Solar Corona over the Himalayas By Jeff Dai

An Introduction to Chromatic Homotopy Theory Part I : Spectra and Localization

Agnès Beaudry

May 14, 2019

Outline of the Course

- (I) Spectra and Localization
- (II) Complex Orientations and the Morava K-Theories 🗠 Mu
- (III) The Chromatic Filtration & Conjectures
- (IV) Morava E-Theory and the Stabilizer Group 🕻 K(6) look

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Cohomology with Coefficients in G C Ab

Reduced

$$\widetilde{HG}^*(-)\colon \mathrm{CW}^{op}_+ \longrightarrow \mathrm{Ab}$$

 $\widehat{\mathbf{C}}_{\mathrm{based}} \mathrm{Cw}$ - comple res

1. (Homotopy) If $f \simeq g$, then $\widetilde{HG}^*(f) = \widetilde{HG}^*(g)$.

2. (Additivity)

$$\widetilde{HG}^*\left(\coprod_{i\in I}X_i\right)\cong\prod_{i\in I}\widetilde{HG}^*(X_i)$$

3. (Exactness) For $A \subseteq X$ a subcomplex, the following sequence is exact:

$$\widetilde{HG}^*(X/A) \to \widetilde{HG}^*(X) \to \widetilde{HG}^*(A)$$

4. (Suspension) For each n, there is a natural isomorphism

$$\widetilde{HG}^{n}(X) \xrightarrow{\cong} \widetilde{HG}^{n+1}(\Sigma X).$$

5. (Dimension)
$$\widetilde{HG}^*(S^0) = G$$
 in $* = 0$.
In fact, it is *representable*
 $\widetilde{HG}^n(X) \cong [X, \mathcal{K}(G, n)], \qquad \mathcal{K}(G, n) \xrightarrow{\simeq} \Omega \mathcal{K}(G, n+1).$

Eilenberg Machane Space R. K(6, n) = 2 G ·= r D ·=

900

Eilenberg-Steenrod Axioms

A reduced cohomology theory is a functor

$$\widetilde{E}^* : \mathrm{CW}^{op}_+ \longrightarrow \mathrm{Ab}$$

which satisfies the following axioms

- 1. (Homotopy) If $f \simeq g$ then $\widetilde{E}^*(f) = \widetilde{E}^*(g)$.
- 2. (Additivity)

$$\widetilde{E}^*\left(\coprod_{i\in I}X_i\right)\cong\prod_{i\in I}\widetilde{E}^*(X_i)$$

3. (Exactness) For $A \subseteq X$ a subcomplex, the following sequence is exact:

$$\widetilde{E}^*(X/A) \to \widetilde{E}^*(X) \to \widetilde{E}^*(A)$$

4. (Suspension) For each n, there is a natural isomorphism

$$\widetilde{E}^n(X) \xrightarrow{\cong} \widetilde{E}^{n+1}(\Sigma X).$$

5. (Dimension) $\tilde{E}^*(S^0) = G$ in * = 0. \Rightarrow $\tilde{H}_{G^*} \cong \tilde{E}^*$

$$E^*(X) = \widetilde{E}^*(X_+).$$

The Brown Representability Theorem

Let *E* be a cohomology theory. There is a sequence of based spaces E_n , $n \ge 0$ with weak equivalences

$$\omega_n \colon E_n \xrightarrow{\simeq} \Omega E_{n+1}$$
. for suspension is 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

such that

$$\widetilde{E}^n(X)\cong [X,E_n].$$

The adjunction $\begin{bmatrix} X, \Omega Y \end{bmatrix} \cong \begin{bmatrix} \Sigma X, Y \end{bmatrix}.$ gives the suspension isomorphism $\tilde{E}^{n}(X) \cong [X, E_{n}] \xrightarrow{\cong} [X, \Omega E_{n+1}] \cong [\Sigma X, E_{n+1}] \cong \tilde{E}^{n+1}(\Sigma X)$

The Category of Spectra Sp

Objects. An $(\Omega$ -)spectrum E is a sequence of based spaces E_n , $n \ge 0$ with weak equivalences

$$\omega_n \colon E_n \xrightarrow{\simeq} \Omega E_{n+1}$$

Morphisms. A map of $f: E \to F$ is a sequence of maps $f_n: E_n \to F_n$ such that the diagram commutes:

We denote the category of spectra by Sp.

