The Future of Fracture Critical
latest Research on FC Members

William Collins, University of Kansas

KSU Bridge Design Workshop
October 13, 2017
The Future of Fracture Critical
latest Research on FC Members

William Collins, University of Kansas

Robert Connor, Purdue University

Francisco Bonachera Martin, Purdue University
Matthew Hebdon, Virginia Tech
Ryan Sherman, University of Nevada Las Vegas

KSU Bridge Design Workshop
October 13, 2017
Background for FC Discussion
Background for FC Discussion

1967 - Silver Bridge Collapse
Background for FC Discussion

1967- Silver Bridge Collapse
1968- Material Toughness
1970
1972- AISI Project 169
1978- Fracture Control Plan
1980
1983- Mianus River Bridge Collapse
Background for FC Discussion

1967 - Silver Bridge Collapse
1968 - Material Toughness
1970 - AISI Project 169
1978 - Fracture Control Plan
1980 - Mianus River Bridge Collapse
1983 - FCP Revisions
1980’s - FCP Revisions
Background for FC Discussion

1967 - Silver Bridge Collapse
1968 - Material Toughness
1967 - Silver Bridge Collapse
1970
1972 - AISI Project 169
1978 - Fracture Control Plan
1980
1983 - Mianus River Bridge Collapse
1990
2000 - Hoan Bridge Fracture
2000
2007 - I-35 W Collapse
2010
2012 - FHWA Memo
2020

“System Redundant Member” (SRM)
NCHRP 12-87a
Fracture-Critical System Analysis for Steel Bridges

Three Types of Redundancy:

1. Load Path Redundancy
2. System Redundancy
3. Internal Member Redundancy

Traditional Redundancy (Non-FC)
System Analysis
System Redundant Member (SRM)
FEA Methodology:
- Benchmark with experimental data
- Evaluation of dynamic effects
- Loading for faulted condition
- Performance criteria for evaluation
- Bridge fabrication and detailing for fracture
- Development of guide specification
System Redundancy: Research Plan

- **FEA Methodology Benchmarking**

<table>
<thead>
<tr>
<th>Bridge</th>
<th>Type of Structure (Main Span Length)</th>
<th>Type of Failure</th>
<th>Summary of Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neville Island</td>
<td>3-span continuous 2-plate girder (350 ft)</td>
<td>Full-depth girder fracture</td>
<td>Successfully</td>
</tr>
<tr>
<td>Hoan Bridge</td>
<td>3-span continuous 3-plate girder (217 ft)</td>
<td>Multiple full-depth girder fractures</td>
<td>Successfully</td>
</tr>
<tr>
<td>UT Texas Twin Tub Girder</td>
<td>Simple span twin tub girder (120 ft)</td>
<td>Simulated full-depth fracture</td>
<td>Successfully</td>
</tr>
<tr>
<td>Milton Madison Truss</td>
<td>Simple span truss (147 ft)</td>
<td>Lower chord partial and full fracture</td>
<td>Successfully</td>
</tr>
<tr>
<td>White River</td>
<td>2-span continuous 2-plate girder (155 ft)</td>
<td>Girder fracture</td>
<td>Successfully</td>
</tr>
<tr>
<td>Dan Ryan Expressway</td>
<td>Cross-girder (40 ft)</td>
<td>Partial-depth fracture</td>
<td>AVAILABLE</td>
</tr>
</tbody>
</table>

Notes:
1. Performance criteria do not apply since it is a light rail commuter bridge.
System Redundancy: Research Plan
System Redundancy: Results

- Reliability-based load combinations developed:
 - Redundancy I: Instant that fracture occurs
 - Redundancy II: Post-failure extended service

- Set of minimum requirements in the faulted state established

- Set of recommendations for new designs
System Redundancy: Results

- Application of methodology will lead to classification of bridges based on analysis, not opinion
- Further use of methodology results in simplifications
- Establishment of inspection practices based on analyzed bridge performance
- Proposed analysis has been used by Wisconsin DOT for tub girder
- A guide specification is being discussed at AASHTO
- Application examples developed

System Redundancy: Implementation
TPF-5(253): Member-level Redundancy in Built-up Steel Members

R. Connor, M. Hebdon
Member-level Redundancy
Member-level Redundancy

Three Types of Redundancy:
1. Load Path Redundancy
2. System Redundancy
3. Internal Member Redundancy

