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ABSTRACT

Pulmonary tuberculosis (TB) is a curable disease that claims the lives of hundreds of

thousands of children annually. The disease burden is highest in resource limited settings

which are often unable to provide timely disease diagnosis. Therefore, there is a need for

a sensitive, rapid diagnostic for pulmonary TB in pediatric patients, a large and vulnerable

subset of those infected with TB. Human breath contains many volatile metabolites that

are produced by the human host as well as by the microbes present inside the host. This

volatile organic compound (VOC) profile can be characterized using highly sensitive mass

spectrometry methods. The resultant profile can then be used as a tool to diagnose or screen

for disease. There are sputum and breath models that have been developed in both non-

human primates and adult humans that have shown great promise in using VOC profiles to

diagnose TB. Yet no model has been developed for pediatric patients. 34 pediatric breath

samples were collected from the Red Cross Memorial Children’s hospital in Cape Town,

South Africa. These samples were stored on thermal desorption tubes and misanalysed

via two dimensional time of flight mass spectrometry. The VOC profile of each sample

was used to develop a random forest model to predict TB status from the VOC profile of a

sample. A suite of 20 novel, discriminatory compounds were identified.
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Chapter 1

Introduction and Background

This project involves identifying volatile organic molecules (VOCs) present in the breath of

pediatric patients that can be used to identify children with pulmonary M.tuberculosis (TB)

infections. The TB status of each child will be determined using the gold standard tech-

nique of culture, as well as nucleic acid amplification (i.e. GeneXpertTM . Breath samples

were collected from patients prior to treatment at the Red Cross Memorial Children’s Hos-

pital in Cape Town, South Africa. Breath molecules were concentrated and stored on car-

bon tubes which were analyzed via two-dimensional gas chromatography coupled to time

of flight mass spectrometry (GCxGC TOFMS). In this way, the breath molecules present

in each sample are separated and relatively quantified. Statistical and machine learning

methods will be implemented to determine a suite of discriminatory breath biomarkers that

discriminate TB-positive from TB-negative pediatric patients.

In 2016, the World Health Organization reported that 1 million children under the age

of 15 contracted TB. This disease now ranks as one of the top 10 causes of childhood

mortality for children under the age of 5 [1]. In 2014, 136,000 children lost their lives to

the disease [2]. However, this number is likely underreported, as in over a third of reporting

countries, children who are co-infected with HIV/AIDS and TB are often reported to have

passed away from only HIV/AIDS [3]. Recent studies have shown that tuberculosis and
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pneumonia co-infections occur in approximately 1%-23% of pediatric pneumonia cases but

are underreported due to difficulties diagnosing TB in pediatric patients [4].

The requirements of conventional diagnostic methods are obstacles in providing ade-

quate care in resource limited settings. Current methods are either rapid but not sensitive to

children, such as GeneXpert [5], or take on the order of 4-6 weeks to produce a result, such

as culture [3]. All current diagnostic methods require a sputum sample to be coughed up

from the lung, a sample that is rarely produced by children [4]. Therefore, induced sputum

samples are normally collected in lieu of this. Induced sputum sample collection requires

nebulization and can usually only be performed in resourced clinical or hospital settings.

Due to these diagnostic limitations, the WHO called for the development of a rapid, non-

sputum-based biomarker test that did not require bacterial isolation for the detection of

active TB in 2014 [6, 7]. The non-invasive and rapid analysis of exhaled breath could ful-

fill these requirements and improve outcomes among children, especially in low-resource

settings.

Pulmonary TB manifests differently in adults and pediatrics. Adults generally form

granulomas, allowing them to produce sputum samples. The majority of the corpus of TB

literature focuses exclusively on TB in adults. Pediatric patients, in contrast, do not form

granulomas but rather miliary TB which spreads throughout the lung [8]. Pediatrics are far

more susceptible to disseminated TB in other parts of the body, such as the eye or bone.

These factors contribute to pediatric patients not being able to produce sputum samples and

sputum induction methods, such as saline nebulization, are used to gather dilute sputum

samples [8].

