective	very q-effective
$\left\langle\Sigma^{\left.q+(n) \Sigma^{\infty} X_{+}\right\rangle_{X \in \mathbb{Z}}^{n \in \mathbb{Z}}}\right.$	$\left\langle\Sigma^{n+(q)} \Sigma^{\infty} X_{+}\right\rangle_{X \in \mathbb{Z}}^{n \in \mathbb{Z}}$	$\left\langle\Sigma^{q+(q)} \Sigma^{\infty} X_{+}\right\rangle_{X \in S \mathrm{Sm}_{S}}$
Hausdorff	not Hausdorff	Hausdorff
not triangulated	triangulated	not triangulated
$\Sigma^{q} \mathbf{1}\left[\eta^{-1}\right]$	$\mathbf{H Z} / 2\left[\tau^{-1}\right]$	
$\mathbf{E}_{\geq q}$	$\mathrm{f}_{q} \mathbf{E}$	$\mathrm{vf}_{q} \mathbf{E}$
$E M\left(\underline{\pi}_{q+(\star)} \mathbf{E}\right)$	$\mathrm{S}_{q} \mathbf{E}$	$\mathrm{vs}_{q} \mathbf{E}$

A very q-effective motivic spectrum is q-effective and q-connective.

The slice spectral sequence

For every $\mathbf{E} \in \mathrm{SH}(F)$ and every integer n there is a slice spectral sequence

$$
\pi_{p+(n)} \mathbf{S}_{q}(\mathbf{E}) \Longrightarrow \pi_{p+(n)} \mathbf{E}
$$

which might converge strongly to the exhaustive filtration

$$
\text { Image }\left(\pi_{p+(n)} \mathrm{f}_{q}(\mathbf{E}) \rightarrow \pi_{p+(n)} \mathbf{E}\right)
$$

The slice spectral sequence

For every $\mathbf{E} \in \mathrm{SH}(F)$ and every integer n there is a slice spectral sequence

$$
\pi_{p+(n)} \mathbf{S}_{q}(\mathbf{E}) \Longrightarrow \pi_{p+(n)} \mathbf{E}
$$

which might converge strongly to the exhaustive filtration

$$
\operatorname{Image}\left(\pi_{p+(n)} \mathbf{f}_{q}(\mathbf{E}) \rightarrow \pi_{p+(n)} \mathbf{E}\right)
$$

More generally, one may insert a motivic spectrum \mathbf{D} to obtain

$$
\left[\mathbf{D}, \mathrm{s}_{q} \mathbf{E}\right] \Longrightarrow[\mathbf{D}, \mathbf{E}]
$$

The first differential is (induced by) the following composition:

$$
\mathrm{s}_{q} \mathbf{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathbf{E} \rightarrow \Sigma \mathrm{~s}_{q+1} \mathbf{E}
$$

The slice spectral sequence

The first differential

$$
\pi_{p+(\star)} \mathbf{S}_{q} \mathbf{E} \rightarrow \pi_{p-1+(\star)} \mathbf{S}_{q+1} \mathbf{E}
$$

induced by the composition

$$
\mathrm{s}_{q} \mathbf{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathbf{E} \rightarrow \Sigma \mathrm{~s}_{q+1} \mathbf{E}
$$

is a $\pi_{0-(\star)} \mathbf{1}_{F} \cong K_{\star}^{\mathrm{MW}}(F)$-module homomorphism.

The slice spectral sequence

The first differential

$$
\pi_{p+(\star)} \mathbf{S}_{q} \mathbf{E} \rightarrow \pi_{p-1+(\star)} \mathbf{S}_{q+1} \mathbf{E}
$$

induced by the composition

$$
\mathrm{s}_{q} \mathbf{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathbf{E} \rightarrow \Sigma \mathrm{~s}_{q+1} \mathbf{E}
$$

is a $\pi_{0-(\star)} \mathbf{1}_{F} \cong K_{\star}^{\mathrm{MW}}(F)$-module homomorphism.
(The identification of $s_{0} 1$ will imply that all differentials in the slice spectral sequence are even $K_{\star}^{\text {Milnor }}(F)$-homomorphisms.)
(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence

Higher differentials
Slice completion
Vanishing results

The motivic Atiyah-Hirzebruch spectral sequence

Recall KGL $=(\mathcal{K}, \mathcal{K}, \ldots)$, so $\mathbb{P}^{1} \wedge \mathbf{K G L} \simeq K G L$ (Bott periodicity).
Theorem (Levine 2005, Voevodsky 2000)
Let F be a field. Then $\mathrm{s}_{0} \mathrm{KGL} \simeq \mathbf{H Z}$ in $\mathrm{SH}(F)$. In particular, $s_{q} K G L \simeq \Sigma^{q+(q)} \mathbf{H Z}$ for all $q \in \mathbb{Z}$ by Bott periodicity. The associated slice spectral sequence converges strongly.

The motivic Atiyah-Hirzebruch spectral sequence

Recall $\mathbf{K G L}=(\mathcal{K}, \mathcal{K}, \ldots)$, so $\mathbb{P}^{1} \wedge \mathbf{K G L} \simeq \mathbf{K G L}$ (Bott periodicity).
Theorem (Levine 2005, Voevodsky 2000)
Let F be a field. Then $\mathrm{s}_{0} \mathrm{KGL} \simeq \mathbf{H Z}$ in $\mathrm{SH}(F)$. In particular, $\mathrm{s}_{q} \mathbf{K G L} \simeq \Sigma^{q+(q)} \mathbf{H Z}$ for all $q \in \mathbb{Z}$ by Bott periodicity. The associated slice spectral sequence converges strongly.

Levine's proof uses his homotopy coniveau filtration. Note that

$$
\mathrm{f}_{q+1}\left(\mathbb{P}^{1} \wedge \mathbf{E}\right) \simeq \mathbb{P}^{1} \wedge \mathrm{f}_{q}(\mathbf{E}) \quad \text { and } \quad \mathrm{s}_{q+1}\left(\mathbb{P}^{1} \wedge \mathbf{E}\right) \simeq \mathbb{P}^{1} \wedge \mathrm{~s}_{q}(\mathbf{E}) .
$$

Slices of KGL compare well with the homotopy groups of the corresponding topological spectrum KU.

A picture of $\mathrm{s}_{*} \mathrm{KGL}$

Squares denote suspensions of $\mathbf{H Z}$.

Slices of motivic cohomology

Motivic cohomology vanishes in negative weights, thus $f_{1} H \mathbb{Z} \simeq *$. Hence if $H \mathbb{Z}$ is effective, the maps

$$
\mathbf{H} \mathbb{Z} \leftarrow \mathrm{f}_{0} \mathbf{H} \mathbb{Z} \rightarrow \mathrm{~s}_{0} \mathbf{H} \mathbb{Z}
$$

are isomorphisms. Over a field of characteristic zero, effectivity can be shown by expressing $\mathbf{H Z}$ via infinite symmetric products of spheres.

Slices of motivic cohomology

Motivic cohomology vanishes in negative weights, thus $\mathrm{f}_{1} \mathbf{H Z} \simeq *$. Hence if $H \mathbb{Z}$ is effective, the maps

$$
\mathbf{H} \mathbb{Z} \leftarrow \mathrm{f}_{0} \mathbf{H} \mathbb{Z} \rightarrow \mathrm{~s}_{0} \mathbf{H} \mathbb{Z}
$$

are isomorphisms. Over a field of characteristic zero, effectivity can be shown by expressing $\mathbf{H Z}$ via infinite symmetric products of spheres.
Theorem (Voevodsky 2003, Levine 2005)
For every field F, the motivic spectrum $\mathbf{H Z}$ coincides with its zero slice.

Slices of motivic cohomology

Motivic cohomology vanishes in negative weights, thus $f_{1} H \mathbb{Z} \simeq *$. Hence if $H \mathbb{Z}$ is effective, the maps

$$
\mathbf{H} \mathbb{Z} \leftarrow \mathrm{f}_{0} \mathbf{H} \mathbb{Z} \rightarrow \mathrm{~s}_{0} \mathbf{H} \mathbb{Z}
$$

are isomorphisms. Over a field of characteristic zero, effectivity can be shown by expressing $\mathbf{H Z}$ via infinite symmetric products of spheres.
Theorem (Voevodsky 2003, Levine 2005)
For every field F, the motivic spectrum $\mathbf{H Z}$ coincides with its zero slice.

