What fine-grained data about a location, its environment and human use to visualize information and create new knowledge about a proposed architecture?

Information and social identity are pervading the way journalism is news and power is understood. This is particularly true for athletics/physiology and data-based science communication research in journalism. They inform our behaviors and the choices we make. The collection of data via sensors, surveillance, point-of-sale and geo-located data is captured in ways we are aware and unaware. As students, researchers and educators study and share knowledge in this digital environment, the role of new physical building comes to question traditional notions to bring in or filter out the physical and atmospheric real-time environmental conditions at that location. What role does design innovation about human scale data visualization play in this hybrid space?

This architecture studio will focus on the development of a real-world feasibility study for additional space for the University of Oregon School of Journalism by confronting its bucolic physical setting on the UO campus as a refuge from the increasingly complex and confrontational global processes including climate change and social inequity unrest. The role of the physical building with unprecedented remote working in the face of Covid 19 will be considered as an accelerated normal of workplace design in the future.


Objective: 1) learn data collection and visualization; 2) work through evidence-based design methods; and 3) design-team collaboration with a real-world client, architect and consultants.

Architectural Design Description
Students will develop a project based on the issues mentioned above for a 20,000 square foot Allen Hall addition or new free-standing building at the University of Oregon in Eugene, Oregon.

Highlights
Real-world project with UO School of Journalism Dean Juan-Carlos Molleda, Aaron Olsen of UO Campus Planning and architectural reviewers including Florian Idenburg of Solid Objectives. Possible support for model materials, design assistance TA and structural consulting.

Data-Visualization and urban design computation Grasshopper definitions, methods and Arduino sensor prototypes from UO Grit Studio 2019, Barcelona Urban Design Program 2018 and 2017 as well as the Atmosphere + Design course. Associate Professor Speranza will leverage experience from his own design studio Speranza Architecture + Urban Design as well as work at the offices of Steven Holl in NY and Carlos Ferrater in Barcelona.