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NCHRP 12-87a
Fracture-Critical System Analysis for Steel Bridges

R. Connor, A. Varma, F. Bonachera M., C. Korkmaz, Z. Lai



System Redundancy

Three Types of Redundancy:
1. Load Path Redundancy
2. System Redundancy
3. Internal Member Redundancy

Traditional Redundancy (Non-FC)

System Analysis
System Redundant Member (SRM)



 FEA Methodology:
 Benchmark with experimental data
 Evaluation of dynamic effects

 Loading for faulted condition
 Performance criteria for evaluation
 Bridge fabrication and detailing for fracture
 Development of guide specification

System Redundancy: Research Plan
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System Redundancy: Research Plan



 Reliability-based load combinations developed:
 Redundancy I: Instant that fracture occurs
 Redundancy II: Post-failure extended service

 Set of minimum requirements in the faulted state established
 Set of recommendations for new designs

System Redundancy: Results



 Application of methodology will lead to classification of bridges based 
on analysis, not opinion
 Further use of methodology results in simplifications
 Establishment of inspection practices based on analyzed bridge 

performance

System Redundancy: Results



 Proposed analysis has been used by Wisconsin DOT for tub girder
 A guide specification is being discussed at AASHTO
 Application examples developed

System Redundancy: Implementation



TPF-5(253): Member-level Redundancy in
Built-up Steel Members

R. Connor, M. Hebdon
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Member-level Redundancy

Three Types of Redundancy:
1. Load Path Redundancy
2. System Redundancy
3. Internal Member Redundancy

System Analysis
System Redundant Member (SRM)

Built-up Members

Traditional Redundancy (Non-FC)



 Determine whether Built-up Members are Fracture 
Resilient
 Capacity of partially failed members
 Remaining Fatigue Life
 Possible contributing parameters:

 Hole preparation (drilled vs. punched)
 Fastener type (riveted vs. high-strength bolted)
 Section properties (number of cover plates, height of web plate)

Member-level Redundancy: Objectives



 Test procedure
 Notch a component

 Controlled location (angle/cover plate)
 Not looking at initial fatigue life – already documented

 Crack growth through fatigue to critical length (LEFM)
 Cool beam to lower shelf behavior (max. temp = -60°F)

 AASHTO Zone 3 Temperature 
 Load to induce a fracture

 0.55 Fy (Minimum)
 If no fracture, grow crack and repeat
 Increase stress concentration when required

 Examine stress redistribution
 Determine fatigue life of partially failed specimen

Member-level Redundancy: Testing



 Fracture Test Conditions
 All material on lower shelf

 Single digit ft-lbs
 Test temperature -60° F (warmest)
 As low as -120° F 

 Applied stress = 0.55Fy (Minimum)
 Substantial portion of component cracked

 Greater than critical crack length per LEFM
 Multiple attempts as crack length increased

 Very challenging to obtain brittle fracture in a cracked component

Member-level Redundancy: Testing



 Fracture Test Conditions
 Load shedding
 Had to get creative

 Initial cracks were at holes
 Moved cracks to edges
 Driven wedges
 Fastener removal near crack
 Decrease constraint at crack tip
 Increase strain energy

Member-level Redundancy: Testing



 Fracture resilience
Member-level Redundancy: Testing



 3D Finite Element Modeling
 Parametric study
 Local stress distribution

Member-level Redundancy: Analytical Evaluation



 Parametric Study: Number of cover plates
Member-level Redundancy: Analytical Evaluation

𝛽𝛽𝐴𝐴𝐴𝐴 = 1 + 0.2 1 +
𝑁𝑁
4

 𝜎𝜎𝐴𝐴𝐴𝐴 = 𝛽𝛽𝐴𝐴𝐴𝐴
𝑀𝑀𝑢𝑢

𝑆𝑆𝑥𝑥−𝐴𝐴𝐴𝐴
 Where:

 𝜎𝜎𝐴𝐴𝐴𝐴 = Stress in critical component in the ‘faulted state’
 Mu = Applied moment
 𝑆𝑆𝑥𝑥−𝐴𝐴𝐴𝐴 = Section modulus in the ‘faulted state’
 𝛽𝛽𝐴𝐴𝐴𝐴 = 1 + 0.2 1 + 𝑁𝑁

4
Stress adjustment factor

 N = Number of cover plates



 Fatigue life of partially failed cross-sections
 How long until 2nd component fails?