Work of Spitzweck and Bachmann-Hoyois generalizes this to any Dedekind domain.
Slices of $\mathbf{H Z}$ compare well with the homotopy groups of the corresponding topological Eilenberg-MacLane spectrum HZ .

Algebraic bordism MGL

Let MGL be Voevodsky's motivic Thom spectrum. Its "universal" orientation induces a graded ring homomorphism:

$$
\mathbb{L}=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] \rightarrow \pi_{*+(\star)} \mathbf{M G L} \quad \operatorname{deg}\left(x_{k}\right)=k+(k)
$$

Algebraic bordism MGL

Let MGL be Voevodsky's motivic Thom spectrum. Its "universal" orientation induces a graded ring homomorphism:

$$
\mathbb{L}=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] \rightarrow \pi_{*+(\star)} \text { MGL } \quad \operatorname{deg}\left(x_{k}\right)=k+(k)
$$

Theorem (Hopkins-Morel, Hoyois 2012)
Let F be a field of characteristic zero. Then the map

$$
\Phi: \mathbf{M G L} /\left(x_{1}, x_{2}, \ldots\right) \rightarrow \mathbf{H} \mathbb{Z}
$$

induced by the canonical orientation of $\mathbf{H Z}$ is an equivalence.

Algebraic bordism MGL

Let MGL be Voevodsky's motivic Thom spectrum. Its "universal" orientation induces a graded ring homomorphism:

$$
\mathbb{L}=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right] \rightarrow \pi_{*+(\star)} \mathbf{M G L} \quad \operatorname{deg}\left(x_{k}\right)=k+(k)
$$

Theorem (Hopkins-Morel, Hoyois 2012)
Let F be a field of characteristic zero. Then the map

$$
\Phi: \mathbf{M G L} /\left(x_{1}, x_{2}, \ldots\right) \rightarrow \mathbf{H} \mathbb{Z}
$$

induced by the canonical orientation of $\mathbf{H Z}$ is an equivalence. The same is true over any field, at least after inverting the exponential characteristic e.

Sketch of proof of Theorem (Hopkins-Morel, Hoyois)

- $\Phi \wedge \mathbf{H Z}$ is an equivalence, because
- $\Phi \wedge \mathbf{H} \mathbb{Q}$ is an equivalence by motivic Landweber exactness
- $\Phi \wedge \mathbf{H Z} / \ell$ is an equivalence by motivic Steenrod algebra computation, cellularity, "motives are HZ-modules", provided $\ell \neq e$ is prime.
- MGL/ $\left(x_{1}, x_{2}, \ldots\right)$ is $\mathbf{H Z}$-local, because
- $\mathbf{M G L}_{\leq 0} \rightarrow \mathbf{H} \mathbb{Z}_{\leq 0}$ is an equivalence, the map on nontrivial homotopy sheaves being $\underline{\pi}_{0-(\star)} \mathbf{M G L} \cong \underline{K}_{\star}^{\text {Milnor }} \cong \underline{\pi}_{0-(\star)} \mathbf{H} \mathbb{Z}$
- homotopy t-structure truncations of MGL/($\left.x_{1}, x_{2}, \ldots\right)$ are $\mathbf{M G L}_{\leq 0-\text {-local by }} \mathrm{GRS} \varnothing$.

Slices of MGL

Consequences for a field of exponential characteristic e:

- $\mathbf{H} \mathbb{Z}\left[e^{-1}\right]$ is (very) effective
- $\mathrm{s}_{0} \mathbf{1}\left[e^{-1}\right]=\mathrm{s}_{0} \operatorname{MGL}\left[e^{-1}\right]=\mathbf{H} \mathbb{Z}\left[e^{-1}\right]$
- s_{q} MGL[$\left[e^{-1}\right] \cong \Sigma^{q+(q)} \mathbf{H} \mathbb{Z}\left[e^{-1}\right] \otimes \mathbb{L}_{q}$ for all q
- vf_{q} MGL $=\mathrm{f}_{q}$ MGL and vs_{q} MGL $=s_{q}$ MGL for all q

Slices of MGL compare well with the homotopy groups of the corresponding topological spectrum MU.

Slices of MGL

Consequences for a field of exponential characteristic e:

- $\mathbf{H} \mathbb{Z}\left[e^{-1}\right]$ is (very) effective
- $\mathrm{s}_{0} \mathbf{1}\left[e^{-1}\right]=\mathrm{s}_{0} \operatorname{MGL}\left[e^{-1}\right]=\mathbf{H} \mathbb{Z}\left[e^{-1}\right]$
- $\mathrm{s}_{q} \mathbf{M G L}\left[e^{-1}\right] \cong \Sigma^{q+(q)} \mathbf{H} \mathbb{Z}\left[e^{-1}\right] \otimes \mathbb{L}_{q}$ for all q
- vf_{q} MGL $=\mathrm{f}_{q}$ MGL and vs_{q} MGL $=s_{q}$ MGL for all q

Slices of MGL compare well with the homotopy groups of the corresponding topological spectrum MU.
The identification $\mathrm{s}_{0}(\mathbf{1}) \simeq \mathrm{s}_{0}(\mathbf{H} \mathbb{Z}) \simeq \mathbf{H} \mathbb{Z}$ holds over a Dedekind domain (Bachmann-Hoyois).

Slices of MGL

Consequences for a field of exponential characteristic e:

- $\mathbf{H} \mathbb{Z}\left[e^{-1}\right]$ is (very) effective
- $\mathrm{s}_{0} \mathbf{1}\left[e^{-1}\right]=\mathrm{s}_{0} \operatorname{MGL}\left[e^{-1}\right]=\mathbf{H} \mathbb{Z}\left[e^{-1}\right]$
- $\mathrm{s}_{q} \mathbf{M G L}\left[e^{-1}\right] \cong \Sigma^{q+(q)} \mathbf{H} \mathbb{Z}\left[e^{-1}\right] \otimes \mathbb{L}_{q}$ for all q
- vf_{q} MGL $=\mathrm{f}_{q}$ MGL and vs_{q} MGL $=s_{q}$ MGL for all q

Slices of MGL compare well with the homotopy groups of the corresponding topological spectrum MU.
The identification $\mathrm{s}_{0}(\mathbf{1}) \simeq \mathrm{s}_{0}(\mathbf{H} \mathbb{Z}) \simeq \mathbf{H} \mathbb{Z}$ holds over a Dedekind domain (Bachmann-Hoyois).
Convention: From now on, [e^{-1}] may be removed from the notation. Hence over a field of positive characteristic e, we may implicitly invert e.

A picture of s_{*} MGL

- Squares denote suspensions of $\mathbf{H Z}$.
- s_{q} MGL is the sum of all "dots" on the q-th horizontal line.

Slices of KGL via MGL

Let $\mathbf{k g l}:=\mathrm{vf}_{0} \mathrm{KGL}$. The canonical orientation on KGL defines a map MGL $\rightarrow \mathbf{K G L}$ which factors over $\mathbf{k g l}$. Over a field one obtains equivalences

$$
\mathbf{k g |} \simeq \mathbf{M G L} /\left(x_{2}, x_{3}, \ldots\right) \quad \text { and } \quad \mathbf{K G L} \simeq \mathbf{M G L} /\left(x_{2}, x_{3}, \ldots\right)\left[x_{1}^{-1}\right]
$$

at least after inverting its exponential characteristic e.

