The Future of Fracture Critical latest Research on FC Members

William Collins, University of Kansas

KSU Bridge Design Workshop

October 13, 2017

The Future of Fracture Critical latest Research on FC Members

William Collins, University of Kansas

Robert Connor, Purdue University

Francisco Bonachera Martin, Purdue University Matthew Hebdon, Virginia Tech Ryan Sherman, University of Nevada Las Vegas

KSU Bridge Design Workshop

October 13, 2017

NCHRP 12-87a Fracture-Critical System Analysis for Steel Bridges

R. Connor, A. Varma, F. Bonachera M., C. Korkmaz, Z. Lai

System Redundancy

Three Types of Redundancy:

- 1. Load Path Redundancy <
- 2. System Redundancy <
- 3. Internal Member Redundancy

Traditional Redundancy (Non-FC) System Analysis System Redundant Member (SRM)

System Redundancy: Research Plan

- FEA Methodology:
 - Benchmark with experimental data
 - Evaluation of dynamic effects
- Loading for faulted condition
- Performance criteria for evaluation
- Bridge fabrication and detailing for fracture
- Development of guide specification

System Redundancy: Research Plan

FEA Methodology Benchmarking

Bridge	Type of Structure (Main Span Length)	Type of Failure	Summary of Results Successfully Calculated Performance
Neville Island	3-span continuous 2-plate girder (350 ft)	Full-depth girder fracture	
Hoan Bridge	3-span continuous 3-plate girder (217 ft)	Multiple full- depth girder fractures	
UT Texas	Simple span	Simulated	
Girder	(120 ft)	fracture	
Milton Madison Truss	Simple span truss (147 ft)	Lower chord partial and full fracture	
White River	2-span continuous 2-plate girder (155 ft)	Girder fracture	
Dan Ryan Expressway	Cross-girder (40 ft)	Partial-depth fracture	AVAILABLE
Notes: 1. Perforn	nance criteria do not apply	since it is a light	rail commuter bridge.

System Redundancy: Research Plan

System Redundancy: Results

- Reliability-based load combinations developed:
 - Redundancy I: Instant that fracture occurs
 - Redundancy II: Post-failure extended service
- Set of minimum requirements in the faulted state established
- Set of recommendations for new designs

System Redundancy: Results

- Application of methodology will lead to classification of bridges based on analysis, not opinion
- Further use of methodology results in simplifications
- Establishment of inspection practices based on analyzed bridge performance

System Redundancy: Implementation

- Proposed analysis has been used by Wisconsin DOT for tub girder
- A guide specification is being discussed at AASHTO
- Application examples developed

TPF-5(253): Member-level Redundancy in Built-up Steel Members

R. Connor, M. Hebdon

Member-level Redundancy

Member-level Redundancy

Member-level Redundancy: Objectives

- Determine whether Built-up Members are Fracture Resilient
- Capacity of partially failed members
- Remaining Fatigue Life
 - Possible contributing parameters:
 - Hole preparation (drilled vs. punched)
 - Fastener type (riveted vs. high-strength bolted)
 - Section properties (number of cover plates, height of web plate)

- Test procedure
 - Notch a component
 - Controlled location (angle/cover plate)
 - Not looking at initial fatigue life already documented
 - Crack growth through fatigue to critical length (LEFM)
 - Cool beam to lower shelf behavior (max. temp = -60°F)
 - AASHTO Zone 3 Temperature
 - Load to induce a fracture
 - 0.55 F_y (Minimum)
 - If no fracture, grow crack and repeat
 - Increase stress concentration when required
 - Examine stress redistribution
 - Determine fatigue life of partially failed specimen

- Fracture Test Conditions
 - All material on lower shelf
 - Single digit ft-lbs
 - Test temperature -60° F (warmest)
 - As low as -120° F
 - Applied stress = 0.55F_v (Minimum)
 - Substantial portion of component cracked
 - Greater than critical crack length per LEFM
 - Multiple attempts as crack length increased
 - Very challenging to obtain brittle fracture in a cracked component