Member-level Redundancy: Testing Phase 2



 Fatigue life of partially failed cross-sections

Member-level Redundancy: Testing Phase 2



 Fracture Resilience of Built-up Girders
 Fracture of an individual component is unlikely
 Fracture does not propagate into adjacent components

 Localized stress redistribution
 Concentrated in component adjacent to failed

 Substantial remaining fatigue life in faulted state
 Category C for drilled or subpunched & reamed holes
 Category E’ for punched holes

Member-level Redundancy: Results



Guide Specification integrate methodology for setting 
maximum intervals for hands-on inspection 
 Based on remaining fatigue life in faulted state
 Using minimum evaluation life with a safety factor on inspection 

interval
 Max hands-on inspection interval of ten (10) years
 Looking for broken components, not tiny cracks which have low 

POD

What about the FHWA memo? CFR?

Member-level Redundancy: Implementation



TPF-5(328): Design and Fabrication Standards to
Eliminate Fracture Critical Concerns in
Two Girder Bridge Systems

R. Connor, W. Collins, R. Sherman

Flange 1.5” x 18”

HPS 
Toughness

High 
Toughness

Integrated 
Fracture 
Control 

Plan



 High-performance steel (HPS)
 High-strength
 Improved weldability
 Corrosion resistance
 Increased fracture resistance

 Achieved through
 Chemical composition
 Processing

Integrated FCP



 Experimental testing
 Small-scale
 Large-scale

 FE modeling
 Fracture toughness

 Framework
 Material toughness
 Inspection interval

Integrated FCP: Overview
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Integrated FCP: Material Requirement



Plate 
Designation Specimen Type Fy tf bf hw L

(ksi) (in.) (in.) (in.) (ft.)

E
50_2-5_1B Bending 50 2.5 14 33 46
50_2-5_2B Bending 50 2.5 14 33 46
50_2-5_1A Axial 50 2.5 14 N/A 16

H

70_1-5_1B Bending 70 1.5 18 33 50
70_1-5_2B Bending 70 1.5 18 33 50
70_1-5_1A Axial 70 1.5 18 N/A 16
70_1-5_2A Axial 70 1.5 18 N/A 16

I 50_2-0_1B Bending 50 2.0 14 33 40
50_2-0_2B Bending 50 2.0 14 33 40

J 50_1-5_1A Axial 50 1.5 22 N/A 16
50_1-5_2A Axial 50 1.5 22 N/A 16

Integrated FCP: Large-scale Test Matrix



Test process

 Incremental growth
 Notch specimen
 Crack growth through fatigue
 Cool to desired behavior
 Load to induce fracture
 Repeat until fracture achieved

Grow to fracture length

Integrated FCP: Experimental Testing



Bending Test Setup
Integrated FCP: Experimental Testing



Temperature Chamber
Integrated FCP: Experimental Testing



Bending Fracture Test
Integrated FCP: Experimental Testing



Axial Test Setup
Integrated FCP: Experimental Testing



Axial Fracture Test
Integrated FCP: Experimental Testing



Test Results
Plate 

Designation Specimen Type Final Crack Fracture Load Fracture Stress Deflection
(in.) (kip) (ksi) (in.)

E
50_2-5_1B Bending 5.00 104.6 18.7 0.96
50_2-5_2B Bending 4.38 163.3 29.2 1.52
50_2-5_1A Axial 4.94 581.7 16.6 N/A

H

70_1-5_1B Bending 5.06 160.4 40.4 2.52
70_1-5_2B Bending 7.50 164.6 41.5 2.66
70_1-5_1A Axial 4.88 859.1 26.0 N/A
70_1-5_2A Axial 6.94 728.3 22.1 N/A

I 50_2-0_1B Bending 1.69 149.2 26.3 1.09
50_2-0_2B Bending 1.06 128.6 22.6 0.94

J 50_1-5_1A Axial 6.00 424.4 15.7 N/A
50_1-5_2A Axial 4.63 871.0 32.3 N/A

Integrated FCP: Experimental Testing



General Parameters

 Load at failure
 Crack length at failure
Material model
Grade 50 and 70
 Elastic properties
 Plastic properties

 Solid (continuum) elements

Integrated FCP: Analytical Evaluation



Results

Plate Designation Specimen
FEA Model J FEA Model KJ FEA KJ(1T)

(ksi*in.) (ksi√in.) (ksi√in.)