Slices of KGL via MGL

Let $\mathbf{k g l}:=\mathrm{vf}_{0} \mathrm{KGL}$. The canonical orientation on KGL defines a map MGL \rightarrow KGL which factors over kgI. Over a field one obtains equivalences

$$
\mathbf{k g I} \simeq \mathbf{M G L} /\left(x_{2}, x_{3}, \ldots\right) \quad \text { and } \quad \mathbf{K G L} \simeq \mathbf{M G L} /\left(x_{2}, x_{3}, \ldots\right)\left[x_{1}^{-1}\right]
$$

at least after inverting its exponential characteristic e.
Consequences:

- $\mathrm{vf}_{q} \mathrm{KGL}=\mathrm{f}_{q} \mathrm{KGL}=\Sigma^{q+(q)} \mathbf{k g I}$
- vs $_{q} \mathbf{K G L}=\mathbf{s}_{q} \mathbf{K G L}=\Sigma^{q+(q)} \mathbf{H Z}$ for all q
- holimf $\mathrm{f}_{q} \mathrm{KGL} \simeq *$ (slice convergence)

Slices of the motivic sphere spectrum 1

The MGL-Adams resolution of 1 computes its slices.
$\mathbf{1} \longrightarrow \mathbf{M G L} \rightleftarrows$ MGL $\wedge M G L \underset{\rightleftarrows}{\rightleftarrows}$ MGL $\wedge M G L \wedge M G L \ldots$

Lemma

The canonical map $\mathrm{s}_{q} \mathbf{1} \rightarrow \underset{\Delta}{\text { holim }} \mathrm{s}_{q} \mathbf{M G L}^{\wedge}{ }^{\bullet+1}$ is an equivalence.

Slices of the motivic sphere spectrum 1

Lemma

The canonical map $\mathrm{s}_{q} \mathbf{1} \rightarrow \underset{\Delta}{\text { holim }} \mathrm{s}_{q} \mathrm{MGL}^{\bullet \bullet+1}$ is an equivalence.

Proof.

Consider $\phi(\mathbf{E}, q): \mathrm{s}_{q} \mathbf{E} \rightarrow \underset{\Delta}{\text { holim }} \mathrm{s}_{q}\left(\mathbf{E} \wedge \mathbf{M G L}^{\wedge} \bullet+1\right)$, which is an equivalence if \mathbf{E} is an MGL-module. In the homotopy cofiber sequence

$$
1 \rightarrow \text { MGL } \rightarrow \overline{\text { MGL }} \rightarrow \Sigma 1
$$

$\overline{\text { MGL }}$ is 1 -effective, whence $\overline{\text { MGL }}^{\wedge m}$ is m-effective. The map $\phi\left(\overline{\mathbf{M G L}}^{\wedge m}, q\right)$ is an equivalence for $q<m$. Since s_{q} is a triangulated functor, downward induction on m applies.

Slices of the motivic sphere spectrum 1

Theorem (Voevodsky-Levine, RSØ)

$$
\mathrm{s}_{q}(\mathbf{1}) \simeq \Sigma^{q+(q)} \mathbf{H Z} \otimes \bigoplus_{p \in \mathbb{Z}} \operatorname{Ext}_{M U_{*}}^{p-q U 2 q}\left(\mathrm{MU}_{*}, \mathrm{MU}_{*}\right)
$$

This identification is compatible with the canonical multiplicative structures on each side.

Sketch of proof:

$$
\begin{aligned}
\mathrm{s}_{q} \mathbf{1} & \simeq \operatorname{holim}_{\Delta} \mathrm{s}_{q} \mathbf{M G L}^{\wedge \bullet+1} \\
& \simeq \operatorname{holim}_{\Delta} \Sigma^{q+(q)} \mathbf{H} \mathbb{Z} \otimes \pi_{2 q} \mathrm{MU}^{\wedge \bullet+1} \\
& \simeq \Sigma^{q+(q)} \mathbf{H} \mathbb{Z} \otimes \operatorname{Tot}\left(\pi_{2 q} \mathrm{MU}^{\wedge \bullet+1}\right) \\
& \simeq \Sigma^{q+(q)} \mathbf{H} \mathbb{Z} \otimes \bigoplus_{p \in \mathbb{Z}} \mathrm{Ext}_{\mathrm{MU}_{*} \mathrm{MU}}^{p-q, 2 q}\left(\mathrm{MU}_{*}, \mathrm{MU}_{*}\right)
\end{aligned}
$$

Slices of the motivic sphere spectrum 1

Theorem (Voevodsky-Levine, RSØ)

$$
\mathrm{s}_{q}(\mathbf{1}) \simeq \Sigma^{q+(q)} \mathbf{H Z} \otimes \bigoplus_{p \in \mathbb{Z}} \operatorname{Ext}_{M U_{*}}^{p-q U 2 q}\left(\mathrm{MU}_{*}, \mathrm{MU}_{*}\right)
$$

This identification is compatible with the canonical multiplicative structures on each side.

Slices of $\mathbf{1}$ do not compare well with the homotopy groups of the corresponding topological spectrum \mathbb{S}.

Slices of the motivic sphere spectrum 1

Theorem (Voevodsky-Levine, RSØ)

$$
\mathrm{s}_{q}(\mathbf{1}) \simeq \Sigma^{q+(q)} \mathbf{H} \mathbb{Z} \otimes \bigoplus_{p \in \mathbb{Z}} \operatorname{Ext}_{M U_{*}+M U}^{p-q, 2 q}\left(\mathrm{MU}_{*}, \mathrm{MU}_{*}\right)
$$

This identification is compatible with the canonical multiplicative structures on each side.

Slices of $\mathbf{1}$ do not compare well with the homotopy groups of the corresponding topological spectrum \mathbb{S}.
Since homotopy theorists (Zahler, Ravenel, ...) computed $\mathrm{Ext}_{\mathrm{MU}=\mathrm{mU}}^{s, t}\left(\mathrm{MU}_{*}, \mathrm{MU}_{*}\right)$ in a certain range, small slices $\mathrm{s}_{q}(\mathbf{1})$ are known explicitly, and some summands are known in all slices.

Zahler: The ANSS for the spheres

Table 2. Spectral sequences for a^{Ω}.

A picture of $s_{q} 1$ for $q \leq 7$

Square: $\mathbf{H Z}$, small circle: $\mathbf{H Z} / 2$

The slice spectral sequences of $\mathbf{1}$

The following abbreviations are used:

- Integral motivic cohomology: $H^{s, w}=\pi_{w-s+(-w)} \mathbf{H} \mathbb{Z}$
- If $\ell>2$ is a natural number, $h_{\ell}^{s, w}=(\mathbf{H} \mathbb{Z} / \ell)^{s, w}(F)$ denotes motivic cohomology with coefficients in \mathbb{Z} / ℓ.
- $h^{s, w}=(\mathbf{H} \mathbb{Z} / 2)^{s, w}(F)$
- $h_{2,2}^{s, w}=\left(\mathbf{H}(\mathbb{Z} / 2)^{2}\right)^{s, t}(F)$
- Recall $\tau=-1 \in h^{0,1}$ and $\rho=\overline{-1} \in h^{1,1}$

The $-n$-th slice spectral sequence for 1

Hermitian K-theory KQ

From now on, F is a field of characteristic not two. Let KQ be Hornbostel's hermitian K-theory spectrum. It is a motivic ring spectrum with the following properties:

- There is a homotopy cofiber sequence:

$$
\Sigma^{(1)} \mathbf{K Q} \xrightarrow{\eta \wedge \mathbf{K Q}} \mathbf{K Q} \xrightarrow{u} \mathbf{K G L} \xrightarrow{v} \Sigma^{1+(1)} \mathbf{K Q}
$$

- The forgetful map u is a ring map, and v factors as $\mathbf{K G L} \xrightarrow{\beta} \Sigma^{1+(1)} \mathbf{K G L} \xrightarrow{\Sigma^{1+(1) h}} \Sigma^{1+(1)} \mathbf{K Q}, h$ the hyperbolic map.

Slices of KQ

These properties and the determination of $s_{*} K G L$ imply:

Theorem (R.-Østvær 2013)

Let F be a field of $\operatorname{char}(F) \neq 2$ and $q \in \mathbb{Z}$. The q-th slice of the hermitian K-theory spectrum KQ over F is given as

$$
\Sigma^{(q)} \begin{cases}\left(\Sigma^{q} \mathbf{H} \mathbb{Z}\right) \vee \bigvee_{i<\frac{q}{2}} \Sigma^{2 i} \mathbf{H} \mathbb{Z} / 2 & q \equiv 0 \bmod 2 \\ V_{i<\frac{q+1}{2}} \Sigma^{2 i} \mathbf{H} \mathbb{Z} / 2 & q \equiv 1 \bmod 2\end{cases}
$$

Slices of KQ do not compare well with the homotopy groups of the corresponding topological spectrum KO.