- Fracture Test Conditions
 - Load shedding
 - Had to get creative
 - Initial cracks were at holes
 - Moved cracks to edges
 - Driven wedges
 - Fastener removal near crack
 - Decrease constraint at crack tip
 - Increase strain energy

Fracture resilience

Member-level Redundancy: Analytical Evaluation

- 3D Finite Element Modeling
 - Parametric study
 - Local stress distribution

Member-level Redundancy: Analytical Evaluation

Parametric Study: Number of cover plates

- $S_{\chi-AF}$ = Section modulus in the 'faulted state'
- $\beta_{AF} = 1 + 0.2 \left(1 + \frac{N}{4} \right)$ Stress adjustment factor
- N = Number of cover plates

- Fatigue life of partially failed cross-sections
 - How long until 2nd component fails?

Fatigue life of partially failed cross-sections

Member-level Redundancy: Results

- Fracture Resilience of Built-up Girders
 - Fracture of an individual component is unlikely
 - Fracture does not propagate into adjacent components
- Localized stress redistribution
 - Concentrated in component adjacent to failed
- Substantial remaining fatigue life in faulted state
 - Category C for drilled or subpunched & reamed holes
 - Category E' for punched holes

Member-level Redundancy: Implementation

- Guide Specification integrate methodology for setting maximum intervals for hands-on inspection
- Based on remaining fatigue life in faulted state
 - Using minimum evaluation life with a safety factor on inspection interval
 - Max hands-on inspection interval of ten (10) years
 - Looking for broken components, not tiny cracks which have low POD
- What about the FHWA memo? CFR?

TPF-5(328): Design and Fabrication Standards to Eliminate Fracture Critical Concerns in Two Girder Bridge Systems

Integrated Fracture Control Plan

R. Connor, W. Collins, R. Sherman

Integrated FCP

- High-performance steel (HPS)
 - High-strength
 - Improved weldability
 - Corrosion resistance
 - Increased fracture resistance
- Achieved through
 - Chemical composition
 - Processing

Integrated FCP: Overview

- Experimental testing
 - Small-scale
 - Large-scale
- FE modeling
 - Fracture toughness
- Framework
 - Material toughness
 - Inspection interval

Integrated FCP: Material Requirement

CVN energy: 125 ft-lbf

Integrated FCP: Large-scale Test Matrix

Plate	Spacimon	Туре	Fy	t _f	b f	h _w	L
Designation	specimen		(ksi)	(in.)	(in.)	(in.)	(ft.)
	50_2-5_1B	Bending	50	2.5	14	33	46
E	50_2-5_2B	Bending	50	2.5	14	33	46
	50_2-5_1A	Axial	50	2.5	14	N/A	16
	70_1-5_1B	Bending	70	1.5	18	33	50
L	70_1-5_2B	Bending	70	1.5	18	33	50
	70_1-5_1A	Axial	70	1.5	18	N/A	16
	70_1-5_2A	Axial	70	1.5	18	N/A	16
I	50_2-0_1B	Bending	50	2.0	14	33	40
I	50_2-0_2B	Bending	50	2.0	14	33	40
	50_1-5_1A	Axial	50	1.5	22	N/A	16
J	50_1-5_2A	Axial	50	1.5	22	N/A	16

Integrated FCP: Experimental Testing Test process

- Incremental growth
 - Notch specimen
 - Crack growth through fatigue
 - Cool to desired behavior
 - Load to induce fracture
 - Repeat until fracture achieved
- Grow to fracture length
Integrated FCP: Experimental Testing Bending Test Setup