Traditional Redundancy (Non-FC)
System Analysis
System Redundant Member (SRM)
Built-up Members
Member-level Redundancy: Objectives

- Determine whether Built-up Members are Fracture Resilient
- Capacity of partially failed members
- Remaining Fatigue Life
 - Possible contributing parameters:
 - Hole preparation (drilled vs. punched)
 - Fastener type (riveted vs. high-strength bolted)
 - Section properties (number of cover plates, height of web plate)
Member-level Redundancy: Testing

- **Test procedure**
 - Notch a component
 - Controlled location (angle/cover plate)
 - Not looking at initial fatigue life – already documented
 - Crack growth through fatigue to critical length (LEFM)
 - Cool beam to lower shelf behavior (max. temp = -60°F)
 - AASHTO Zone 3 Temperature
 - Load to induce a fracture
 - 0.55 F_y (Minimum)
 - If no fracture, grow crack and repeat
 - Increase stress concentration when required
 - Examine stress redistribution
 - Determine fatigue life of partially failed specimen
Member-level Redundancy: Testing

- Fracture Test Conditions
 - All material on lower shelf
 - Single digit ft-lbs
 - Test temperature -60° F (warmest)
 - As low as -120° F
 - Applied stress = 0.55F_y (Minimum)
 - Substantial portion of component cracked
 - Greater than critical crack length per LEFM
 - Multiple attempts as crack length increased
 - Very challenging to obtain brittle fracture in a cracked component
Member-level Redundancy: Testing

- Fracture Test Conditions
 - Load shedding
 - Had to get creative
 - Initial cracks were at holes
 - Moved cracks to edges
 - Driven wedges
 - Fastener removal near crack
 - Decrease constraint at crack tip
 - Increase strain energy
Member-level Redundancy: Testing

- Fracture resilience

Specimen 46-3
Member-level Redundancy: Analytical Evaluation

- 3D Finite Element Modeling
 - Parametric study
 - Local stress distribution
Member-level Redundancy: Analytical Evaluation

- **Parametric Study: Number of cover plates**

\[\beta_{AF} = 1 + 0.2 \left(1 + \frac{N}{4} \right) \]

- **\(\sigma_{AF} = \beta_{AF} \frac{M_u}{S_{x-AF}} \)**

- Where:
 - \(\sigma_{AF} \) = Stress in critical component in the ‘faulted state’
 - \(M_u \) = Applied moment
 - \(S_{x-AF} \) = Section modulus in the ‘faulted state’
 - \(\beta_{AF} = 1 + 0.2 \left(1 + \frac{N}{4} \right) \) Stress adjustment factor
 - \(N \) = Number of cover plates
Member-level Redundancy: Testing Phase 2

- Fatigue life of partially failed cross-sections
 - How long until 2nd component fails?
Member-level Redundancy: Testing Phase 2

- Fatigue life of partially failed cross-sections
Member-level Redundancy: Results

- Fracture Resilience of Built-up Girders
 - Fracture of an individual component is unlikely
 - Fracture does not propagate into adjacent components

- Localized stress redistribution
 - Concentrated in component adjacent to failed

- Substantial remaining fatigue life in faulted state
 - Category C for drilled or subpunched & reamed holes
 - Category E’ for punched holes
Guide Specification integrate methodology for setting maximum intervals for hands-on inspection

Based on remaining fatigue life in faulted state
 - Using minimum evaluation life with a safety factor on inspection interval
 - Max hands-on inspection interval of ten (10) years
 - Looking for broken components, not tiny cracks which have low POD

What about the FHWA memo? CFR?
TPF-5(328): Design and Fabrication Standards to Eliminate Fracture Critical Concerns in Two Girder Bridge Systems

Flange 1.5” x 18”

Integegrated Fracture Control Plan

SPECIMEN 70_1-5_2B

R. Connor, W. Collins, R. Sherman
Integrated FCP

- High-performance steel (HPS)
 - High-strength
 - Improved weldability
 - Corrosion resistance
 - Increased fracture resistance

- Achieved through
 - Chemical composition
 - Processing
Integrated FCP: Overview

- Experimental testing
 - Small-scale
 - Large-scale
- FE modeling
 - Fracture toughness
- Framework
 - Material toughness
 - Inspection interval
Integrated FCP: Material Requirement