A picture of $\mathrm{s}_{*} \mathrm{KQ}$

Small circles denote suspensions of $\mathbf{H} \mathbb{Z} / 2$.

(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence

Higher differentials
Slice completion
Vanishing results

The motivic Steenrod algebra

Recall that the first slice differential is (induced by) the following composition:

$$
\mathrm{s}_{q} \mathbf{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathbf{E} \rightarrow \Sigma \mathrm{~s}_{q+1} \mathbf{E}
$$

In the previous examples all slices are (sums of) motivic Eilenberg-MacLane spectra.

The motivic Steenrod algebra

Recall that the first slice differential is (induced by) the following composition:

$$
\mathrm{s}_{q} \mathbf{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathbf{E} \rightarrow \Sigma \mathrm{~s}_{q+1} \mathbf{E}
$$

In the previous examples all slices are (sums of) motivic Eilenberg-MacLane spectra.
For every prime ℓ, Voevodsky determined all endomorphisms of $\mathbf{H Z} / \ell$ in $\mathrm{SH}(F)$ over a field F with $\operatorname{char}(F)=0$. This was extended to char $(F) \neq \ell$ by Hoyois-Kelly-Østvær, and to Dedekind rings having ℓ as a unit by Spitzweck.

The motivic Steenrod algebra

Recall that the first slice differential is (induced by) the following composition:

$$
\mathrm{s}_{q} \mathbf{E} \rightarrow \Sigma \mathrm{f}_{q+1} \mathbf{E} \rightarrow \Sigma \mathrm{~s}_{q+1} \mathbf{E}
$$

In the previous examples all slices are (sums of) motivic
Eilenberg-MacLane spectra.
For every prime ℓ, Voevodsky determined all endomorphisms of $\mathbf{H Z} / \ell$ in $\mathrm{SH}(F)$ over a field F with $\operatorname{char}(F)=0$. This was extended to char $(F) \neq \ell$ by Hoyois-Kelly-Østvær, and to Dedekind rings having ℓ as a unit by Spitzweck.
The following arguments require endomorphisms of weight ≤ 2.

The first differential for KGL/2

$$
\begin{aligned}
& \mathrm{s}_{q} \mathrm{KGL} / 2 \longrightarrow \mathrm{~d}_{q+1} \mathrm{KGL} / 2
\end{aligned}
$$

- Bott periodicity for KGL
- Voevodsky's motivic Steenrod algebra
- Motivic Adem relations
- Slice convergence for KGL
- Suslin's computation of $\pi_{s+(w)} \mathrm{KGL} / 2$ over \mathbb{R}
- Base change from $\operatorname{Spec}\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)$

The first differential for KQ

$\mathbf{1} \rightarrow \mathrm{KQ} \xrightarrow{\text { forget }} \mathrm{KGL}$ is a ring map and s_{0} preserves ring maps.

Hence $d_{0}^{1}(\mathbf{K Q})$ restricted to $\mathbf{H Z}$ is Sq^{2} opr.

The first differential for KQ

The first differential for KQ

The first differential for KQ

The first differential for KQ

$\tau \quad \tau \mathrm{pr} \quad \mathrm{Sq}^{2}+\rho \mathrm{Sq}^{1} \quad \mathrm{Sq}^{2} \mathrm{pr} \quad \mathrm{Sq}^{2} \quad \partial \mathrm{Sq}^{2} \mathrm{Sq}^{1} \quad \mathrm{Sq}^{3} \mathrm{Sq}^{1}$

Restriction to very effective covers

Since $\mathbf{1}$ is very effective, the unit map $\mathbf{1} \rightarrow K \mathbf{Q}$ factors over $\mathbf{k q}:=\mathrm{vf}_{0} K \mathbf{Q}$. Taking very effective covers produces a homotopy cofiber sequence

$$
\Sigma^{(1)} \mathbf{k q} \xrightarrow{\eta \wedge \mathbf{k q}} \mathbf{k q} \xrightarrow{u} \mathbf{k g l} \xrightarrow{v} \Sigma^{1+(1)} \mathbf{k q}
$$

where $\mathbf{k g l}=\mathrm{vf}_{0} K G L \simeq \mathrm{f}_{0} K G L$.

The first differential for kq

$\mathrm{Sq}^{3} \mathrm{Sq}^{1}$

$\partial \mathrm{Sq}^{2} \mathrm{Sq}^{1}$
$S q^{2}$ opr
$\mathrm{Sq}^{2}+\rho \mathrm{Sq}^{1}$
$S q^{2}$
$\tau \circ \mathrm{pr}$
τ

Simplicial
degree

The unit map $\mathbf{1} \rightarrow \mathbf{k q}$ on slices

Lemma

Let $q \geq 1$. The map $s_{2 q-1} \mathbf{1} \rightarrow s_{2 q-1} \mathbf{k q}$ is the inclusion on the summand $\Sigma^{2 q-2+(2 q-1)} \mathbf{H Z} / 2$ corresponding to

The map $\mathrm{s}_{2 q} \mathbf{1} \rightarrow \mathrm{~s}_{2 q} \mathrm{KQ}$ sends the summand $\Sigma^{2 q-1+(2 q)} \mathbf{H Z} / a_{2 q}$ corresponding to $\alpha_{2 q} \in \operatorname{Ext}_{\mathrm{MU}_{*} \mathrm{MU}^{1,4 q}}\left(\mathrm{MU}_{*}, \mathrm{MU}_{*}\right)$ to the summand $\Sigma^{2 q+(2 q)} \mathbf{H Z}$ in such a way that the composition

$$
\Sigma^{2 q-1+(2 q)} \mathbf{H} \mathbb{Z} / a_{2 q} \rightarrow \Sigma^{2 q+(2 q)} \mathbf{H} \mathbb{Z} \xrightarrow{\mathrm{pr}} \Sigma^{2 q+(2 q)} \mathbf{H} \mathbb{Z} / 2
$$

coincides with the unique nontrivial element.

The first differential for $\mathbf{1}$ by comparison with $\mathbf{k q} \ldots$

... and multiplicative properties ...

... and Adem relations ...

... and topology (which detects τ).

The E^{2}-page for 1

5	$\left\lvert\, \begin{gathered} h^{n+5, n+5} \\ \bullet \end{gathered}\right.$		
4	$h^{n+4, n+4}$		- $h^{n+4, n+4}$
3	$\begin{gathered} h^{n+3, n+3} \\ \bullet \end{gathered}$	$h^{n+2, n+3} / \tau \partial h_{12}^{n+1, n+2}$	$h^{n+1, n+3} / \mathrm{Sq}^{2} h^{n-1, n+2}$
2	$h^{n+2, n+2}$	$\begin{array}{r} h_{12}^{n+2, n+2} \\ h^{n+1, n+2} / \mathrm{Sq}^{2} h^{n-1, n+1} \\ \bullet \end{array}$	$\begin{aligned} & \operatorname{ker}\left(h_{12}^{n+1, n+2} \xrightarrow{\xrightarrow{\rightarrow}} h^{n+2, n+2}\right) \\ & h^{n, n+2} / \mathrm{Sq}^{2} h^{n-2, n+1} \end{aligned}$
1	$h^{n+1, n+1}$	$h^{n, n+1} / \mathrm{Sq}^{2} \mathrm{pr}^{n-2, n}$	$\operatorname{ker}\left(h^{n-1, n+1} \xrightarrow{\mathrm{Sq}^{2}} h^{n+1, n+2}\right)$
0	$\begin{gathered} H_{\square}^{n, n} \\ \square \end{gathered}$	$\begin{gathered} H^{n-1, n} \\ \square \end{gathered}$	$\operatorname{ker}\left(H^{n-2, n} \xrightarrow{\mathrm{Sq}^{2} \mathrm{pr}} h^{n, n+1}\right)$
$\begin{array}{lll}\pi_{0-(n)} \mathbf{1} & \pi_{1-(n)} \mathbf{1} & \pi_{2-(n)} \mathbf{1}\end{array}$			

(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices Recollection from Lecture 1 Identifications of slices The first slice differential
(3) Lecture 3: Abutment and convergence Higher differentials
Slice completion
Vanishing results

Milnor conjecture on Galois cohomology (Voevodsky)

Multiplication with

$$
\tau \cdot-: h^{s, w} \rightarrow h^{s, w+1}
$$

is an isomorphism for all $0 \leq s \leq w$, whence every $a \in h^{s, w}$ is of the form $a=\tau^{w-s} b$ with $b \in h^{s, s} \cong K_{s}^{\text {Milnor }} / 2$.