Breath as a diagnostic tool for disease has been explored in a variety of contexts [9,

10, 11]. Several animal and adult human models have been developed which use volatile

organic compound profiles to diagnose or screen for TB. Mgode has used trained Giant

Pouched rats to be used as a first line screening test in Tanzania. The rats are trained to

identify TB positive sputum samples by sniffing the head-space of the prepared sputum
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sample. When this screening strategy was applied as a first-line screening diagnostic for

pediatric patients, detection rates of TB increased by 67.6% in 982 cases [12].

A model was developed using longitudinal breath samples from 5 macaques. The model

included pre-infection and room air control samples as well as multiple breath samples at

different time points post-infection. A suite of 19 discriminatory compounds indicative of

active TB infection were found [13].

Breath samples from 34 adults in Haiti were used in conjunction with room air controls

to develop a model which differentiated between TB positive and negative patients based

on their respective VOC breath profiles. A suite of 22 compounds indicative of active TB

was developed [14].

No model has been developed that has explored the use of breath samples to diagnose

or screen for TB in pediatric patients, a large and vulnerable portion of the TB population.

Breath-based technologies with a high sensitivity could also prove useful in low-resource

settings as a screening mechanism. A sensitive, rapid pulmonary TB screening device could

help alleviate extended wait-times and I argue that breath may be a viable clinical sample

to meet these diagnostic criteria. Volatile molecules on the breath of TB suspect pediatric

patients can be used to discriminate between TB positive and TB negative patients.
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Chapter 2

Methods

Breath samples were collected from a pediatric population in Cape Town, South Africa.

The TB status of recruited patients was determined after breath collection. Confirmed TB

negative recruited patients were used as a negative control throughout the study. One room

air control sample was collected at the time of each breath collection in order to account for

molecules that may be present in the air that the patients are breathing and do not contribute

to the biomarkers present in breath sample. The noise present in the data can be reduced

by controlling for molecules present in room air in this fashion.

2.1 Breath Collection Kits

The 1.5L Tedlar bags (A in figure 2.1) were chosen for their inert chemical properties as

well as their compatibility with the collection system used in this study [14]. Containments

in the 1.5L Tedlar breath collection bags were removed by flushing each bag with nitrogen

gas three times. Flushing consists of filling each bag with nitrogen gas via an inert vinyl

tube and leaving the bag closed in a 32◦ C room for 30 minutes. The bag is then emptied

and the process is repeated for a total of three times. Once each bag has been emptied for

a third time, the bag is sealed and tightly rolled for storage in a hermetically sealed storage

container. The mouth piece (B in figure 2.1) consists of a standard drinking straw fitted with

4



Figure 2.1: Components used in every breath kit. A)1.5L Tedlar breath collection bag, B)
Mouth piece, C) 0.22 µm filter, D) Thermal disorption tube (TDT)

inert vinyl tubing to allow for the straw to connect directly with the Tedlar bag. The mouth

piece is used to make the breath collection process more intuitive and less frightening for

children who have often been in the hospital for extended periods of time before breath

collection. The mouth piece also allows researchers to collect breath without having to

touch any part of the system that has been in direct contact with the patient’s mouth as the

mouth piece is removed by pulling on the vinyl tubing at the bottom of the straw.

The 0.22 µm filters are prepared by attaching 4 short segments of varying diameter vinyl

tubing to a sterile filter. These segments of vinyl tubing allow for the filter to be placed

seamlessly in-line during breath sample evacuation. The filters ensure that no bacteria or

other organic matter, such as traces of saliva or sputum, are drawn onto the TDTs. This

makes the TDTs safer to handle and allows an increased robust storage time of the TDTs

before they are processed [15].

The TDTs consist of a three-bed layering containing Carbopack Y, Carbopack X, and

Carboxen 1000 (Supelco, Bellefonte, PA), a sorbent combination that has been previously
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optimized for the collection of a wide range of breath molecules [15]. The TDTs were

conditioned by purging them with nitrogen gas 350◦ for 2 hours. The tubes are then verified

through a GCxGC TOFMS fast method that detects the presence of compounds on the

tube. The resultant chromatograms are visually inspected to ensure the tube has a low

background signal. An additional shipment of hermetically sealed TDTs were included

with the shipment of breath kits. These additional TDTs were used for the collection of

room air samples.