E
50_2-5_1B 0.52 128.3 156.6
50_2-5_2B 1.28 200.1 246.9
50_2-5_1A 0.64 142.7 174.8

H

70_1-5_1B 2.76* 295.8* 325.4*
70_1-5_2B 6.63* 458.2* 505.1*
70_1-5_1A 0.58 135.5 148.0
70_1-5_2A 1.88 244.0 268.1

I
50_2-0_1B 0.17* 74.2* 84.8*
50_2-0_2B 0.08 49.0 54.8

J
50_1-5_1A 1.27 200.2 219.6
50_1-5_2A 2.29 269.4 296.2

Integrated FCP: Analytical Evaluation



Critical Flaw Size

 CVNK
 Correlation from BS7910
 Lower bound

 Size correction
 Kac
 Signal Fitness-for-Service (FFS)
 Option 1 Failure Assessment Diagram (FAD)

 0.75Fy

a

Integrated FCP: Rational Inspection Interval



CURRENT SPECIFICATION

Grade Thickness
(in.)

Minimum Test 
Value Energy 

(ft.-lb.)

Minimum Average Energy (ft.-lb.)

Zone 1 Zone 2 Zone 3

HPS 50 WF to 4 24 30 @ 10 °F 30 @ 10 °F 30 @ 10 °F
HPS 70 WF to 4 28 35 @ -10 °F 35 @ -10 °F 35 @ -10 °F

HPS 100 WF
to 2.5 28 35 @ -30 °F 35 @ -30 °F 35 @ -30 °F
2.5 - 4 N/A N/A N/A N/A

POTENTIAL SPECIFICATION

Grade Thickness
(in.)

Minimum Test 
Value Energy 

(ft.-lb.)

Minimum Average Energy (ft.-lb.)

Zone 1 Zone 2 Zone 3

Damage
Tolerant TBD TBD 125 @ 0 °F 125 @ -30 °F 125 @ -60 °F

Critical Flaw Size
Integrated FCP: Rational Inspection Interval



Tolerable Crack Sizes

Grade Applied 
Stress Knew

Edge
a

(ksi) (ksi) (ksi√in.) (in.)
50 37.5 122
70 52.5 122

100 75 122

Critical Flaw Size

a

Integrated FCP: Rational Inspection Interval



Tolerable Crack Sizes

Grade Applied 
Stress Knew

Edge
a

(ksi) (ksi) (ksi√in.) (in.)
50 37.5 122 1.3
70 52.5 122 0.8

100 75 122 0.5

Critical Flaw Size

a

Integrated FCP: Rational Inspection Interval



 Initial flaw (0.125”)
 In-service stresses
 Live load stress range (3 ksi)
 R-ratio > 0.5 
Overload to 0.75Fy

 Same crack growth rate

Grade Initial
a Cycles

(ksi) (in.) (millions)
50

0.125
30.6

70 28.9
100 26.0

Fatigue Life
Integrated FCP: Rational Inspection Interval



 Set interval based on fatigue crack growth
 Assumed ADTT = 1,000
 Represents >75% of bridges (in Indiana)

 “Raw” years of life presented
 Actual inspection interval to be less

Calculate Interval
Integrated FCP: Rational Inspection Interval



Grade Initial 
a Years

Final 
Crack

(ksi) (in.) (in.)
50

0.125
83.9

70 79.2
100 71.2

Calculate Interval
Integrated FCP: Rational Inspection Interval



Grade Initial 
a Years

Final 
Crack

(ksi) (in.) (in.)
50

0.125
83.9 1.3

70 79.2 0.8
100 71.2 0.5

Summary
Integrated FCP: Rational Inspection Interval



 Fatigue life can be calculated
 Rational interval can be established
 Multiple opportunities to detect a defect

 Critical flaw size can be calculated
 Match inspection technique to flaw with POD

 Integrated fracture control plan
 Lead to safer structures
 Provide a better allocation of owner resources

Integrated FCP: Conclusions
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Fracture Mechanics Introduction



Fracture Mechanics Introduction
σ

ε
Material PropertiesLoad/Stress

Fy

Fapplied < Fy

OK

Flaws

? ?