- CVN energy: 125 ft-lbf
Integrated FCP: Large-scale Test Matrix

<table>
<thead>
<tr>
<th>Plate Designation</th>
<th>Specimen</th>
<th>Type</th>
<th>(F_y) (ksi)</th>
<th>(t_f) (in.)</th>
<th>(b_f) (in.)</th>
<th>(h_w) (in.)</th>
<th>(L) (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>50_2-5_1B</td>
<td>Bending</td>
<td>50</td>
<td>2.5</td>
<td>14</td>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>E</td>
<td>50_2-5_2B</td>
<td>Bending</td>
<td>50</td>
<td>2.5</td>
<td>14</td>
<td>33</td>
<td>46</td>
</tr>
<tr>
<td>E</td>
<td>50_2-5_1A</td>
<td>Axial</td>
<td>50</td>
<td>2.5</td>
<td>14</td>
<td>N/A</td>
<td>16</td>
</tr>
<tr>
<td>H</td>
<td>70_1-5_1B</td>
<td>Bending</td>
<td>70</td>
<td>1.5</td>
<td>18</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>H</td>
<td>70_1-5_2B</td>
<td>Bending</td>
<td>70</td>
<td>1.5</td>
<td>18</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>H</td>
<td>70_1-5_1A</td>
<td>Axial</td>
<td>70</td>
<td>1.5</td>
<td>18</td>
<td>N/A</td>
<td>16</td>
</tr>
<tr>
<td>H</td>
<td>70_1-5_2A</td>
<td>Axial</td>
<td>70</td>
<td>1.5</td>
<td>18</td>
<td>N/A</td>
<td>16</td>
</tr>
<tr>
<td>I</td>
<td>50_2-0_1B</td>
<td>Bending</td>
<td>50</td>
<td>2.0</td>
<td>14</td>
<td>33</td>
<td>40</td>
</tr>
<tr>
<td>I</td>
<td>50_2-0_2B</td>
<td>Bending</td>
<td>50</td>
<td>2.0</td>
<td>14</td>
<td>33</td>
<td>40</td>
</tr>
<tr>
<td>J</td>
<td>50_1-5_1A</td>
<td>Axial</td>
<td>50</td>
<td>1.5</td>
<td>22</td>
<td>N/A</td>
<td>16</td>
</tr>
<tr>
<td>J</td>
<td>50_1-5_2A</td>
<td>Axial</td>
<td>50</td>
<td>1.5</td>
<td>22</td>
<td>N/A</td>
<td>16</td>
</tr>
</tbody>
</table>
Integrated FCP: Experimental Testing

Test process

- Incremental growth
 - Notch specimen
 - Crack growth through fatigue
 - Cool to desired behavior
 - Load to induce fracture
 - Repeat until fracture achieved

- Grow to fracture length
Integrated FCP: Experimental Testing

Bending Test Setup
Integrated FCP: Experimental Testing

Temperature Chamber
Integrated FCP: Experimental Testing

Bending Fracture Test
Integrated FCP: Experimental Testing
Axial Test Setup
Integrated FCP: Experimental Testing

Axial Fracture Test
Test Results

Integrated FCP: Experimental Testing

<table>
<thead>
<tr>
<th>Plate Designation</th>
<th>Specimen</th>
<th>Type</th>
<th>Final Crack (in.)</th>
<th>Fracture Load (kip)</th>
<th>Fracture Stress (ksi)</th>
<th>Deflection (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>50_2-5_1B</td>
<td>Bending</td>
<td>5.00</td>
<td>104.6</td>
<td>18.7</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>50_2-5_2B</td>
<td>Bending</td>
<td>4.38</td>
<td>163.3</td>
<td>29.2</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>50_2-5_1A</td>
<td>Axial</td>
<td>4.94</td>
<td>581.7</td>
<td>16.6</td>
<td>N/A</td>
</tr>
<tr>
<td>H</td>
<td>70_1-5_1B</td>
<td>Bending</td>
<td>5.06</td>
<td>160.4</td>
<td>40.4</td>
<td>2.52</td>
</tr>
<tr>
<td></td>
<td>70_1-5_2B</td>
<td>Bending</td>
<td>7.50</td>
<td>164.6</td>
<td>41.5</td>
<td>2.66</td>
</tr>
<tr>
<td></td>
<td>70_1-5_1A</td>
<td>Axial</td>
<td>4.88</td>
<td>859.1</td>
<td>26.0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>70_1-5_2A</td>
<td>Axial</td>
<td>6.94</td>
<td>728.3</td>
<td>22.1</td>
<td>N/A</td>
</tr>
<tr>
<td>I</td>
<td>50_2-0_1B</td>
<td>Bending</td>
<td>1.69</td>
<td>149.2</td>
<td>26.3</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>50_2-0_2B</td>
<td>Bending</td>
<td>1.06</td>
<td>128.6</td>
<td>22.6</td>
<td>0.94</td>
</tr>
<tr>
<td>J</td>
<td>50_1-5_1A</td>
<td>Axial</td>
<td>6.00</td>
<td>424.4</td>
<td>15.7</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>50_1-5_2A</td>
<td>Axial</td>
<td>4.63</td>
<td>871.0</td>
<td>32.3</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Integrated FCP: Analytical Evaluation