2.2 Breath Collection Procedure

1.5L whole breath samples were collected from the Red Cross War Memorial Children’s

Hospital in Cape Town, South Africa. These samples will be classified as M. Tuberculosis

positive or M. Tuberculosis negative based on the gold standard diagnostic of culture as

well as nucleic acid amplification (GeneXpert). If a patient’s culture or GeneXpert result

was positive, that patient’s sample was classified as TB positive. Patients were recruited

according to the following inclusion criteria:

• Between 2 - 15 years of age

• Have a definitive TB status and drug resistance status as determined by two induced

sputum (IS) Gene Xpert/RIF assays as well as culture

• Be healthy enough to provide a voluntary whole breath sample.

• Must not have received any TB medication for more than 72 hours before the date of

breath collection.

• Known HIV status.

• The patient’s legal guardian(s) are available and willing to provide consent
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Patients who did not meet the inclusion criteria were excluded from the study. The

patient was given water to rinse the inside of their mouth to reduce the presence of com-

pounds associated with the mouth and oral cavity in the collected sample. The patient was

then asked to breath normally into a 1L Tedlar bag until the bag was full. These bags were

chosen for their inert properties and low background VOC emissions. The bag was then

sealed and the contents of the bag drawn through a 13mm, 0.22µm PTFE filter to remove

any potential pathogens, and then drawn onto a three-bed TDT to optimally collect a wide

range of breath molecules. The tubes were then sealed in individual airtight bags and stored

at 2◦ C until shipment to Hill Lab for analysis through GCxGC-TOFMS.

2.3 Mass Spectrometry

The samples will be analyzed via GCxGC-TOFMS, a system that allows for increased

amplitude of chemical signal and the separation of normally co-eluting molecules, enabling

the robust detection of trace elements in breath [13]. The breath molecules that have been

collected on the thermal desorption tubes will be desorbed at 330◦C into a cryogenically

cooled (-120◦C) inlet liner of a GCxGC-TOFMS instrument. After desorption, the inlet

will be rapidly heated from -120◦C to 270◦C and the trapped breath molecules will be

injected onto an Rxi- 624Sil-MS/Stabilwax chromatography column combination which is

well suited for complex mixtures consisting of non-polar and semi-polar volatile molecules,

such as breath [13]. After separation, breath molecules will be identified and relatively

quantified through mass spectrometry. Mass spectra will be collected over the range of

m/z 30-500 at a rate of 200Hz. Putatively identified biomarkers will be confirmed by the

injection of standards.

Each black dot in figure 2.2 represents a compound identified by the the analysis after

integration. The X-axis represents first dimension retention time in minutes while the y-

axis second dimension retention time in seconds. The color represents the intensity of the
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Figure 2.2: Example two-dimensional gas chromatogram of 1L breath from a TB positive
pediatric patient.

compound while the area represents the signal relative to the compound. Therefore a higher

area is indicative of a higher relative concentration.

2.4 Data Formatting and Storage

De-identified patient data was collected from the Red Cross Memorial Children’s Hospi-

tal, including patient sex, age, HIV status as well as tuberculosis diagnostic test results

(GeneXpert and culture results). Patient information was linked to patient breath samples

through use of a de-identified numbering system. The results of the GCxGC-TOFMS anal-

ysis of the patient’s breath samples, as well as room air, was rendered as .csv containing

the relative abundance, signal to noise ratio as well as the first and second retention times.

This raw file was formated into a Python Pandas dataframe containing all de-identified pa-

tient information as well as the relative abundance of all compounds present in samples. A

class column was included which summarized the samples status as either TB positive, TB

negative or a room air sample. All data was stored locally as well as back-ups on Thayer,

Kite as well as Jupyter servers.
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Chapter 3

Analysis

Raw data from the ChromaTOF software was used as the dataset for analysis. This dataset

was formatted and normalized before pre-processing. The pre-processing steps focus on

noise reduction and signal preservation. A more robust model can be developed with a

dataset that contains the highest signal to noise ratio. This was achieved by the removal

of features contributed by room air as well as by the removal of sparse features from the

dataset.

