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Outline of the Course

(I) Spectra and Localization

(II) Complex Orientations and the Morava K -Theories

(III) The Chromatic Filtration

(IV) Morava E -Theory and the Stabilizer Group



Part I – Spectra and Localization

(1) Cohomology Theories

(2) Spectra

(3) Stable Homotopy Category

(4) Bousfield Localization

(5) What is Chromatic Homotopy Theory?



Cohomology with Coefficients in G

ĄHG
˚
p´q : CWop

` ÝÑ Ab

1. (Homotopy) If f » g , then ĄHG
˚
pf q “ ĄHG

˚
pgq.

2. (Additivity)

ĄHG
˚

˜

ž

iPI

Xi

¸

–
ź

iPI

ĄHG
˚
pXi q

3. (Exactness) For A Ď X a subcomplex, the following sequence is exact:

ĄHG
˚
pX {Aq Ñ ĄHG

˚
pX q Ñ ĄHG

˚
pAq

4. (Suspension) For each n, there is a natural isomorphism

ĄHG
n
pX q

–
ÝÑ ĄHG

n`1
pΣX q.

5. (Dimension) ĄHG
˚
pS0q “ G in ˚ “ 0.

In fact, it is representable

ĄHG
n
pX q – rX ,KpG , nqs, KpG , nq

»
ÝÑ ΩKpG , n ` 1q.



Eilenberg-Steenrod Axioms

A reduced cohomology theory is a functor

rE˚ : CWop
` ÝÑ Ab

which satisfies the following axioms

1. (Homotopy) If f » g then rE˚pf q “ rE˚pgq.

2. (Additivity)

rE˚

˜

ž

iPI

Xi

¸

–
ź

iPI

rE˚pXi q

3. (Exactness) For A Ď X a subcomplex, the following sequence is exact:

rE˚pX {Aq Ñ rE˚pX q Ñ rE˚pAq

4. (Suspension) For each n, there is a natural isomorphism

rEnpX q
–
ÝÑ rEn`1pΣX q.

5. (Dimension) rE˚pS0q “ G in ˚ “ 0.

E˚pX q “ rE˚pX`q.



The Brown Representability Theorem

Let E be a cohomology theory. There is a sequence of based spaces En, n ě 0
with weak equivalences

ωn : En
»
ÝÑ ΩEn`1.

such that
rEnpX q – rX ,Ens.

The adjunction
rX ,ΩY s – rΣX ,Y s.

gives the suspension isomorphism

rEnpX q – rX ,Ens
–

ωn˝´

// rX ,ΩEn`1s – rΣX ,En`1s – rEn`1pΣX q



The Category of Spectra Sp

Objects. An (Ω-)spectrum E is a sequence of based spaces En, n ě 0 with
weak equivalences

ωn : En
»
ÝÑ ΩEn`1

Morphisms. A map of f : E Ñ F is a sequence of maps fn : En Ñ Fn such that
the diagram commutes:

En
fn //

ωn

��

Fn

ωn

��
ΩEn`1

Ωfn`1 // ΩFn`1

We denote the category of spectra by Sp.

Spectrification

For a sequence E “ tEn : n ě 0u and inclusions ωn : En ãÑ ΩEn`1,

LEn “ lim
ÝÑ
k

ΩkEn`k , Lωn “ lim
ÝÑ
k

Ωkωn`k

is a spectrum. This is called spectrification.



Ordinary Cohomology with Coefficients in G

HG˚p´q is represented by

HGn “ KpG , nq ωn : KpG , nq
»
ÝÑ ΩKpG , n ` 1q.

Complex K -Theory

By Bott Periodicity, ΩU » Z ˆ BU and ΩpZ ˆ BUq » U. Complex K -theory
K˚p´q, is represented by

K “ tZˆ BU,U,Zˆ BU,U,Zˆ BU,U, . . .u.

Suspension Spectra

For a based space X , the suspension spectrum is the spectrification of

pΣ8X qn “ ΣnX ωn : ΣnX Ñ ΩΣn`1X

where ωn is the adjoint to the identity

σn : ΣΣnX
“
ÝÑ Σn`1X .

We often write X for Σ8X . The sphere spectrum is S0 “ Σ8S0.



Complex Cobordism

MU is the spectrification of the sequence

tMUp1q,ΣMUp1q,MUp2q,ΣMUp2q, . . .u

where MUpnq is the Thom space of the canonical complex vector bundle

γn Ñ GrnpC8q » BUpnq.

Note:
i˚γn`1 – γn ‘ C

��

// γn`1

��
BUpnq

i // BUpn ` 1q

The map ω2n`1 : ΣMUpnq Ñ MUp2nq is adjoint to:

Σ2MUpnq – Thpi˚γn`1q
σ2n`1 // Thpγn`1q “ MUpn ` 1q

The map ω2n : MUpnq Ñ ΩΣMUpnq is adjoint to the identity.