Spectrification

For a sequence
$$E = \{E_n : n \ge 0\}$$
 and inclusions $\omega_n : E_n \hookrightarrow \Omega E_{n+1}$,
 $E_n \to \mathfrak{N}^2 E_k \stackrel{\frown}{=} = \lim_k \Omega^k E_{n+k}, \qquad \mathbb{L}\omega_n = \lim_k \Omega^k \omega_{n+k}$

is a spectrum. This is called *spectrification*.

Ordinary Cohomology with Coefficients in G

 $HG^*(-)$ is represented by

$$HG_n = K(G, n) \quad \omega_n \colon K(G, n) \xrightarrow{\simeq} \Omega K(G, n+1).$$

Complex *K*-Theory

By Bott Periodicity, $\Omega U \simeq \mathbb{Z} \times BU$ and $\Omega(\mathbb{Z} \times BU) \simeq U$. Complex K-theory $K^*(-)$, is represented by

$$K = \{\mathbb{Z} \times BU, U, \mathbb{Z} \times BU, U, \mathbb{Z} \times BU, U, \ldots\}.$$

Suspension Spectra

For a based space X, the suspension spectrum is the spectrification of

$$(\underline{\Sigma}^{\infty}X)_n = \underline{\Sigma}^n X \qquad \omega_n \colon \underline{\Sigma}^n X \to \Omega \Sigma^{n+1} X$$

where ω_n is the adjoint to the identity

$$\sigma_n \colon \Sigma \Sigma^n X \xrightarrow{=} \Sigma^{n+1} X.$$

We often write X for $\Sigma^{\infty} X$. The sphere spectrum is $S^0 = \Sigma^{\infty} S^0$.

Complex Cobordism

(日) (四) (日) (日) (日) (日)

Homotopy Groups

If E is a spectrum, then the *rth homotopy group* of E is

A map $f: E \to F$ is a weak equivalence if $\pi_* f$ is an isomorphism.

Examples

• The stable homotopy groups of spheres are are

$$\pi_r^s = \pi_r \sum_{n=1}^{\infty} S^0 \cong \lim_{n \to \infty} \pi_{r+n} S^n.$$
• $\pi_* H \mathfrak{A}_1 \cong \mathfrak{A}_1$ concentrated in $* = 0.$ $\mathfrak{C}_2 \mathfrak{S}^2$.
• $\pi_* K \cong \mathbb{Z}[\beta^{\pm 1}]$ for $\beta \in \pi_2 K = K(\mathbb{C}P^1)$ the Bott class, i.e.,
 $\pi_{2r} K = \mathbb{Z}\{\beta^r\}, \quad \pi_{2r+1} K = 0.$ has neg.
• $\pi_* MU \cong \mathbb{Z}[x_1, x_2, ...]$ for $x_n \in \pi_{2n} MU$ related to $[\mathbb{C}P^n].$
 $\pi_0 MU = \mathbb{Z}\{1\}, \quad \pi_1 MU = 0, \quad \pi_2 MU = \mathbb{Z}\{x_1\}, \quad \pi_4 MU = \mathbb{Z}\{x_1^2, x_2\}.$

Homotopy Category

Let \mathcal{C} be a category and \mathcal{W} a subcategory such that

- All isomorphisms of $\mathcal C$ are in $\mathcal W$,
- If 2 out of 3 of $\{f, g, g \circ f\}$ are in \mathcal{W} , then so is the third.

The homotopy category of C is a category Ho(C, W) and a functor iF:I excists $\iota: C \to Ho(C, W)$

such that, for $F: \mathcal{C} \to \mathcal{D}$ which maps \mathcal{W} to isomorphisms, there is

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

such that $F \xrightarrow{\cong} F_{\mathcal{W}} \circ \iota$.

Stable Homotopy Category

Models for Spectra

There are other choices $(\mathcal{C}, \mathcal{W})$ with $\mathcal{SH} = Ho(\mathcal{C}, \mathcal{W})$. In particular, there are closed symmetric monoidal models for Sp.