Integrated FCP: Experimental Testing Temperature Chamber

Integrated FCP: Experimental Testing Bending Fracture Test

Integrated FCP: Experimental Testing Axial Test Setup

Integrated FCP: Experimental Testing Axial Fracture Test

Integrated FCP: Experimental Testing Test Results

Plate	Spacimon	Specimen Type	Final Crack	Fracture Load	Fracture Stress	Deflection
Designation	specimen		(in.)	(kip)	(ksi)	(in.)
	50_2-5_1B	Bending	5.00	104.6	18.7	0.96
E	50_2-5_2B	Bending	4.38	163.3	29.2	1.52
	50_2-5_1A	Axial	4.94	581.7	16.6	N/A
Н	70_1-5_1B	Bending	5.06	160.4	40.4	2.52
	70_1-5_2B	Bending	7.50	164.6	41.5	2.66
	70_1-5_1A	Axial	4.88	859.1	26.0	N/A
	70_1-5_2A	Axial	6.94	728.3	22.1	N/A
Ι	50_2-0_1B	Bending	1.69	149.2	26.3	1.09
	50_2-0_2B	Bending	1.06	128.6	22.6	0.94
J	50_1-5_1A	Axial	6.00	424.4	15.7	N/A
	50_1-5_2A	Axial	4.63	871.0	32.3	N/A

Integrated FCP: Analytical Evaluation

General Parameters

- Load at failure
- Crack length at failure
- Material model
 - Grade 50 and 70
 - Elastic properties
 - Plastic properties
- Solid (continuum) elements

Integrated FCP: Analytical Evaluation

Results

Dieto Designation	<u>Crossing or</u>	FEA Model J	FEA Model KJ	FEA K _{J(1T)}
Plate Designation	Specimen	(ksi*in.)	(ksivin.)	(ksivin.)
	50_2-5_1B	0.52	128.3	156.6
E	50_2-5_2B	1.28	200.1	246.9
	50_2-5_1A	0.64	142.7	174.8
Н	70_1-5_1B	2.76*	295.8*	325.4*
	70_1-5_2B	6.63*	458.2*	505.1*
	70_1-5_1A	0.58	135.5	148.0
	70_1-5_2A	1.88	244.0	268.1
I	50_2-0_1B	0.17*	74.2*	84.8*
	50_2-0_2B	0.08	49.0	54.8
J	50_1-5_1A	1.27	200.2	219.6
	50_1-5_2A	2.29	269.4	296.2

- CVN→K
 - Correlation from BS7910
 - Lower bound
 - Size correction
- K→a_c
 - Signal Fitness-for-Service (FFS)
 - Option 1 Failure Assessment Diagram (FAD)
 - 0.75F_y

CURRENT SPECIFICATION						
	Thicknoss	Minimum Test Minimum Average Energy (ft			rgy (ftlb.)	
Grade	Grade (in.)		Zone 1	Zone 2	Zone 3	
HPS 50 WF	to 4	24	30 @ 10 °F	30 @ 10 °F	30 @ 10 °F	
HPS 70 WF	to 4	28	35 @ -10 °F	35 @ -10 °F	35 @ -10 °F	
	to 2.5	28	35 @ -30 °F	35 @ -30 °F	35 @ -30 °F	
HPS 100 WF	2.5 - 4	N/A	N/A	N/A	N/A	
	POTENTIAL SPECIFICATION					
	Thicknoss	Minimum Test	Minimum Average Energy (ftlb.)			
Grade	(in.)	Value Energy (ftlb.)	Zone 1	Zone 2	Zone 3	
Damage Tolerant	TBD	TBD	125 @ 0 °F	125 @ -30 °F	125 @ -60 °F	

Tolerable Crack Sizes					
Grado	Applied		Edge		
Graue	Stress	Nnew	а		
(ksi)	(ksi)	(ksi√in.)	(in.)		
50	37.5	122			
70	52.5	122			
100	75	122			

Tolerable Crack Sizes					
Grado	Applied	V	Edge		
Graue	Stress	Nnew	а		
(ksi)	(ksi) (ksivin.)		(in.)		
50	37.5	122	1.3		
70	52.5	122	0.8		
100	75	122	0.5		

Integrated FCP: Rational Inspection Interval Fatigue Life

- Initial flaw (0.125")
- In-service stresses
 - Live load stress range (3 ksi)
 - R-ratio > 0.5
 - Overload to 0.75F_v
- Same crack growth rate

Grade	Initial a	Cycles	
(ksi)	(in.)	(millions)	
50		30.6	
70	0.125	28.9	
100		26.0	

Integrated FCP: Rational Inspection Interval Calculate Interval

- Set interval based on fatigue crack growth
- Assumed ADTT = 1,000
 - Represents >75% of bridges (in Indiana)
- "Raw" years of life presented
 - Actual inspection interval to be less

