What you should have learned from yesterday’s exercise:

In general, the sum of the terms of an arithmetic sequence is equal to:

Does the rule work when there are an odd number of terms? How can it if one term is not paired?

Example: Given the 9-term sequence: 5, 10, 15, 20, 25, 30, 35, 40, 45
Find the sum using the above stated rule.

First, pair up all the terms a_1+a_9, a_2+a_8, a_3+a_7, a_4+a_6. The left over term is a_5.

Question: How does a_5 compare to the sum of each pair (for example, a_1+a_9)?

So the generalized rule for finding the sum of an arithmetic sequence with first term a_1 and last term a_n is:

Example: Let’s find the sum of the sequence: -12, 6, 24,..., 888, 906

A) What is the first term? $a_1 =$ ____

B) What is the last term? $a_n =$ ____

C) How many terms are in this sequence? $n =$ ____

D) Find the Sum.
Notations

S_n denotes the sum of the first n terms of a sequence. In other words it is the “n^{th} partial sum.”

Example: What is S_5 of the sequence defined by $a_n = 1.5 + 2n$?

SUMMATION NOTATION (Sigma)

A series can also be denoted using Sigma Notation.

Example: $\sum_{n=1}^{4} (3n - 2) =$

Example: $\sum_{n=1}^{44} (26 - 2n) =$

HW: p. 605 #’s 46-53, 57, 59, 61, 63-68