3.1 Pre-Processing

A list of 1080 compounds were identified by the GCxGC-TOFMS analysis. This list con-

tained the compound name, identification number as well as relative abundance, signal to

noise ratio and retention times for each compound in each sample. A 75% similarity cutoff

was used when identifying a putative compound name. If a sample did not contain a com-

pound, a zero was inserted in all entries for that compound-sample pair. All pre-processing

and noise reduction techniques are shown in figure 3.1. This list was manually screened for

known contaminants and plastacids that are introduced by the collection system’s bag and

pump as well as from the GCxGC-TOFMS column bleed [16]. After cleaning, a suite of

819 compounds remained for analysis. The log10 of the abundance of each compound was
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Figure 3.1: Data reduction and feature selection flow chart

taken as well as a probabilistic quotient normalization (PQN) implemented to normalize

the data [17]. This normalization aids in reducing model bias towards compounds with a

higher relative abundance.

A list of the relative abundances of all 819 compounds present in breath samples was

generated as well as the same list for room air samples. A Wilcoxen sum-rank test was then

performed across these two lists to generate a new list of compounds present in breath sam-

ples that are statistically different from room air samples [18]. This is done to reduce the

noise present in the data, removing compounds from the dataset that were contributed by

room air. Patients inhale room air and many compounds do not interact with the respiratory

system and are simply exhaled. These compounds that do not add significant information

into the system are removed from the analysis. A Wilcox-rank sum test was chosen as
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normality does not have to be assumed and the test does not have to be parameterized or

optimized in any way [19, 20].

Table 3.1: Number of statistically significant compounds present at varying p-value cut-off.
P-value Cut-off Number of Compounds
0.2 459
0.1 397
0.05 308
0.01 135
0.005 93

Various p-value cut-offs were explored and resulted in a different number of qualified

compounds. A cut-off of p < 0.05 was used which resulted in a suite of 267 compounds

that were statistically different from room air. This cut-off was chosen to reduce noise as

far as possible without a significant loss of information within the system.

A 40% frequency of observation cutoff was implemented to remove sparse features

from the dataset. This cutoff removed features that were not present in at least 40% of

either of the two classes, TB positive and TB negative breath samples. After this cutoff,

267 compounds were present in the dataset.

As seen in figure 3.2, there is significant separation between room air and breath sam-

ples based on the first 3 principal components alone. The angle of perspective which

showed greatest separation between classes was chosen for each plot separately in figure

3.2. There is no apparent separation between TB positive and negative breath samples after

pre-processing. If separation between the two groups was present after this step, then a fur-

ther investigation into confounding collection practices between groups would need to be

conducted. As the samples were collected before the TB status of the patient was known,

there is no reason to assume confounding factors were present in collection procedures.
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Figure 3.2: First 3 principal components of all 819 features (right) and the reduced list of
267 features (left)

3.2 Model Generation

A random forest (RF) model was selected to generate a list of discriminatory compounds.

The model is generated by implementing a large forest of decision trees which uses a gini

operation to generate a probabilistic classification of each sample. Each decision tree is

given a vote and these votes and scores are used to generate the model. Random forest

was chosen as it generates a list of feature importance at the conclusion of the model as

well as allowing for weighting and balancing hyper parameterization at each node [19].

This is desirable as the intended outcome of the analysis is to determine a reduced suite

of discriminatory molecules that could be used to design a screening test or diagnostic for

pediatric TB. More complex models such as recursive neural net and non-linear support

vector machines (SVM) would achieve better classification results, but would not generate

a list of feature importances. It may also not be possible to translate the results of these

complex methods into a physical screening or diagnostic device as the models would be

built on all 267 features. The relative abundance of these 267 compounds would then have

to be collected by any diagnostic system which leverages this information. As the proposed
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focus of these devices is a rapid and cost-effective unit, requiring the device to detect 267

compounds accurately is an unnecessary and inefficient design constraint.