Homotopy Groups

If E is a spectrum, then the rth homotopy group of E is

πrE “ lim
ÝÑ
n

πr`nEn.

A map f : E Ñ F is a weak equivalence if π˚f is an isomorphism.

Examples

§ The stable homotopy groups of spheres are are

πs
r “ πrΣ8S0 – lim

ÝÑ
n

πr`nS
n.

§ π˚HA – A concentrated in ˚ “ 0.

§ π˚K – Zrβ˘1s for β P π2K “ KpCP1q the Bott class, i.e.,

π2rK “ Ztβr u, π2r`1K “ 0.

§ π˚MU – Zrx1, x2, . . .s for xn P π2nMU related to rCPns.

π0MU “ Zt1u, π1MU “ 0, π2MU “ Ztx1u, π4MU “ Ztx2
1 , x2u.



Homotopy Category

Let C be a category and W a subcategory such that

‚ All isomorphisms of C are in W,

‚ If 2 out of 3 of tf , g , g ˝ f u are in W, then so is the third.

The homotopy category of C is a category HopC,Wq and a functor

ι : C Ñ HopC,Wq

such that, for F : C Ñ D which maps W to isomorphisms, there is

C

ι

��

F // D

HopC,Wq
D!FW

;;

such that F
–
ÝÑ FW ˝ ι.



Stable Homotopy Category

SH “ HopSp,WS0 q for WS0 the weak equivalences is called the stable homo-
topy category.

§ rX ,Y s :“ SHpX ,Y q are abelian groups

§ Finite products and coproducts are equivalent in SH
§ Closed symmetric monoidal with unit S0:

´^´ : SHˆ SHÑ SH F p´,´q : SHop ˆ SHÑ SH

F pX ^Y ,Zq – F pX ,F pY ,Zqq

§ Triangulated: Σ: SHÑ SH with

ΣX “ X ^S1 Σ´1X “ F pS1,X q.

§ Distinguished triangles

X
f // Y // Cf

// ΣX

where Cf “ Y Yf pX ^r0, 1sq is the cofiber of f .

§ Long exact sequences for r´,Z s and rZ ,´s. For example:

. . . // πnX // πnY // πnCf
// πn´1X // . . .



Models for Spectra

There are other choices pC,Wq with SH “ HopC,Wq. In particular, there are
closed symmetric monoidal models for Sp.



Homology and Cohomology

If E is a spectrum, then E -homology is the functor rE˚ : SHÑ Ab

X ÞÑ rEnpX q :“ πnpE ^X q

and E -cohomology is the functor E˚ : SHop Ñ Ab

X ÞÑ rEnpX q :“ π´nF pX ,Eq “ rX ,Σ
nE s.

We let
En :“ rEnpS

0q “ πnE “ rE´npS0q “: E´n

Stable Homotopy Groups as a Homology Theory

For E “ S0, this gives:
ĂS0
˚pX q “ π˚pX q

Weak equivalences are ĂS0
˚-isomorphisms and SH is obtained from Sp by

inverting these.



Bousfield Localization

A map f : X Ñ Y is an E-equivalences if

rE˚pf q : rE˚pX q
–
ÝÑ rE˚pY q

Let WE Ď Sp be the subcategory of E -equivalences and

SHE :“ HopSp,WE q.

§ X is E-acyclic if rE˚pX q “ 0.

§ Y is E-local if rX ,Y s “ 0 when X is E -acyclic.

Let SpE be the full subcategory whose objects are E -local spectra. In fact:

SHE – HopSpE ,W X SpE q.

Exercise

A map f : X Ñ Y in SpE is a weak equivalence iff it is an E -equivalence.



Universal Property of Localization

An E-localization is an E -equivalence η : X Ñ LEX for LEX P SpE . These
exist and are unique in SH:

LE : SHÑ SHE Ď SH, η : 1SH Ñ LE .

If f : X Ñ Y with Y P SpE , then

X
f //

η

��

Y

LEX

fE

==

and fE is unique in SH. There is a distinguished triangle

CEX Ñ X Ñ LEX

where CEX is the terminal E˚-acyclic spectrum with a map to X .

Exercise

There is a natural transformation LF_E Ñ LE and,

LE » LELE_F » LE_FLE .



Localization and Completion

For G an abelian group, let SG a a Moore spectrum

š

jPJ S
0trju // š

iPI S
0tgiu // SG // Σ

š

jPJ S
0trju

for a presentation
À

jPJ Ztrju Ñ
À

iPI Ztgiu Ñ G .