Integrated FCP: Rational Inspection Interval Calculate Interval

Grado	Initial		Final
Graue	а	Years	Crack
(ksi)	(in.)		(in.)
50		83.9	
70	0.125	79.2	
100		71.2	

Integrated FCP: Rational Inspection Interval Summary

Grado	Initial		Final
Glaue	а	Years	Crack
(ksi)	(in.)		(in.)
50		83.9	1.3
70	0.125	79.2	0.8
100		71.2	0.5

Integrated FCP: Conclusions

- Fatigue life can be calculated
 - Rational interval can be established
 - Multiple opportunities to detect a defect
- Critical flaw size can be calculated
 - Match inspection technique to flaw with POD
- Integrated fracture control plan
 - Lead to safer structures
 - Provide a better allocation of owner resources

Acknowledgements

KU

Robert Connor, Purdue University Francisco Bonachera Martin, Purdue University

Matthew Hebdon, Virginia Tech

Ryan Sherman, University of Nevada Las Vegas

Thank You!

William Collins, Ph.D., P.E.

Assistant Professor

University of Kansas

Office: 785.864.0672 E-mail: william.collins@ku.edu

Additional Material

Fracture Mechanics Introduction

Why do flaws matter?

Stress Concentration Factor, k_t

Stress concentration factors cannot be used for infinitely sharp cracks

Load/Stress/Stress IntensityMaterial PropertiesApplied Stress $F_{applied} < F_{y}$ Yield StrengthApplied Stress Intensity $K_{I} < K_{c}$ Fracture Toughness

Stress Intensity Factor, K

- Material property- ASTM test methods
- Evaluate for specific:
 - Temperature
 - Constraint
 - Loading rate

Additional Material

Weakest Link Behavior and Master Curve

Fracture Mechanics- Behavior

Fracture Toughness

Temperature

Fracture Mechanics- Behavior

Thought exercise...

Fracture Behavior Characterization

How do we deal with scatter in the transition region?

- Scatter in data
- Specimen size effects
- Constraint at crack tip

Fracture Toughness

Temperature

Fracture Behavior Characterization

Master Curve

- Median initiation toughness
- Temperature dependence
- Exponential function for all ferritic steels

Wallin, Kim, (2000) "Master curve analysis of the "Euro" fracture toughness dataset," Engineering Fracture Mechanics, 69, p. 451-481.

Fracture Behavior Characterization

Master Curve

- Landes and Shaffer applied statistical rationale (1980)
- Recognition of initiation points and statistical flaw distribution
- Wallin's work adapted this to be more "engineering friendly" (1984-present)

Fracture Behavior Characterization

Master Curve

- Median Toughness vs Temperature
 - Single Value Characterization, T_o
- Size Correction- Weakest Link
 - Size to 1T specimens
- Statistical Analysis of Data Scatter
 - Weibull distribution probability of failure

 $K_{Jc(med)} = 30 + 70 \exp[0.019(T - T_o)]$

$$K_{Jc(25.4)} = K_{min} + [K_{Jc(o)} - K_{min}] \left(\frac{B_o}{B_{25.4}}\right)^{1/4}$$

$$P_f = 1 - \exp\left\{-\left[\frac{K_{Jc} - 20}{K_o - K_{min}}\right]^4\right\}$$

Fracture Behavior Characterization

Master Curve: Applied to "Legacy" Data

- Over 800 tests of conventional steel
- Early 1970's Present
- C(T), SE(B)
- Static, Intermediate, Dynamic
- Multiple thicknesses
- Varying testing protocols
- Linear-Elastic Fracture Mechanics

Test Temperature (°F)

Tolerance Bound	Total Fracture Database (801)		Ductile Failure Excluded (681)	
	Data Count Below	Percentage Below	Data Count Below	Percentage Below
10%	100	12.5	94	13.8
5%	48	6.0	45	6.6
2%	21	2.6	19	2.8
1%	10	1.2	8	1.2