A linear SVM was also explored as the square of the coefficients of the model can be

interpreted as feature importance if it can be assumed that the data has been sufficiently

normalized. The linear SVM model is a coarser approach when compared to RF as it cre-

ates a linear hyperplane decision boundary between classes whereas RF uses a generative

ensemble model.

3.3 Feature Selection

The data set comprising of 267 compounds present in 34 breath samples (10 TB positive

and 24 TB negative) was used in an implementation of an RF analysis. All steps in the

RF implementation and iteration are shown in figure 3.3. The classes were randomly bal-

anced at the start of the model by randomly selecting 10 negative breath samples and all

of the positive breath samples. This was done to avoid the bias towards sole negative clas-

sification, favoring sensitivity over specificity. A training-test split of 1
3

was then used,

partitioning the data into a training and testing set. The split was balanced, ensuring that

the same number of TB positive and negative samples appeared in the training and testing

datasets at each iteration.

A 500 tree RF was then trained on the 14x267 training data. A list of compound impor-

tances was generated and the top 20 most important features were taken and used to train a

new RF model. 20 was chosen as it is the closest integer approximation to the 2
√
n, which

is commonly used as an importance cutoff in RF analysis [14]. This new RF model trained

on the 14x20 training set was validated using the 6x20 testing set that was withheld at the

start of the iteration. A frequency list of compounds that appeared in the 20 selected com-

pounds was updated at the conclusion of each iteration as well as the predictive probability

for each of testing samples. This process was repeated 500 times and a grand list of all
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Figure 3.3: Flow chart of the implementation and iteration of random forest models.

sample predictive probabilities and compound importance frequency list was generated.
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Chapter 4

Results & Conclusions

The feature reduction strategy implemented in Chapter 3 resulted in a suite of 20 discrim-

inatory compounds. The expression, variation and presence of these compounds in the

literature will be explored in this chapter. The list of compounds of interest present in lit-

erature will also be cross-referenced to the list of all compounds found both room and air

samples. The putative compound names were withheld for intellectual property protection

and chemical formulas were given where possible. Steps for future work and longitudi-

nal study design will be explored at the conclusion of the chapter as well as concluding

statements and findings.

4.1 Results

The variability in the suite of 20 discriminatory compounds, as listed in figure 4.4, is visual-

ized using a principal components analysis (PCA) in figure 4.1. A PCA transforms multi-

dimensional data into a lower-dimensional space while maximizing the variance. There

is a degree of clustering of TB positive samples in this transformed space. The lack of

clustering of the TB negative samples in the visualization could imply that there is greater

variability between these samples when the 20 compounds of interest are reduced to their

respective principal components.
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Figure 4.1: Visualization of the first 3 principal components of the 20 most important
features in a balanced two class breath model.

A dendrogram of the 20 compounds of interest showed a large degree of sample clus-

tering in figure 4.2. The dendrogram calculates the distance between two samples using

the weighted city-block protocol and clusters according to this distance. The expression

level of each compound of interest can be seen in the denrogram associated heat-map. The

color shows the normalized intensity of expression of each of the 20 compounds of interest

in each breath sample. The compound identification number can be linked to a chemical

formula or analyte tag as shown in figure 4.4.

The predictive probability of the RF model trained on the 20 most important compounds

found by the RF trained on all compounds was stored after every iteration. Each individual

sample was part of the testing data split a minimum of 150 out of the 500 iterations. There-

fore, an average predictive probability can be generated for every sample in the dataset by

averaging the stored predictive probability over the number of times that sample appeared

in the testing data split. This method of aggregated probabilities was implemented as the

dataset was not large enough for a portion of the dataset to be completely withheld as an
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Figure 4.2: A dendrogram showing heat-map expression of the 20 most important com-
pounds as well as clustering via class.

external validation set. Therefore the model suffered from the same slight over fitting that

is present in traditional k-fold or leave-one-out cross-validation strategies. However, the

averaged predictive probabilities were used to estimate the potential of the suite of com-

pounds to be used for diagnostic purposes rather than to determine the power or accuracy of

the compounds as a diagnostic tool itself. The averaged predictive probabilities visualized

in figure 4.3 show that the suite of 20 compounds has the ability to predictive TB status in

this model. This finding illustrates the need to continue the study, expanding the patient

sample pool as well as extending the study to included longitudinal sample collection.