Milnor conjecture on Galois cohomology (Voevodsky)

Multiplication with

$$
\tau \cdot-: h^{s, w} \rightarrow h^{s, w+1}
$$

is an isomorphism for all $0 \leq s \leq w$, whence every $a \in h^{s, w}$ is of the form $a=\tau^{w-s} b$ with $b \in h^{s, s} \cong K_{s}^{\text {Milnor }} / 2$. Since

$$
\mathrm{Sq}^{1}(\tau)=\rho, \mathrm{Sq}^{2}(\tau)=0, \mathrm{Sq}^{2}\left(\tau^{2}\right)=\tau \rho^{2}
$$

one obtains

$$
\begin{aligned}
&\left(\mathrm{Sq}^{1}: h^{s, w} \rightarrow h^{s+1, w}\right) \cong \begin{cases}0 & w-s \text { even } \\
\rho \cdot- & w-s \text { odd }\end{cases} \\
&\left(\mathrm{Sq}^{2}: h^{s, w} \rightarrow h^{s+2, w+1}\right) \cong \begin{cases}0 & w-s \equiv 0,1(4) \\
\rho^{2} \cdot- & w-s \equiv 2,3(4)\end{cases}
\end{aligned}
$$

Higher differentials for 1

Lemma

Let F be a field of characteristic different from two. Consider the slice spectral sequence of $\mathbf{1}_{F}$.
(1) All differentials ending in the column for $\pi_{0+(\star)} \mathbf{1}_{F}$ are zero.
(2) All differentials of degree ≥ 2 ending in the column for $\pi_{1+(\star)} \mathbf{1}_{F}$ are zero.

Higher differentials for $\mathbf{1}$

Lemma

Let F be a field of characteristic different from two. Consider the slice spectral sequence of $\mathbf{1}_{F}$.
(1) All differentials ending in the column for $\pi_{0+(\star)} \mathbf{1}_{F}$ are zero.
(2) All differentials of degree ≥ 2 ending in the column for $\pi_{1+(\star)} \mathbf{1}_{F}$ are zero.

Proof ingredients: The first statement follows by comparison with $\mathbf{k q}$. The second statement: A theorem of
Orlov-Vishik-Voevodsky shows that one may reduce from F to fields of small cohomological dimension, or $F=\mathbb{R}$. For the latter one uses real realization. Triviality of one d^{2} follows from the multiplicative structure. For differentials originating in s_{0} one compares with appropriate motivic Moore spectra, like $1 / 12+6 \eta[-1]$.

The E^{∞}-page for $\mathbf{1}$

(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence Higher differentials

Slice completion

Vanishing results

What has been computed?

What is the target of the slice spectral sequence?

What has been computed?

What is the target of the slice spectral sequence?
Let g_{q} be defined by the natural homotopy cofiber sequence:

$$
\mathrm{f}_{q}(\mathbf{E}) \rightarrow \mathbf{E} \rightarrow \mathrm{g}_{q}(\mathbf{E}) \rightarrow \Sigma \mathrm{f}_{q}(\mathbf{E})
$$

The natural map $f_{q+1} \rightarrow f_{q}$ induces a natural map $g_{q+1} \rightarrow g_{q}$ whose homotopy fiber is s_{q}.

What has been computed?

What is the target of the slice spectral sequence?
Let g_{q} be defined by the natural homotopy cofiber sequence:

$$
\mathrm{f}_{q}(\mathbf{E}) \rightarrow \mathbf{E} \rightarrow \mathrm{g}_{q}(\mathbf{E}) \rightarrow \Sigma \mathrm{f}_{q}(\mathbf{E})
$$

The natural map $f_{q+1} \rightarrow f_{q}$ induces a natural map $g_{q+1} \rightarrow g_{q}$ whose homotopy fiber is s_{q}. Let

$$
\operatorname{sc}(\mathbf{E}):=\underset{q}{\operatorname{holim}_{q}} \mathrm{~g}_{q}(\mathbf{E})
$$

denote the slice completion of \mathbf{E}. Then

$$
\underset{q}{\operatorname{holim}_{q}}(\mathbf{E}) \rightarrow \mathbf{E} \rightarrow \operatorname{sc}(\mathbf{E}) \rightarrow \Sigma \operatorname{holim}_{q} f_{q}(\mathbf{E})
$$

is a homotopy cofiber sequence. The slice spectral sequence for \mathbf{E} converges conditionally to $\operatorname{sc}(\mathbf{E})$.

Slice completion

\mathbf{E} is slice complete if $\mathbf{E} \rightarrow \operatorname{sc}(\mathbf{E})$ is an equivalence. Since

$$
\underset{q}{\operatorname{holim}_{q}} \mathrm{f}_{q}(\mathbf{E}) \rightarrow \mathbf{E} \rightarrow \operatorname{sc}(\mathbf{E}) \rightarrow \Sigma \operatorname{holim}_{q}(\mathbf{E})
$$

is a homotopy cofiber sequence, \mathbf{E} is slice complete if and only if holimf $\mathrm{f}_{q} \mathbf{E} \simeq *$.

Slice completion

E is slice complete if $E \rightarrow \operatorname{sc}(E)$ is an equivalence. Since
is a homotopy cofiber sequence, \mathbf{E} is slice complete if and only if $\operatorname{holim}_{q} \mathrm{f}_{q} \mathbf{E} \simeq *$.

- KGL and MGL are slice complete.
- $\operatorname{sc}\left(\mathbf{H Z} / 2\left[\tau^{-1}\right]\right) \simeq *$, whence $\mathbf{H Z} / 2\left[\tau^{-1}\right]$ is not slice complete.
- The motivic spectrum $\mathbf{K Q}\left[\eta^{-1}\right]$ represents Balmer's higher Witt groups. Every slice of $\mathbf{K Q}\left[\eta^{-1}\right]$ is a sum of suspensions of $\mathbf{H Z} / 2$. Hence all slices of $\mathbf{K Q}\left[\eta^{-1}\right] / 3$, and also $\operatorname{sc}\left(\mathbf{K Q}\left[\eta^{-1}\right] / 3\right)$, are contractible. But $\mathbf{K} \mathbf{Q}\left[\eta^{-1}\right] / 3$ is not contractible for $F \subset \mathbb{R}$.

Levine's convergence theorem

Recall $\mathbf{E} \in \mathrm{SH}(S)$ is compact if $[\mathbf{E},-]$ commutes with direct sums.

Theorem (Levine 2011)
Let F be a field of finite cohomological dimension. Then every compact motivic spectrum in $\mathrm{SH}(F)$ is slice complete, after inverting the exponential characteristic of F.

This is a very strong theorem, but we would like to have a convergence result which applies to all fields.

Slice completion and η-completion

Since η is trivial on $\mathrm{s}_{0} \mathbf{1}=\mathbf{H} \mathbb{Z}$, it is trivial on every slice. It follows that $\operatorname{sc}(\mathbf{E})$ is η-complete for every motivic spectrum \mathbf{E} satisfying $f_{e}(E)=E$ for some integer e. This implies the easy part of the following:

Theorem (R.-Spitzweck-Østvær 2016)

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field.
Then there is a natural equivalence:

$$
\operatorname{sc}(\mathbf{E}) \simeq \mathbf{E}_{\eta}^{\wedge}
$$

Slice completion and η-completion

Since η is trivial on $\mathrm{s}_{0} \mathbf{1}=\mathbf{H} \mathbb{Z}$, it is trivial on every slice. It follows that $\operatorname{sc}(\mathbf{E})$ is η-complete for every motivic spectrum \mathbf{E} satisfying $f_{e}(\mathbf{E})=\mathbf{E}$ for some integer e. This implies the easy part of the following:

Theorem (R.-Spitzweck-Østvær 2016)

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field.
Then there is a natural equivalence:

$$
\operatorname{sc}(\mathbf{E}) \simeq \mathbf{E}_{\eta}^{\wedge}
$$

Hence the slice spectral sequence for 1 computes $\mathbf{1}_{\eta}^{\wedge}$.