General Parameters

- Load at failure
- Crack length at failure
- Material model
 - Grade 50 and 70
 - Elastic properties
 - Plastic properties
- Solid (continuum) elements
Integrated FCP: Analytical Evaluation

Results

<table>
<thead>
<tr>
<th>Plate Designation</th>
<th>Specimen</th>
<th>FEA Model J (ksi*in.)</th>
<th>FEA Model K<sub>J</sub> (ksiVin.)</th>
<th>FEA K<sub>J(1T)</sub> (ksiVin.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>50_2-5_1B</td>
<td>0.52</td>
<td>128.3</td>
<td>156.6</td>
</tr>
<tr>
<td></td>
<td>50_2-5_2B</td>
<td>1.28</td>
<td>200.1</td>
<td>246.9</td>
</tr>
<tr>
<td></td>
<td>50_2-5_1A</td>
<td>0.64</td>
<td>142.7</td>
<td>174.8</td>
</tr>
<tr>
<td>H</td>
<td>70_1-5_1B</td>
<td>2.76*</td>
<td>295.8*</td>
<td>325.4*</td>
</tr>
<tr>
<td></td>
<td>70_1-5_2B</td>
<td>6.63*</td>
<td>458.2*</td>
<td>505.1*</td>
</tr>
<tr>
<td></td>
<td>70_1-5_1A</td>
<td>0.58</td>
<td>135.5</td>
<td>148.0</td>
</tr>
<tr>
<td></td>
<td>70_1-5_2A</td>
<td>1.88</td>
<td>244.0</td>
<td>268.1</td>
</tr>
<tr>
<td>I</td>
<td>50_2-0_1B</td>
<td>0.17*</td>
<td>74.2*</td>
<td>84.8*</td>
</tr>
<tr>
<td></td>
<td>50_2-0_2B</td>
<td>0.08</td>
<td>49.0</td>
<td>54.8</td>
</tr>
<tr>
<td>J</td>
<td>50_1-5_1A</td>
<td>1.27</td>
<td>200.2</td>
<td>219.6</td>
</tr>
<tr>
<td></td>
<td>50_1-5_2A</td>
<td>2.29</td>
<td>269.4</td>
<td>296.2</td>
</tr>
</tbody>
</table>
Critical Flaw Size

- **CVN→K**
 - Correlation from BS7910
 - Lower bound
 - Size correction
- **K→a_c**
 - Signal Fitness-for-Service (FFS)
 - Option 1 Failure Assessment Diagram (FAD)
 - 0.75F_y

Integrated FCP: Rational Inspection Interval
CURRENT SPECIFICATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Thickness (in.)</th>
<th>Minimum Test Value Energy (ft.-lb.)</th>
<th>Minimum Average Energy (ft.-lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zone 1</td>
</tr>
<tr>
<td>HPS 50 WF</td>
<td>to 4</td>
<td>24</td>
<td>30 @ 10 °F</td>
</tr>
<tr>
<td>HPS 70 WF</td>
<td>to 4</td>
<td>28</td>
<td>35 @ -10 °F</td>
</tr>
<tr>
<td>HPS 100 WF</td>
<td>to 2.5</td>
<td>28</td>
<td>35 @ -30 °F</td>
</tr>
<tr>
<td></td>
<td>2.5 - 4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