Homology and Cohomology

If
$$E$$
 is a spectrum, then E -homology is the functor $\tilde{E}_* : S\mathcal{H} \to Ab$
 $X \mapsto \tilde{E}_n(X) := \pi_n(E \wedge X)$
and E -cohomology is the functor $E^* : S\mathcal{H}^{op} \to Ab$
 $X \mapsto \tilde{E}^n(X) := \pi_{-n}F(X, E) = [X, \Sigma^n E].$
We let
 $E_n := \tilde{E}_n(S^0) = \pi_n E = \tilde{E}^{-n}(S^0) = :E^{-n}$

Stable Homotopy Groups as a Homology Theory
For
$$\underline{E} = S^0$$
, this gives:
Weak equivalences are $\widetilde{S^0}_*$ -isomorphisms and SH is obtained from Sp by
inverting these.
 $\widetilde{S^0}_* X = Colore Ten X$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

ntr

Bousfield Localization

Exercise

A map $f: X \to Y$ in Sp_E is a weak equivalence iff it is an *E*-equivalence.

Universal Property of Localization

Exercise

There is a natural transformation
$$L_{F \vee E} \to L_E$$
 and,
 $\mathcal{R}_{averal} \mapsto \mathcal{R}_{Polence} \dots \mapsto L_E \simeq L_E L_{E \vee F} \simeq L_{E \vee F} L_E$.
 \mathcal{B}_{ms} field (a.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Localization and Completion

For G an abelian group, let SG a a Moore spectrum

$$\prod_{j \in J} S^{0}\{r_{j}\} \longrightarrow \prod_{i \in I} S^{0}\{g_{i}\} \longrightarrow SG \longrightarrow \Sigma \prod_{j \in J} S^{0}\{r_{j}\}$$
for a presentation $\bigoplus_{j \in J} \mathbb{Z}\{r_{j}\} \rightarrow \bigoplus_{i \in I} \mathbb{Z}\{g_{i}\} \rightarrow G$.
• If $G = \mathbb{Z}_{(p)}$ or \mathbb{Q} , then $L_{SG}X \simeq SG \land X$ and
 $\pi_{*}L_{SG}X \simeq \pi_{*}X \otimes G$.
The *p*-localization of X is:
 $X_{(p)} := L_{S\mathbb{Z}(p)}X$
The *rationalization* of X is:
 $X_{\mathbb{Q}} := L_{S\mathbb{Q}}X$
• If the groups $\pi_{*}X$ are finitely generated, then
 $\pi_{*}L_{S\mathbb{Z}/p}X \simeq \pi_{*}X \otimes \mathbb{Z}_{p} \rightarrow \underbrace{Q_{im}}_{i} \frac{\pi_{p}}{i}$
where \mathbb{Z}_{p} is the *p*-adic integers. The *p*-completion of X is
 $X_{p} := L_{S\mathbb{Z}/p}X$.

The Sphere

For the *p*-local sphere
$$S_{(p)}^{\bullet} = L_{S\mathbb{Z}_{(p)}} S_{,}^{\bullet}$$

 $\pi_n S_{(p)}^{\bullet} \cong \begin{cases} \mathbb{Z}_{(p)} & n = 0 \\ \operatorname{Tor}_p(\pi_n^s) & n > 0. \end{cases}$
For the rational sphere $S_{\mathbb{Q}}^{\bullet} = L_{S\mathbb{Q}} S_{,}^{\bullet}$
 $\pi_n S_{\mathbb{Q}}^{\bullet} \cong \begin{cases} \mathbb{Q} & n = 0 \\ 0 & n > 0. \end{cases}$

Connective Spectra

A spectrum is connective if
$$\pi_r X = 0$$
 for $r < 0$. For such X
 $L_{HG}X \simeq L_{SG}X$.
Sp = $L_{HZ/P}$ S° (E:lenberg Machane

Adams Operations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Next Time

Fix a prime p. There are spectra $K(0), K(1), K(2), \dots, K(\infty)$ called the Morava K-theories: $L_n X := L_{K(0) \vee \dots \vee K(n)} X$ In fact, $L_{K(0)} \cong L_{H\mathbb{Q}} \quad L_{K(1)} \cong L_{K\mathbb{Z}/p} \quad L_{K(\infty)} \cong L_{H\mathbb{Z}/p}$ The chromatic convergence theorem (Hopkins-Ravenel) states: $S_{(p)}^0 \cong \lim_n L_n S^0$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Chromatic homotopy theory studies the $S^0_{(p)}$ via this filtration.

$\pi_*S_{(2)}$ (Illustration by Isaksen)

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣ぬ(で)

$\pi_*S_{(2)}$ (Illustration by Isaksen)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

$\pi_* S_{(2)}$ (Illustration by Isaksen)

Telescope Conjecture (Ravenel)

The first *n*-rays are detected by $L_n S^0$.

Chromatic Splitting Conjecture (Hopkins)

The gluing data for the chromatic layers is simple.