Cellular motivic spectra

Attaching a cell to a motivic spectrum E refers to taking the homotopy cofiber of some map

$$
\Sigma^{s+(w)} \mathbf{1} \rightarrow \mathbf{E}
$$

in $\mathrm{SH}(F)$. The homotopy cofiber \mathbf{D} consists of \mathbf{E} and a cell of dimension $s+1+(w)$ and weight w. A motivic spectrum \mathbf{E} is cellular if it is the homotopy colimit of a sequence

$$
*=\mathbf{E}_{-1} \rightarrow \mathbf{E}_{0} \rightarrow \mathbf{E}_{1} \rightarrow \cdots \rightarrow \mathbf{E}_{n} \rightarrow \cdots
$$

in which \mathbf{E}_{n} is obtained by attaching cells to \mathbf{E}_{n-1} for every n.

Cellular motivic spectra

Attaching a cell to a motivic spectrum E refers to taking the homotopy cofiber of some map

$$
\Sigma^{s+(w)} \mathbf{1} \rightarrow \mathbf{E}
$$

in $\operatorname{SH}(F)$. The homotopy cofiber \mathbf{D} consists of \mathbf{E} and a cell of dimension $s+1+(w)$ and weight w. A motivic spectrum E is cellular if it is the homotopy colimit of a sequence

$$
*=\mathbf{E}_{-1} \rightarrow \mathbf{E}_{0} \rightarrow \mathbf{E}_{1} \rightarrow \cdots \rightarrow \mathbf{E}_{n} \rightarrow \cdots
$$

in which \mathbf{E}_{n} is obtained by attaching cells to \mathbf{E}_{n-1} for every n. A cellular motivic spectrum \mathbf{E} is of finite type if

- there exists an integer k such that \mathbf{E} contains no cells in dimension $s+(w)$ with $s<k$, and
- for every integer n, \mathbf{E} contains at most finitely many cells of dimension $n+(w)$.

Cellular of finite type

- 1 is cellular of finite type.
- \mathbb{P}^{∞} is not compact, but cellular of finite type.
- MGL is cellular of finite type.
- Theorem (Hopkins-Morel, Hoyois) implies that $\mathbf{H Z}$ is cellular of finite type over a field of characteristic zero. If ℓ is a prime different from $\operatorname{char}(F)$, then $\mathbf{H Z} / \ell$ is cellular of finite type.
- $\mathbf{1}\left[\eta^{-1}\right]$ is cellular, but not of finite type.
- KGL and KQ are cellular, but not of finite type.
- If X is an elliptic curve, X is not cellular.

Finiteness conditions on slices

The basic problem in proving the convergence theorem is that f_{q}, and hence g_{p}, does not necessarily commute with homotopy limits (although it commutes with homotopy colimits by a result of Spitzweck).

Definition

A motivic spectrum \mathbf{E} is called slice-finitary if for every $n \in \mathbb{Z}$ there exist natural numbers $a_{n} \leq b_{n}$ and a finite collection $\left\{C_{n, 0}, C_{n, 1}, \ldots, C_{n, b_{n}}\right.$) of finitely generated abelian groups with the following properties:
(1) The n-th slice $\mathrm{s}_{n} \mathrm{E}$ is weakly equivalent to the sum $\Sigma^{a_{n}+(n)} \mathbf{H} C_{n, 0} \vee \Sigma^{a_{n}+1+(n)} \mathbf{H} C_{n, 1} \vee \cdots \vee \Sigma^{b_{n}+(n)} \mathbf{H} C_{n, b_{n}}$.
(2) The sequence $\left(a_{n}\right)$ is non-decreasing and diverges to $+\infty$.
(3) There exists an integer e such that $\mathrm{f}_{e} \mathbf{E}=\mathbf{E}$.

Slice-finitary motivic spectra

Example

- MGL is slice-finitary, with $a_{n}=n$. (Also $b_{n}-n$.)
- 1 is not slice-finitary. $\left(a_{n}=0, b_{n}=n-1\right.$ for $n>0$.)
- The Moore spectrum $1 / p$ is slice-finitary for p odd.
- $1\left[\frac{1}{2}\right]$ is not slice-finitary.
- $f_{1} \mathbf{1}\left[\frac{1}{2}\right]$ is slice-finitary.

The reason in the third and fifth case is that at the prime p,

$$
\mathrm{Ext}_{\mathrm{BP}_{*} \mathrm{BP}}^{s, t}\left(\mathrm{BP}_{*}, \mathrm{BP}_{*}\right) \cong 0 \text { for } 2 s(p-1)>t
$$

Slice completion for slice-finitary motivic spectra

Lemma

Let \mathbf{E} be a slice-finitary motivic spectrum over a field which is cellular of finite type. Then $\operatorname{sc}(\mathbf{E})$ and holim $_{q} \mathrm{f}_{q}(\mathbf{E})$ are cellular of finite type, respectively. The slices of holim $q_{q}(\mathbf{E})$ are trivial.

Problem: $\mathbf{1}$ is not slice-finitary. However, the following holds:
Lemma
The motivic spectrum $1 / \eta$ is slice-finitary.

The topological Adams-Novikov spectral sequence

In his 1972 Annals paper, Zahler stated: "We hope to prove that $h^{n-1} \alpha_{k+1}$ generates $\operatorname{Ext}_{\mathrm{BP}_{*} \mathrm{BP}}^{n, 2(n+k)}\left(\mathrm{BP}_{*}, \mathrm{BP}_{*}\right) \cong \mathbb{Z} / 2$ for all $k(n$ sufficiently large) ..." Zahler had already accomplished this for $k \leq 6$.

The topological Adams-Novikov spectral sequence

In his 1972 Annals paper, Zahler stated: "We hope to prove that $h^{n-1} \alpha_{k+1}$ generates $\operatorname{Ext}_{\mathrm{BP} * \mathrm{BP}}^{n, 2(n+k)}\left(\mathrm{BP}_{*}, \mathrm{BP}_{*}\right) \cong \mathbb{Z} / 2$ for all $k(n$ sufficiently large) ..." Zahler had already accomplished this for $k \leq 6$. Here $h=\alpha_{1}$.

Theorem (Andrews-Miller 2014)
Let $k \geq$ 2. Then $\operatorname{Ext}_{B_{*}, \mathrm{BP}}^{n, 2(n+k)}\left(\mathrm{BP}_{*}, \mathrm{BP}_{*}\right)=\left\{0, \alpha_{1}^{n-1} \alpha_{k+1}\right\}$ for n sufficiently large.

This theorem implies that $1 / \eta$ is slice-finitary. The remaining ingredient is a connectivity statement:

Lemma

The canonical map $\mathbf{1} / \eta \rightarrow \mathrm{sc}(\mathbf{1} / \eta)$ is 1 -connective.

Slice completion and η-completion

Lemma

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field. The canonical map

$$
\mathbf{E} / \eta \rightarrow \mathrm{sc}(\mathbf{E} / \eta)
$$

is an equivalence.

Proof.

Slice completion and η-completion

Lemma

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field. The canonical map

$$
\mathbf{E} / \eta \rightarrow \mathrm{sc}(\mathbf{E} / \eta)
$$

is an equivalence.

Proof.

Slice completion and η-completion

Lemma

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field. The canonical map

$$
\mathbf{E} / \eta \rightarrow \mathrm{sc}(\mathbf{E} / \eta)
$$

is an equivalence.

Proof.

Slice completion and η-completion

Lemma

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field. The canonical map

$$
\mathbf{E} / \eta \rightarrow \operatorname{sc}(\mathbf{E} / \eta)
$$

is an equivalence.