Fracture Mechanics Introduction
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Why do flaws matter?

Stress Concentration Factor, kt
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Stress concentration factors cannot be used for infinitely sharp cracks



Fracture Mechanics Introduction

Stress Intensity Factor, K
• Characterizes crack tip conditions
• K = F x σ √πa

Function of geometry Applied Stress
Crack size (CAUTION!)

Fapplied < Fy

Material PropertiesLoad/Stress/Stress Intensity

KI < Kc

Yield StrengthApplied Stress

Fracture ToughnessApplied Stress Intensity



Fracture Mechanics Introduction

Stress Intensity Factor, K
• Material property- ASTM test methods
• Evaluate for specific:

• Temperature
• Constraint
• Loading rate



Additional Material

Weakest Link Behavior
and

Master Curve



Fracture Mechanics- Behavior



Fracture Mechanics- Behavior
Thought exercise…

P
P

• Same Material
• Same Size
• Same Load 12 Links

120 Links

Which one will break first?

The one with more links! 
Weakest Link Theory!



Future of Fracture Critical- Advances
Fracture Behavior Characterization
How do we deal with scatter in the transition region?
• Scatter in data
• Specimen size effects
• Constraint at crack tip



Future of Fracture Critical- Advances
Fracture Behavior Characterization

Master Curve
• Median initiation toughness
• Temperature dependence
• Exponential function for all 

ferritic steels

Wallin, Kim, (2000) “Master curve analysis of the “Euro” fracture 
toughness dataset," Engineering Fracture Mechanics, 69, p. 451-481.



Future of Fracture Critical- Advances
Fracture Behavior Characterization

Master Curve
• Landes and Shaffer applied statistical rationale (1980)

• Recognition of initiation points and statistical flaw distribution

• Wallin’s work adapted this to be more “engineering friendly” (1984-present)



Future of Fracture Critical- Advances
Fracture Behavior Characterization

Master Curve

𝐾𝐾𝐽𝐽𝐽𝐽(25.4) = 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 + [𝐾𝐾𝐽𝐽𝐽𝐽(𝑜𝑜) − 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚]
𝐵𝐵𝑜𝑜
𝐵𝐵25.4

1/4

𝐾𝐾𝐽𝐽𝐽𝐽(𝑚𝑚𝑚𝑚𝑚𝑚) = 30 + 70exp[0.019 𝑇𝑇 − 𝑇𝑇𝑜𝑜 ]

𝑃𝑃𝑓𝑓 = 1 − exp −
𝐾𝐾𝐽𝐽𝐽𝐽 − 20
𝐾𝐾𝑜𝑜 − 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚

4

• Size Correction- Weakest Link
• Size to 1T specimens

• Statistical Analysis of Data Scatter
• Weibull distribution probability of failure

• Median Toughness vs Temperature
• Single Value Characterization, To



Future of Fracture Critical- Advances

• Over 800 tests of conventional steel
• Early 1970’s - Present
• C(T), SE(B)
• Static, Intermediate, Dynamic
• Multiple thicknesses
• Varying testing protocols
• Linear-Elastic Fracture Mechanics

Fracture Behavior Characterization

Master Curve: Applied to “Legacy” Data
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Future of Fracture Critical- Advances

Tolerance 
Bound

Total Fracture Database (801) Ductile Failure Excluded (681)

Data Count Below Percentage Below Data Count Below Percentage Below

10% 100 12.5 94 13.8

5% 48 6.0 45 6.6

2% 21 2.6 19 2.8

1% 10 1.2 8 1.2



Future of Fracture Critical- Advances

Tolerance 
Bound

Total Fracture Database (801) Ductile Failure Excluded (681)