Tolerance Bound	Total Fracture Database (801)		Ductile Failure Excluded (681)	
	Data Count Below	Percentage Below	Data Count Below	Percentage Below
10%	100	12.5	94	13.8
5%	48	6.0	45	6.6
2%	21	2.6	19	2.8
1%	10	1.2	8	1.2

Additional Material

FFS and FADs

Fitness for Service (FFS) Evaluation

- Evaluate structural components with existing flaws
- Ability of component to serve its intended function
- Commonly used in other industries
 - Oil and Gas, Offshore, Nuclear
- Codified Procedures
 - BS 7910 "Guide to methods for assessing the acceptability of flaws in metallic structures"
 - API 579 "Fitness-for-Service"
- Multiple Levels of Rigor

Failure Assessment Diagrams (FADs)

- Limit states of Strength and Fracture
 - Interaction between the two
- Developed in 1970's for UK nuclear industry
- Normalized ratio of applied loads to resistance:
 - Brittle fracture, K_r
 - Plastic collapse, L_r
- Failure Envelope vs. Assessment Point

Riveted Bridge

- Inspection for fatigue cracks (0.125")
- 0.55 F_y and 0.75 F_y
- CVN values known

Bridge Posting? Permit Loads?

Riveted Bridge 1.2 5% Master Curve $0.75 F_{y} (L_{r} = 0.867, K_{r} = 0.772)$ **Tolerance Bound** $0.65 F_y$ (L_r = 0.752, K_r = 0.669) $0.55 F_v$ (L_r = 0.636, K_r = 0.567) 1 Fracture Toughness Ratio, K_r 0.75 F_v 0.8 0.65 F, $0.55 F_{v}$ 0.6 Increasing Load 0.4 0.2 0 0.5 0 1.5 1 Load Ratio, L_r

Fitness for Service (FFS) Evaluation

Failure Assessment Diagrams

- Provide more information to owners
- Fracture behavior not "binary"

Additional Material

Current FCP Approach

Fracture Control Plan

- 1) Material Toughness
- 2) Fabrication Requirements
- 3) In-service Inspections

Fracture Critical Members (FCM)

- Defined in multiple places
 - AASHTO/AWS
 - Code of Federal Regulations
 - American Railway Engineering and Maintenance of Way Association (AREMA)

AASHTO/AWS 2010:

Fracture critical members or member components (FCMs) are tension members or tension components of members whose failure would be expected to result in collapse of the bridge.

Fracture Critical Members (FCM)

AASHTO/AWS 2010:

Tension components of a bridge member consist of components of tension members and portions of a flexural member that are subject to tension stress. Any attachment having a length in the direction of the tension stress greater than 4 inches that is welded to a tension component of a "fracture critical" member shall be considered part of the tension component...

Fracture Critical Members (FCM)

Two Requirements:

- 1. FCM must be subjected to net tensile stresses
- 2. FCM must be determined to be non-redundant

Classification of FCMs is responsibility of the design engineer

Fracture Critical Members (FCM)

from the AAHSTO/AWS Commentary:

The fracture control plan should not be used indiscriminately by the designers as a crutch 'to be safe' and to circumvent good engineering practice. Fracture critical classification is not intended for 'important' welds on non-bridge members or ancillary products; rather it is only intended to be for those members whose failure would be expected to result in catastrophic collapse of the bridge.

Fracture Control Plan- Impact

- Design
- Material
- Fabrication
 - Shop Inspection
- Inspection Burden
 - Cost
 - Safety
- FC Avoidance
 - Many states/designers

Then versus now...

<u>1960s</u>

- Manual or simple computer structural analysis
- No explicit fatigue provisions
- No special fabrication QA/QC
- High toughness materials not economically feasible
- No knowledge of CIF
- Limited shop inspection

- 3D non-linear finite element analysis
- In-plane & distortional fatigue problems addressed
- Fracture critical fabrication per AASHTO/AWS
- High performance steels readily available
- Know to avoid intersecting welds and CIF details
- Significant advances in NDT

Advanced Shop Inspection

- Phased Array Ultrasonic Testing (PAUT)
- Potential to Characterize Defects
 - Size
 - Shape
 - Orientation
- Safer, Faster than RT