The list of compounds present in the suite of 20 with highest RF feature importance was

cross-re fenced to compounds previously cited in animal and adult models [13, 14]. When

the putative compound names were cross-referenced to these lists, none of the suite of 20

compounds had been previously identified in the literature. The chemical classification and

name of the compounds would need to be verified through analysis of standards and other

known compounds before definitive compound classification could occur.
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Figure 4.3: The averaged predictive probability generated by an RF trained iteratively on
the 20 most important features.

The compound identification number along the y-axis of figure 4.2 refers to the list

indicated in figure 4.4.

The total list of 819 compounds present in the dataset of manual contamination removal

was compared with those compounds identified in previously cited in animal and adult

models [13, 14]. Two compounds were present on both lists. The mean and standard

deviation of the PQN log10 of expression of each compound as well as a count of the

number of samples in each class the compound appeared in is provided in figure 4.5. A

cyclic hydrocarbon was cited in an adult model developed from breath samples of 34 adults

in Haiti and had increased expression in TB positive adults [14]. This cyclic hydrocarbon

was present in 33% of TB positive pediatric breath samples, 12.5% of TB negative pediatric

breath samples and none of the room air samples.

The linear hydrocarbon was cited in a model developed on longitudinal breath sam-

ples of 5 macaques [13]. The compound had higher expression in the breath of macaques

post-infection. The compound appeared in all breath samples as well as 52% of room air
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Figure 4.4: List of generic compound identification numbers generated by ChromaTOF as
well as their chemical formulas.

samples. The mean expression of the compound indicated the compound does not appear

to be differentially expressed between TB positive and TB negative breath sample classes.

The presence of the these previously cited compounds in the data as well as the pre-

dictive capabilities of a model developed from the VOC profile of pediatric breath samples

motivate the continuation and expansion of the study. Through increased patient recruit-

ment, an external validation set can be withheld from the model, allowing for a more robust

evaluation of the model. An increased number of TB positive breath samples will also al-

low other balancing and weighting methods to be implemented other than random manual

balancing which excludes information from the model. Longitudinal follow-up samples

would allow for a more robust model to be developed that includes the effect of TB treat-

ment on pediatric VOC breath profiles over time as well as the inclusion of hierarchical

time series data to the model. The effect of potential confounding factors, such as HIV sta-

tus, age and sex, as well as the interaction of these factors with compound expression, can

be included in the development of a more robust model with a larger number of samples

and time series information.
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Figure 4.5: Frequency list of compounds present in the dataset that have appeared in animal
or adult breath models.

4.2 Conclusion

This is the first study, to our knowledge, which has examined the VOC profile of pediatric

patients and developed a model to classify TB disease status based on the profile. The study

used a novel and potentially clinically relevant sample, i.e. breath, in a clinical research

setting in Cape Town, South Africa. A suite of 20 compounds of interest were identified via

an iterative RF model and a list of feature importance and sample predictive probabilities

was generated. The average predictive probabilities generated from the model indicated

that the model could differentiate between TB positive and TB negative breath samples.

None of these 20 compounds had been previously cited in adult or animal breath models.

The model is likely slightly over-fit as it suffers from the same information contain-

ment issues associated with other traditional cross-validation approaches. The results are

still indicative that a breath-based device may be a viable option for diagnosing or screening

for TB disease in pediatric patients, specifically those in resource limited settings. These

findings motivate the continuation of sample collection and analysis, both in the form of in-

creased patient recruitment and the collection of longitudinal follow-up sample collection.

A balanced sample set of 20 TB positive and 20 TB negative breath samples would serve

as the minimum amount required to develop a model with a withheld validation set if the

effect size identified is indicative of the population.
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