POTENTIAL SPECIFICATION

<table>
<thead>
<tr>
<th>Grade</th>
<th>Thickness (in.)</th>
<th>Minimum Test Value Energy (ft.-lb.)</th>
<th>Minimum Average Energy (ft.-lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zone 1</td>
</tr>
<tr>
<td>Damage Tolerant</td>
<td>TBD</td>
<td>TBD</td>
<td>125 @ 0 °F</td>
</tr>
</tbody>
</table>
Integrated FCP: Rational Inspection Interval

Critical Flaw Size

<table>
<thead>
<tr>
<th>Grade (ksi)</th>
<th>Applied Stress (ksi)</th>
<th>(K_{\text{new}}) (ksi√in.)</th>
<th>Edge a (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>37.5</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>52.5</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>
Integrated FCP: Rational Inspection Interval

Critical Flaw Size

<table>
<thead>
<tr>
<th>Grade (ksi)</th>
<th>Applied Stress (ksi)</th>
<th>K_{new} (ksi√in.)</th>
<th>Edge a (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>37.5</td>
<td>122</td>
<td>1.3</td>
</tr>
<tr>
<td>70</td>
<td>52.5</td>
<td>122</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>75</td>
<td>122</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Integrated FCP: Rational Inspection Interval

Fatigue Life

- Initial flaw (0.125”)
- In-service stresses
 - Live load stress range (3 ksi)
 - R-ratio > 0.5
 - Overload to 0.75F_y
- Same crack growth rate

<table>
<thead>
<tr>
<th>Grade (ksi)</th>
<th>Initial a (in.)</th>
<th>Cycles (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.125</td>
<td>30.6</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>28.9</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>26.0</td>
</tr>
</tbody>
</table>
Set interval based on fatigue crack growth

Assumed ADTT = 1,000
 - Represents >75% of bridges (in Indiana)

“Raw” years of life presented
 - Actual inspection interval to be less
Integrated FCP: Rational Inspection Interval

Calculate Interval

<table>
<thead>
<tr>
<th>Grade (ksi)</th>
<th>Initial Crack (in.)</th>
<th>Years</th>
<th>Final Crack (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.125</td>
<td>83.9</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0.125</td>
<td>79.2</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.125</td>
<td>71.2</td>
<td></td>
</tr>
</tbody>
</table>
Integrated FCP: Rational Inspection Interval Summary

<table>
<thead>
<tr>
<th>Grade (ksi)</th>
<th>Initial (in.)</th>
<th>Years</th>
<th>Final Crack (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.125</td>
<td>83.9</td>
<td>1.3</td>
</tr>
<tr>
<td>70</td>
<td>0.125</td>
<td>79.2</td>
<td>0.8</td>
</tr>
<tr>
<td>100</td>
<td>0.125</td>
<td>71.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Integrated FCP: Conclusions

- Fatigue life can be calculated
 - Rational interval can be established
 - Multiple opportunities to detect a defect
- Critical flaw size can be calculated
 - Match inspection technique to flaw with POD
- Integrated fracture control plan
 - Lead to safer structures
 - Provide a better allocation of owner resources
Acknowledgements

Robert Connor, Purdue University
Francisco Bonachera Martin, Purdue University
Matthew Hebdom, Virginia Tech
Ryan Sherman, University of Nevada Las Vegas
Thank You!

William Collins, Ph.D., P.E.
Assistant Professor
University of Kansas
Office: 785.864.0672
E-mail: william.collins@ku.edu
Additional Material

Fracture Mechanics Introduction
Fracture Mechanics Introduction

Load/Stress

Material Properties

Flaws

\[F_{\text{applied}} < F_y \]

OK

σ

ε

\[F_{\text{Y}} \]

? ?
Fracture Mechanics Introduction

Why do flaws matter?

Stress Concentration Factor, k_t

$$\sigma_{\text{max}} = k_t \times \sigma_{\text{nom}}$$
Fracture Mechanics Introduction

Stress concentration factors cannot be used for infinitely sharp cracks

\[k_t = 3 \]

\[k_t = 1 + 2a/b \]
Fracture Mechanics Introduction

Stress Intensity Factor, K
- Characterizes crack tip conditions
- $K = F \times \sigma \sqrt{\pi a}$

Function of geometry

Crack size (CAUTION!)