Data Count Below Percentage Below Data Count Below Percentage Below

10% 100 12.5 94 13.8

5% 48 6.0 45 6.6

2% 21 2.6 19 2.8

1% 10 1.2 8 1.2



Additional Material

FFS and FADs



Future of Fracture Critical- Existing Structures
Fitness for Service (FFS) Evaluation
• Evaluate structural components with existing flaws
• Ability of component to serve its intended function
• Commonly used in other industries

• Oil and Gas, Offshore, Nuclear

• Codified Procedures
• BS 7910 “Guide to methods for assessing the 

acceptability of flaws in metallic structures”
• API 579 “Fitness-for-Service”

• Multiple Levels of Rigor



Future of Fracture Critical- Existing Structures
Failure Assessment Diagrams 
(FADs)
• Limit states of Strength and 

Fracture
• Interaction between the two

• Developed in 1970’s for UK 
nuclear industry

• Normalized ratio of applied 
loads to resistance:

• Brittle fracture, Kr
• Plastic collapse, Lr

• Failure Envelope vs. 
Assessment Point



Future of Fracture Critical- Existing Structures
Riveted Bridge
• Inspection for fatigue cracks (0.125”)
• 0.55 Fy and 0.75 Fy

• CVN values known

Bridge Posting? Permit Loads?



Future of Fracture Critical- Existing Structures
Riveted Bridge



Future of Fracture Critical- Existing Structures
Riveted Bridge



Future of Fracture Critical- Existing Structures
Fitness for Service (FFS) Evaluation

Failure Assessment Diagrams
• Provide more information to owners
• Fracture behavior not “binary”



Additional Material

Current FCP Approach



Fracture Control Plan- Current Approach

Fracture Control Plan
1) Material Toughness
2) Fabrication Requirements
3) In-service Inspections



Fracture Control Plan- Current Approach
Fracture Critical Members (FCM)
• Defined in multiple places

• AASHTO/AWS
• Code of Federal Regulations
• American Railway Engineering and 

Maintenance of Way Association (AREMA)

AASHTO/AWS 2010:
Fracture critical members or member components (FCMs) are 
tension members or tension components of members whose 
failure would be expected to result in collapse of the bridge.



Fracture Control Plan- Current Approach
Fracture Critical Members (FCM)

AASHTO/AWS 2010:
Tension components of a bridge member consist of 
components of tension members and portions of a flexural 
member that are subject to tension stress. Any attachment 
having a length in the direction of the tension stress greater 
than 4 inches that is welded to a tension component of a 
“fracture critical” member shall be considered part of the 
tension component…



Fracture Control Plan- Current Approach
Fracture Critical Members (FCM)

Two Requirements:
1. FCM must be subjected to net tensile stresses
2. FCM must be determined to be non-redundant

Classification of FCMs is responsibility of the design engineer



Fracture Control Plan- Current Approach
Fracture Critical Members (FCM)

from the AAHSTO/AWS Commentary:
The fracture control plan should not be used indiscriminately 
by the designers as a crutch ‘to be safe’ and to circumvent 
good engineering practice. Fracture critical classification is not 
intended for ‘important’ welds on non-bridge members or 
ancillary products; rather it is only intended to be for those 
members whose failure would be expected to result in 
catastrophic collapse of the bridge.



Fracture Control Plan- Impact
• Design
• Material
• Fabrication

• Shop Inspection

• Inspection Burden
• Cost
• Safety

• FC Avoidance
• Many states/designers



Future of Fracture Critical- Advances

1960s 2010s
• Manual or simple computer 

structural analysis
• No explicit fatigue provisions
• No special fabrication QA/QC
• High toughness materials not 

economically feasible
• No knowledge of CIF
• Limited shop inspection

• 3D non-linear finite element 
analysis

• In-plane & distortional fatigue 
problems addressed

• Fracture critical fabrication  per 
AASHTO/AWS

• High performance steels readily 
available

• Know to avoid intersecting welds 
and CIF details

• Significant advances in NDT

Then versus now…



Future of Fracture Critical- Advances
Advanced Shop Inspection
• Phased Array Ultrasonic Testing (PAUT)
• Potential to Characterize Defects

• Size
• Shape
• Orientation

• Safer, Faster than RT
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