Proof.

$$
\begin{aligned}
& \text { holim }_{q} \mathrm{f}_{q}(\mathbf{E} / \eta) \longrightarrow \mathbf{E} / \eta \xrightarrow{\text { conn }(\mathbf{E})+1} \operatorname{sc}(\mathbf{E} / \eta) \\
& \downarrow \mid \operatorname{conn}(\mathbf{E})+1 \quad \simeq \\
& * \simeq \operatorname{sc}\left(\operatorname{holim}_{q} \mathrm{f}_{q}(\mathbf{E} / \eta)\right) \longrightarrow \mathrm{sc}(\mathbf{E} / \eta) \xrightarrow{\simeq} \mathrm{sc}(\mathrm{sc}(\mathbf{E} / \eta))
\end{aligned}
$$

Slice completion and η-completion

Lemma

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field. The canonical map

$$
\mathbf{E} / \eta \rightarrow \operatorname{sc}(\mathbf{E} / \eta)
$$

is an equivalence.
Proof.

$$
\begin{aligned}
& \operatorname{holim}_{q} \mathrm{f}_{q}(\mathbf{E} / \eta) \longrightarrow \mathbf{E} / \eta \xrightarrow{\operatorname{conn}(\mathbf{E})+1} \operatorname{sc}(\mathbf{E} / \eta) \mid \\
& * \underset{\operatorname{conn}(\mathbf{E})+1}{\mid} \operatorname{sc}\left(\operatorname{holim}_{q} \mathrm{f}_{q}(\mathbf{E} / \eta)\right) \longrightarrow \\
& \mathrm{cos}(\mathbf{E} / \eta) \xrightarrow{\simeq} \operatorname{sc}(\operatorname{sc}(\mathbf{E} / \eta))
\end{aligned}
$$

Slice completion and η-completion

Lemma

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field. The canonical map

$$
\mathbf{E} / \eta \rightarrow \operatorname{sc}(\mathbf{E} / \eta)
$$

is an equivalence.
Proof.

$$
\begin{aligned}
& \text { holim }_{q} \mathrm{f}_{q}(\mathbf{E} / \eta) \longrightarrow \mathbf{E} / \eta \xrightarrow{\text { conn }(\mathbf{E})+2} \mathrm{sc}(\mathbf{E} / \eta) \\
& \operatorname{conn}(\mathbf{E})+3 \downarrow \downarrow \operatorname{conn}(\mathbf{E})+2 \quad \simeq \\
& * \simeq \operatorname{sc}\left(\operatorname{holim}_{q} \mathrm{f}_{q}(\mathbf{E} / \eta)\right) \longrightarrow \operatorname{sc}(\mathbf{E} / \eta) \xrightarrow{\simeq} \operatorname{sc}(\operatorname{sc}(\mathbf{E} / \eta))
\end{aligned}
$$

Slice completion and η-completion

Lemma

Let \mathbf{E} be a cellular motivic spectrum of finite type over a field. The canonical map

$$
\mathbf{E} / \eta \rightarrow \operatorname{sc}(\mathbf{E} / \eta)
$$

is an equivalence.
Proof.

$$
\begin{aligned}
& \operatorname{holim}_{q} \mathrm{f}_{q}(\mathbf{E} / \eta) \longrightarrow \mathbf{E} / \eta \xrightarrow{\operatorname{conn}(\mathbf{E})+4 \mid} \mid \underset{\downarrow}{\operatorname{conn}(\mathbf{E})+3} \operatorname{sc}(\mathbf{E} / \eta) \\
& * \simeq \operatorname{sc}\left(\operatorname{holim}_{q} \mathrm{f}_{q}(\mathbf{E} / \eta)\right) \longrightarrow \\
& \mathrm{cos}(\mathbf{E} / \eta) \xrightarrow{\simeq} \operatorname{sc}(\operatorname{sc}(\mathbf{E} / \eta))
\end{aligned}
$$

The slice convergence theorem

By induction, $\mathbf{E} / \eta^{k} \rightarrow \mathrm{sc}\left(\mathbf{E} / \eta^{k}\right)$ is an equivalence for \mathbf{E} cellular of finite type and $k \in \mathbb{N}$.

The slice convergence theorem

By induction, $\mathbf{E} / \eta^{k} \rightarrow \mathrm{sc}\left(\mathbf{E} / \eta^{k}\right)$ is an equivalence for \mathbf{E} cellular of finite type and $k \in \mathbb{N}$. Since $\mathbf{E}_{\eta}^{\wedge}$ is the homotopy limit of

$$
\cdots \rightarrow \mathbf{E} / \eta^{k} \rightarrow \cdots \rightarrow \mathbf{E} / \eta^{2} \rightarrow \mathbf{E} / \eta
$$

the induced map $\mathbf{E}_{\eta}^{\wedge} \rightarrow(\operatorname{sc}(\mathbf{E}))_{\eta}^{\wedge}$ is an equivalence.

The slice convergence theorem

By induction, $\mathbf{E} / \eta^{k} \rightarrow \operatorname{sc}\left(\mathbf{E} / \eta^{k}\right)$ is an equivalence for \mathbf{E} cellular of finite type and $k \in \mathbb{N}$. Since $\mathbf{E}_{\eta}^{\wedge}$ is the homotopy limit of

$$
\cdots \rightarrow \mathbf{E} / \eta^{k} \rightarrow \cdots \rightarrow \mathbf{E} / \eta^{2} \rightarrow \mathbf{E} / \eta
$$

the induced $\operatorname{map} \mathbf{E}_{\eta}^{\wedge} \rightarrow(\operatorname{sc}(\mathbf{E}))_{\eta}^{\wedge}$ is an equivalence. As mentioned already,

$$
\operatorname{sc}(\mathbf{E}) \xrightarrow{\simeq}(\operatorname{sc}(\mathbf{E}))_{\eta}^{\wedge}
$$

which completes the proof. In particular, the slice spectral sequence for $\mathbf{1}$ determines $\mathbf{1}_{\eta}^{\wedge}$.
(1) Lecture 1: The setup

Motivation and introduction
\mathbb{P}^{1}-stable \mathbb{A}^{1}-homotopy theory
Stable homotopy groups of spheres
Filtrations on $\mathrm{SH}(S)$
(2) Lecture 2: Some slices

Recollection from Lecture 1
Identifications of slices
The first slice differential
(3) Lecture 3: Abutment and convergence Higher differentials
Slice completion
Vanishing results

An arithmetic square

Consider the homotopy pullback square

and the induced long exact sequence of homotopy groups. The slice spectral sequence allows to conclude that $\pi_{1+(w)} \mathbf{1}_{\eta}^{\wedge} \cong 0$ for $w \geq 3$, and that $\pi_{2+(w)} \mathbf{1}_{\eta}^{\wedge} \cong 0$ for $w \geq 5$. Hence

$$
\pi_{1+(w)} \mathbf{1}_{\eta}^{\wedge}\left[\eta^{-1}\right]=\pi_{2+(w)} \mathbf{1}_{\eta}^{\wedge}\left[\eta^{-1}\right]=0
$$

for all w.

Another vanishing result

Theorem (R. 2016)

For all $w, \pi_{1+(w)} \mathbf{1}\left[\eta^{-1}\right]=\pi_{2+(w)} \mathbf{1}\left[\eta^{-1}\right]=\mathbf{0}$.
Guillou-Isaksen: $\pi_{3+(w)} \mathbf{1}\left[\eta^{-1}\right]$ is never zero.
Nevertheless, the map $\pi_{3+(w)} \mathbf{1}^{\wedge}\left[\eta^{-1}\right] \rightarrow \pi_{2+(w)} \mathbf{1}$ is zero. Hence for all w :

$$
\pi_{1+(w)} \mathbf{1}=\pi_{1+(w)} \mathbf{1}_{\eta}^{\wedge} \quad \pi_{2+(w)} \mathbf{1}=\pi_{2+(w)} \mathbf{1}_{\eta}^{\wedge}
$$

The 0 -line for 1

The behaviour of the unit $\mathbf{1} \rightarrow \mathbf{k q}$ on slices shows that

$$
\pi_{0+(\star)} \mathbf{1}_{\eta}^{\wedge} \rightarrow \pi_{0+(\star)} \mathbf{k} \mathbf{q}_{\eta}^{\wedge}
$$

is an isomorphism.

