A pulsing paradigm is regarded as general for all scales of ecosystems. The pulsing succession view insists that a resource-dependent system will approach its peak through intensive consumption of resources, then move towards recession and get ready for the next cycle. All systems prevail by regular pulsing. One of the pulsing patterns operating in the universe is the system of humanity and its Earth basis. The past several centuries of growth of our civilization on the previous accumulations of fuels and other resource reserves is recognized as one of four stages in the pulsing cycle of global civilization. Whereas a steady state is not possible, our human system will persist in the long run if we learn to adapt to the appropriate stage in the alternating sequence of growth and descent. We are presently in the stage of transition, and descent will be next. By developing policies and plans now for making descent prosperous, we can be ready when the shocks of change galvanize the attention of society.

This two-term Terminal Design Studio will focus on the development of typologies that circumvent the existing, growth-oriented, economic model. Students will imagine architecture for new forms of labor, new understandings of resources, and new notions of economic organization and ecological stewardship. This studio will apply and combine an array of methods for analysis and synthesis throughout the duration of our study. Together in this studio, we will critically explore the development of design solutions that balance environmental and economic considerations, allowing us to prioritize design alternatives that maximize real wealth, the whole economy, and the public benefit.

The vehicle for this exploration will be the conception, design and development of an Industrial Shed for the 21st Century. Students will design a building focused on an industrial process, the exact program of which will emerge from each student's personal interests and curiosities as well as a collective studio context analysis. The more nuanced program for the Industrial Facility will be developed in the Winter term as part of a collective studio planning study and will typically consist of between 30,000 - 60,000 square feet of space accommodating large scale production, areas for research and development, meeting rooms, offices, etc.; essentially large, medium and small spaces. Students will identify and develop strategies for site and program development focused around their particular industry of choice.
Our design explorations will focus generally around the Tillamook region of Oregon, with particular focus on development of the Port of Tillamook Bay. Stories of first nations describing the fertile lands, grassy meadows, hills rich with timber and game, and waters abounding with fish attracted Oregon immigrant families to the Coast Ranges of the Tillamook region during the era of westward expansion. The land currently occupied and operated by the Port of Tillamook Bay has experienced massive dynamic pulses of matter, energy and information throughout its history. These transformations have been particularly concentrated in the past century. The Port of Tillamook Bay (POTB), the largest full-service industrial park on the Oregon Coast, is located on land that was formerly occupied by Naval Air Station (NAS) Tillamook, which was the home of a blimp squadron during World War II. NAS Tillamook was decommissioned in 1948. With the departure of the Navy, the former base came under the jurisdiction of the Tillamook County Airport Commission, a precursor to the POTB. The site included two timber blimp hangars (one which has since burnt down), the airport, and other buildings and infrastructure. Today, the Port manages the airport, accommodates an array of businesses and government agencies, utility services and offers tourist-oriented attractions and services with the Airport Museum and RV Park.

This research-intensive design studio will build upon existing POTB planning documents and analysis. Based on this information, students will work in large teams for the Winter term to develop cohesive master planning and zoning as well as develop design guidelines for the entire site based on the general categories of Tourism & Recreation, Industry & Agriculture, and Research & Development. This studio will follow a collaborative model, where students will work in groups for site analysis, master planning, and the development of specific industrial building programs. Students will have the opportunity to form teams around a shared focus for the design and development of their particular facility in the Spring term. The expectation is that students will develop a comprehensive building design process that considers everything from the molecular to the territorial. This will be an intensive research-focused design studio and will be organized with several focused ‘workshops’ intended to help students to develop and deploy a design process leading to a forward-thinking comprehensive building design that maximizes positive feedback to its larger environment. While we will inevitably be considering the economic factors related to industrial development, of far greater interest will be the ecological value of these facilities and how they contribute to the way we might best live together in this century.