Applied Stress

Load/Stress/Stress Intensity Material Properties

Applied Stress $F_{applied} < F_y$ Yield Strength

Applied Stress Intensity $K_l < K_c$ Fracture Toughness
Fracture Mechanics Introduction

Stress Intensity Factor, K
- Material property - ASTM test methods
- Evaluate for specific:
 - Temperature
 - Constraint
 - Loading rate
Additional Material

Weakest Link Behavior

and

Master Curve
Fracture Mechanics - Behavior

Fracture Toughness

Temperature

Upper Shelf

Transition Region

Lower Shelf
Fracture Mechanics - Behavior

Thought exercise...

- Same Material
- Same Size
- Same Load

Which one will break first?

12 Links

120 Links

The one with more links! Weakest Link Theory!
Future of Fracture Critical - Advances

Fracture Behavior Characterization

How do we deal with scatter in the transition region?

• Scatter in data
• Specimen size effects
• Constraint at crack tip
Future of Fracture Critical- Advances

Fracture Behavior Characterization

Master Curve

- Median initiation toughness
- Temperature dependence
- Exponential function for all ferritic steels

Future of Fracture Critical- Advances

Fracture Behavior Characterization

Master Curve
• Landes and Shaffer applied statistical rationale (1980)
• Recognition of initiation points and statistical flaw distribution
• Wallin’s work adapted this to be more “engineering friendly” (1984-present)
Future of Fracture Critical- Advances

Fracture Behavior Characterization

Master Curve

- Median Toughness vs Temperature
 - Single Value Characterization, T_o
- Size Correction- Weakest Link
 - Size to 1T specimens

\[K_{JC(25.4)} = K_{min} + [K_{JC(o)} - K_{min}] \left(\frac{B_o}{B_{25.4}} \right)^{1/4} \]

- Statistical Analysis of Data Scatter
 - Weibull distribution probability of failure

\[P_f = 1 - \exp \left\{ - \left[\frac{K_{JC} - 20}{K_o - K_{min}} \right]^4 \right\} \]
Future of Fracture Critical- Advances

Fracture Behavior Characterization

Master Curve: Applied to “Legacy” Data

- Over 800 tests of conventional steel
- Early 1970’s - Present
- C(T), SE(B)
- Static, Intermediate, Dynamic
- Multiple thicknesses
- Varying testing protocols
- Linear-Elastic Fracture Mechanics
Future of Fracture Critical - Advances

Test Temperature (°F)

K_{eff} (MPa$^{	ext{m}}$, M$^{	ext{m}}$)

0 100 200 300 400 500

K_{eff} (ksi$,^{	ext{in}}$, M$^{	ext{m}}$)

0 100 200 300 400 500

Cleavage
Ductile
Future of Fracture Critical - Advances

![Diagram showing fracture critical values with labels for Cleavage, Ductile, Master Curve, and various tolerance levels. The x-axis represents temperature deviation from a reference temperature T_0 ($^\circ$C), and the y-axis represents $1T_Kc$ values in MPa m$^{1/2}$ and ksi in$^{1/2}$.)
Future of Fracture Critical - Advances

![Graph showing the relationship between 1TKc (MPa m^1/2) and (T - T_o) (°C). The graph includes data points for cleavage and various tolerance bands.](image-url)
<table>
<thead>
<tr>
<th>Tolerance Bound</th>
<th>Total Fracture Database (801)</th>
<th>Ductile Failure Excluded (681)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Count Below</td>
<td>Percentage Below</td>
</tr>
<tr>
<td>10%</td>
<td>100</td>
<td>12.5</td>
</tr>
<tr>
<td>5%</td>
<td>48</td>
<td>6.0</td>
</tr>
<tr>
<td>2%</td>
<td>21</td>
<td>2.6</td>
</tr>
<tr>
<td>1%</td>
<td>10</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Future of Fracture Critical - Advances

<table>
<thead>
<tr>
<th>Tolerance Bound</th>
<th>Total Fracture Database (801)</th>
<th>Ductile Failure Excluded (681)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Count Below</td>
<td>Percentage Below</td>
</tr>
<tr>
<td>10%</td>
<td>100</td>
<td>12.5</td>
</tr>
<tr>
<td>5%</td>
<td>48</td>
<td>6.0</td>
</tr>
<tr>
<td>2%</td>
<td>21</td>
<td>2.6</td>
</tr>
<tr>
<td>1%</td>
<td>10</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Additional Material