The 0 -line for 1

The behaviour of the unit $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{k q}$ on slices shows that

$$
\pi_{0+(\star)} \mathbf{1}_{\eta}^{\wedge} \rightarrow \pi_{0+(\star)} \mathbf{k} \mathbf{q}_{\eta}^{\wedge}
$$

is an isomorphism. By comparison with KQ, induction, and Milnor's conjecture on quadratic forms, the composition

$$
K_{\star}^{\mathrm{MW}} \rightarrow \pi_{0-(\star)} \mathbf{1} \rightarrow \pi_{0-(\star)} \mathbf{k q}
$$

is an isomorphism.

The 0 -line for 1

The behaviour of the unit $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{k q}$ on slices shows that

$$
\pi_{0+(\star)} \mathbf{1}_{\eta}^{\wedge} \rightarrow \pi_{0+(\star)} \mathbf{k} \mathbf{q}_{\eta}^{\wedge}
$$

is an isomorphism. By comparison with KQ, induction, and Milnor's conjecture on quadratic forms, the composition

$$
K_{\star}^{\mathrm{MW}} \rightarrow \pi_{0-(\star)} \mathbf{1} \rightarrow \pi_{0-(\star)} \mathbf{k q}
$$

is an isomorphism. Injectivity of the map

$$
\pi_{0-(\star)} \mathbf{1} \rightarrow \pi_{0-(\star)} \mathbf{k q} \cong K_{\star}^{\mathrm{MW}}
$$

is equivalent to the η-filtration on $\pi_{0-(\star)} \mathbf{1}$ being Hausdorff.

The E^{∞}-page for $\mathbf{1}$

The 1 -line for 1

The behaviour of the unit $\mathbf{1} \rightarrow \mathbf{k q}$ on slices shows that

$$
\pi_{1-(\star)} \mathbf{1} \cong \pi_{1-(\star)} \mathbf{1}_{\eta}^{\wedge} \rightarrow \pi_{1-(\star)} \mathbf{k} \mathbf{q}_{\eta}^{\wedge} \cong \pi_{1-(\star)} \mathbf{k q}
$$

is surjective.

The 1-line for 1

The behaviour of the unit $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{k q}$ on slices shows that

$$
\pi_{1-(\star)} \mathbf{1} \cong \pi_{1-(\star)} \mathbf{1}_{\eta}^{\wedge} \rightarrow \pi_{1-(\star)} \mathbf{k} \mathbf{q}_{\eta}^{\wedge} \cong \pi_{1-(\star)} \mathbf{k} \mathbf{q}
$$

is surjective. Its kernel is an extension of the K_{\star}^{MW}-modules

$$
h^{\star+2, \star+3} / \tau \partial h_{12}^{\star+1, \star+2} \cong h^{\star+2, \star+2} / \partial h_{12}^{\star+1, \star+2}
$$

and

$$
h_{12}^{\star+2, \star+2} \cong K_{2+\star}^{\mathrm{MW}} /(\eta, 12)
$$

One can check that the kernel is even a $K_{\star}^{\text {Milnor }}$-module. The resulting Ext group is $\mathbb{Z} / 2$ over any field of characteristic not 2. Topological realization (or alternatively the multiplicative structure) implies that the extension is the unique nontrivial one.

The 1 -line for 1

Theorem (R.-Spitzweck-Østvær 2016)
Let F be a field of exponential characteristic $e \neq 2$ and $w \in \mathbb{Z}$. The unit map $\mathbf{1} \rightarrow \mathbf{k q}$ induces a surjection $\pi_{1+(w)} \mathbf{1} \rightarrow \pi_{1+(w)} \mathbf{k q}$. After inverting e, its kernel is given as follows:

$$
0 \rightarrow K_{2-w}^{\text {Milnor }} / 24 \rightarrow \pi_{1+(w)} \mathbf{1} \rightarrow \pi_{1+(w)} \mathbf{k q} \rightarrow 0
$$

The 1 -line for 1

Theorem (R.-Spitzweck-Østvær 2016)

Let F be a field of exponential characteristic $e \neq 2$ and $w \in \mathbb{Z}$. The unit map $\mathbf{1} \rightarrow \mathbf{k q}$ induces a surjection $\pi_{1+(w)} \mathbf{1} \rightarrow \pi_{1+(w)} \mathbf{k q}$. After inverting e, its kernel is given as follows:

$$
0 \rightarrow K_{2-w}^{\text {Milnor }} / 24 \rightarrow \pi_{1+(w)} \mathbf{1} \rightarrow \pi_{1+(w)} \mathbf{k q} \rightarrow 0
$$

Let $\nu \in \pi_{1+(2)} \mathbf{1}$ denote the map $S^{3+(4)} \rightarrow S^{2+(2)}$ obtained via the Hopf construction on $\mathrm{SL}_{2} \simeq \mathbb{A}^{2} \backslash\{0\} \simeq S^{1+(2)}$. Let
$\eta_{\text {top }} \in \pi_{1+(0)} \mathbf{1}$ denote the topological first Hopf map.

- ν generates $\pi_{1+(2)} \mathbf{1}=\mathbb{Z} / 24(w=2)$ and $K_{2-*}^{\text {Milnor }} / 24$.
- $12 \nu=\eta^{2} \eta_{\text {top }}$.
- $\eta_{\text {top }}$ and ν do not generate $\pi_{1+(\star)} 1$ in general: $\pi_{1-(2)} \mathbf{1}_{\mathbb{Q}[\sqrt{-1}]}$ contains \mathbb{Z}, coming from $H^{1,2}$.

Finitely presented K_{\star}^{MW}-modules

One can check that the K_{\star}^{MW}-module homomorphism

$$
K_{2+\star}^{\mathrm{MW}} \oplus K_{\star}^{\mathrm{MW}} \rightarrow \pi_{1-(\star)} \mathrm{f}_{1} \mathbf{1}
$$

sending (a, b) to $a \cdot \nu+b \cdot \eta_{\text {top }}$ induces an isomorphism

$$
K_{2+\star}^{\mathrm{MW}}\{\nu\} \oplus K_{\star}^{\mathrm{MW}}\left\{\eta_{\text {top }}\right\} /\left(\eta \nu, 2 \eta_{\text {top }}, \eta^{2} \eta_{\text {top }}-12 \nu\right) \cong \pi_{1-(\star)} \mathrm{f}_{1} \mathbf{1}
$$

after inverting the exponential characteristic. The proof involves that $\pi_{1-(\star)} \mathrm{f}_{1} \mathbf{k q} \cong K_{\star}^{\mathrm{MW}}\left\{\eta_{\text {top }}\right\} /\left(\eta^{2} \eta_{\text {top }}\right)$.

Finitely presented K_{\star}^{MW}-modules

One can check that the K_{\star}^{MW}-module homomorphism

$$
K_{2+\star}^{\mathrm{MW}} \oplus K_{\star}^{\mathrm{MW}} \rightarrow \pi_{1-(\star)} \mathrm{f}_{1} \mathbf{1}
$$

sending (a, b) to $a \cdot \nu+b \cdot \eta_{\text {top }}$ induces an isomorphism

$$
K_{2+\star}^{\mathrm{MW}}\{\nu\} \oplus K_{\star}^{\mathrm{MW}}\left\{\eta_{\text {top }}\right\} /\left(\eta \nu, 2 \eta_{\text {top }}, \eta^{2} \eta_{\text {top }}-12 \nu\right) \cong \pi_{1-(\star)} \mathrm{f}_{1} \mathbf{1}
$$

after inverting the exponential characteristic. The proof involves that $\pi_{1-(\star)} \mathrm{f}_{1} \mathbf{k q} \cong K_{\star}^{\text {MW }}\left\{\eta_{\text {top }}\right\} /\left(\eta^{2} \eta_{\text {top }}\right)$.
The K_{\star}^{MW}-module $\pi_{2-(\star)} \mathrm{f}_{1} \mathbf{1}$ is not finitely generated for many number fields, such as $\mathbb{Q}\left(\zeta_{p}\right)$ where $p \equiv-1 \bmod 8$ is prime.