§ If G “ Zppq or Q, then LSGX » SG ^X and

π˚LSGX – π˚X b G .

The p-localization of X is:

Xppq :“ LSZppqX

The rationalization of X is:

XQ :“ LSQX

§ If the groups π˚X are finitely generated, then

π˚LSZ{pX – π˚X b Zp

where Zp is the p-adic integers. The p-completion of X is

Xp :“ LSZ{pX .



The Sphere

For the p-local sphere Sppq “ LSZppqS ,

πnSppq –

#

Zppq n “ 0

Torppπs
nq n ą 0.

For the rarional sphere SQ “ LSQS ,

πnSQ –

#

Q n “ 0

0 n ą 0.

Connective Spectra

A spectrum is connective if πrX “ 0 for r ă 0. For such X

LHGX » LSGX .



Adams Operations

For k ě 0, there are unstable operations

ψk : K˚pX q Ñ K˚pX q.

They give stable operations

ψk : Kp Ñ Kp

for k P Zˆp The action of ψk on π˚Kp “ Zprβ˘1s is determined by

ψk pβq “ kβ.

K -Theory Localization

Let p be odd and KZ{p “ K ^SZ{p so that

π˚KZ{p – Z{prv˘1
1 s.

There is a distinguished triangle

LKZ{pS
0 // Kp

ψ`´1 // Kp // ΣLKZ{pS
0

for ` a topological generator of Zˆp .



Image of J

Real Bott Periodicity gives π3`4kO – Z. The J homomorphism

J : πnO Ñ πs
n

has image

n 3 7 11 15 19 23 27 31 35 39 43
Z24 Z240 Z504 Z480 Z264 Z65520 Z24 Z16320 Z28728 Z13200 Z552

Lower Bounds on Im J Section 4.1 99

4.1 Lower Bounds for Im J

After starting this section with the definition of the J–homomorphism, we will

use a homomorphism K(X)→H∗(X;Q) known as the Chern character to show that

an/2 is a lower bound on the order of the image of J in dimension 4n − 1. Then

using real K–theory this bound will be improved to an , and we will take care of the

cases in which the domain of the J–homomorphism is Z2 .

The simplest definition of the J–homomorphism goes as follows. An element

[f ] ∈ πi(O(n)) is represented by a family of isometries fx ∈ O(n) , x ∈ S
i , with fx

the identity when x is the basepoint of Si . Writing Sn+i as ∂(Di+1×Dn) = Si×Dn ∪

Di+1×Sn−1 and Sn as Dn/∂Dn , let Jf(x,y) = fx(y) for (x,y) ∈ Si×Dn and let

Jf(Di+1×Sn−1) = ∂Dn , the basepoint of Dn/∂Dn . Clearly f ≃ g implies Jf ≃ Jg ,

so we have a map J :πi(O(n))→πn+i(Sn) . We will tacitly exclude the trivial case

i = 0.

Proposition 4.1. J is a homomorphism.

Proof: We can view Jf as a map In+i→Sn = Dn/∂Dn which on Si×Dn ⊂ In+1 is

given by (x,v)!fx(v) and which sends the complement of Si×Dn to the basepoint

∂Dn . Taking a similar view of Jg , the sum Jf + Jg is obtained by juxtaposing these

two maps on either side of a hyperplane. We may assume fx is the identity for x in

the right half of Si and gx is the identity for x in the left half of Si . Then we obtain

a homotopy from Jf + Jg to J(f + g) by moving the two Si×Dn ’s together until

they coincide, as shown in the figure below. )⊓

��→ ��→
We know that πi(O(n)) and πn+i(S

n) are independent of n for n > i + 1, so

we would expect the J–homomorphism defined above

Exercise

Compute π˚LKZ{pS
0 and compare with the p-component of impJq.



Next Time

Fix a prime p. There are spectra Kp0q,Kp1q,Kp2q, . . . ,Kp8q called the
Morava K -theories:

LnX :“ LKp0q_..._KpnqX

In fact,
LKp0q – LHQ LKp1q – LKZ{p LKp8q – LHZ{p

The chromatic convergence theorem (Hopkins–Ravenel) states:

S0
ppq – lim

ÐÝ
n

LnS
0

in SH. The nth chromatic layer is LnS0.

Chromatic homotopy theory studies the S0
ppq

via this filtration.











π˚Sp2q (Illustration by Isaksen)
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π˚Sp2q (Illustration by Isaksen)



π˚Sp2q (Illustration by Isaksen)

Telescope Conjecture (Ravenel)

The first n-rays are detected by LnS0.

Chromatic Splitting Conjecture (Hopkins)

The gluing data for the chromatic layers is simple.



Thank you!