FFS and FADs
Future of Fracture Critical - Existing Structures

Fitness for Service (FFS) Evaluation

- Evaluate structural components with existing flaws
- Ability of component to serve its intended function
- Commonly used in other industries
 - Oil and Gas, Offshore, Nuclear
- Codified Procedures
 - BS 7910 “Guide to methods for assessing the acceptability of flaws in metallic structures”
 - API 579 “Fitness-for-Service”
- Multiple Levels of Rigor
Future of Fracture Critical - Existing Structures

Failure Assessment Diagrams (FADs)

- Limit states of Strength and Fracture
 - Interaction between the two
- Developed in 1970’s for UK nuclear industry
- Normalized ratio of applied loads to resistance:
 - Brittle fracture, K_r
 - Plastic collapse, L_r
- Failure Envelope vs. Assessment Point

![Fracture Toughness Ratio vs. Load Ratio](image-url)
Riveted Bridge

- Inspection for fatigue cracks (0.125”)
- 0.55 F_y and 0.75 F_y
- CVN values known

Bridge Posting? Permit Loads?
Future of Fracture Critical - Existing Structures

Riveted Bridge

Fracture Toughness Ratio, K_F

Load Ratio, L_r

5% Master Curve Tolerance Bound

0.75 F_Y ($L_r = 0.867$, $K_F = 0.772$)

0.65 F_Y ($L_r = 0.752$, $K_F = 0.669$)

0.55 F_Y ($L_r = 0.636$, $K_F = 0.567$)

Increasing Load
Future of Fracture Critical - Existing Structures

Riveted Bridge

[Graph showing the relationship between Fracture Toughness Ratio, K_f, and Load Ratio, L_r. The graph includes various tolerance bounds and master curve tolerance bounds.]
Future of Fracture Critical- Existing Structures

Fitness for Service (FFS) Evaluation

Failure Assessment Diagrams
• Provide more information to owners
• Fracture behavior not “binary”
Additional Material

Current FCP Approach
Fracture Control Plan- Current Approach

Fracture Control Plan

1) Material Toughness
2) Fabrication Requirements
3) In-service Inspections
Fracture Control Plan - Current Approach

Fracture Critical Members (FCM)

• Defined in multiple places
 • AASHTO/AWS
 • Code of Federal Regulations
 • American Railway Engineering and Maintenance of Way Association (AREMA)

AASHTO/AWS 2010:

Fracture critical members or member components (FCMs) are tension members or tension components of members whose failure would be expected to result in collapse of the bridge.
Fracture Control Plan- Current Approach

Fracture Critical Members (FCM)

AASHTO/AWS 2010:

Tension components of a bridge member consist of components of tension members and portions of a flexural member that are subject to tension stress. Any attachment having a length in the direction of the tension stress greater than 4 inches that is welded to a tension component of a “fracture critical” member shall be considered part of the tension component...
Fracture Control Plan- Current Approach

Fracture Critical Members (FCM)

Two Requirements:
1. FCM must be subjected to net tensile stresses
2. FCM must be determined to be non-redundant

Classification of FCMs is responsibility of the design engineer
Fracture Control Plan- Current Approach

Fracture Critical Members (FCM)

from the AAHSTO/AWS Commentary:

The fracture control plan should not be used indiscriminately by the designers as a crutch ‘to be safe’ and to circumvent good engineering practice. Fracture critical classification is not intended for ‘important’ welds on non-bridge members or ancillary products; rather it is only intended to be for those members whose failure would be expected to result in catastrophic collapse of the bridge.
Fracture Control Plan- Impact

• Design
• Material
• Fabrication
 • Shop Inspection
• Inspection Burden
 • Cost
 • Safety
• FC Avoidance
 • Many states/designers
Future of Fracture Critical- Advances

Then versus now...

1960s
- Manual or simple computer structural analysis
- No explicit fatigue provisions
- No special fabrication QA/QC
- High toughness materials not economically feasible
- No knowledge of CIF
- Limited shop inspection

2010s
- 3D non-linear finite element analysis
- In-plane & distortional fatigue problems addressed
- Fracture critical fabrication per AASHTO/AWS
- High performance steels readily available
- Know to avoid intersecting welds and CIF details
- Significant advances in NDT
Future of Fracture Critical - Advances

Advanced Shop Inspection

• Phased Array Ultrasonic Testing (PAUT)
• Potential to Characterize Defects
 • Size
 • Shape
 • Orientation
• Safer, Faster than RT