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Paleoclimatic time series from Permian and Triassic paleosols reveal transient episodes of unusually warm and
wet conditions, interrupting long periods of cool and dry conditions usual for calcareous red paleosols. Some
of these paleoclimatic events are known from stomatal index of fossil Lepidopteris leaves to have been episodes
of elevated global atmospheric CO2. The magnitude of 19 known Permian and Triassic greenhouse crises varied
considerably, and theyoffer new evidence for the relationship between paleoclimate and atmospheric CO2 levels.
These greenhouse crises also had marked effects on global lowland vegetation, introducing frost-sensitive trop-
ical lycopsids to high latitudes and drought-tolerant conifers to low latitude lowlands. Greenhouse events punc-
tuate phases in plant evolution (Ottokaria–Callipteris, Plumsteadia–Rufloria, Lidgettonia–Tatarina, Pleuromeia, and
Dicroidium–Scytophyllum floras). Greenhouse events also punctuate the evolution of reptilian dynasties (succes-
sive pelycosaur, dinocephalian, dicynodont, rhynchosaur and dinosaur faunas) and respiratory adaptations (such
as enlarged bony secondary palate). Greenhouse crises of the Late and Middle Permian were the most severe
known, and suggest a role for atmospheric pollutionwith CH4 and CO2 in thosemass extinction events, probably
from thermogenic cracking of coals by intrusive feeder dikes of flood basalts. Because of formalities in boundary
definition these mass extinctions are neither “end-Permian” nor “end-Guadalupian”, but upper Changhsingian
and mid-Capitanian, respectively.
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1. Introduction

By the year 2100, atmospheric CO2 partial pressures are predicted
to triple, from pre-industrial levels of 280 ppm to some 856 ppm
(+70/−101 ppm: using emission scenario A2, very heterogeneous
world with continued population growth of Solomon et al., 2007).
Such changes are unprecedented in Quaternary records (Lüthi et al.,
ssociation for Gondwana Research.
2008), and are best tested by proxies for atmospheric CO2 deeper in
geological time (Royer, 2006). The Permian and Triassic periods offer
an array of greenhouse crises (Retallack, 2005a, 2009a), including the
largest known Phanerozoic CO2 levels coincident with the largest
known Phanerozoic mass extinction (Retallack and Jahren, 2008). Fur-
thermore, high resolution sequences of paleosols now show that
many Permian and Triassic greenhouse crises were geologically abrupt
transients (Retallack, 2009a), in some cases on time scales comparable
with the current greenhouse crisis driven by fossil fuel consumption
(Solomon et al., 2007). Lacustrine deposits yield fossil leaf stomatal
index evidence for Early Triassic CO2 plummeting from 3860 to 305,
Published by Elsevier B.V. All rights reserved.
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Fig. 1. Late Permian map of the world showing non-marine Permian–Triassic boundary sections of calcareous red beds (Table 1) and of coal measures (Table 2). Marine boundary
sections are too numerous to be depicted at this map scale (91 sites are listed by Korte and Kozur, 2010).
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then 417 and 3510 ppm, all within only 130,000 years (Retallack et al.,
2011). Isotopic proxies for Late Permian atmospheric methane reveal
dramatic fluctuations (−5‰ δ13Corg) within as few as 800 annual
varves (Retallack and Jahren, 2008). Permian–Triassic greenhouse
crises were abrupt and often brutal. Gases such as methane from ther-
mogenic cracking of coal by large intrusive precursors to Siberian trap
lavas have been suggested as causes of these Late Permian and Early
Triassic greenhouse crises (Retallack and Jahren, 2008; Grasby et al.,
2011). Also likely were massive volcanic emissions of HCl (Sobolev
et al., 2011) and Hg (Sanei et al., 2012). Other kill mechanisms include
degassing of H2S, CH4 or CO2 from an anoxic and acidified ocean
(Grice et al., 2005; Kump et al., 2005; Şengör and Atayman, 2009),
release of marine and permafrost methane clathrate or gas (Heydari
and Hassandzadeh, 2003; Ryskin, 2003), or impact of large asteroids
or comets (Becker et al., 2001, 2004). Such events were not restricted
to the Late Permian and Early Triassic: Emeishan flood basalts may
coincide with mid-Capitanian mass extinction (Retallack and Jahren,
2008; Retallack et al., 2011) and Wrangellia flood basalts may coincide
with early Carnian biotic overturn (Dal Corso et al., 2012).

This review concerns not such theories (ably reviewed by Korte
et al., 2010), but rather empirical evidence for timing and duration of
Table 1
Calcareous red bed Permian–Triassic boundary sections.

Locality GPS position Perm

Arlit, Niger N7.251954 E17.717555 Mor
Bernal Mesa, New Mexico, USA N35.39339 W105.29997 Ber
Bethulie, South Africa S30.415899 E26.262209 Balf
Bovevaya Gora, Russia N51.304616 E54.907964 Kul
Cap Rock Canyons, Texas, USA N34.45346 W101.081580 Alib
Carlton Heights, South Africa S31.295033 E24.915155 Balf
Commando Drift, South Africa S32.169550 E26.0533317 Balf
Dickens, Texas, USA N33.62552 W100.81791 Alib
Lootsberg Pass, South Africa S31.852132 E24.873138 Balf
Obernsees, Germany N49.914927 E11.374448 Brö
Sambullak, Russia N51.877001 E56.207016 Kul
Taodonggou, NW China N43.260342 E88.978817 Guo
Tarlong, NW China N43.263978 E89.036817 Guo
Tuyembetka, Russia N51.918510 E56.337648 Kul
Tweefontein, South Africa S31.798666 E24.79219 Balf
Wapadsberg, South Africa S31.923139 E24.923139 Balf
Permian and Triassic CO2 greenhouses fromnon-marine rock sequences
(Fig. 1), primarily paleosols of calcareous red beds (Table 1) and peaty
wetlands (Table 2). The marine record of atmospheric CO2 and paleo-
climate is muted and imprecise (Rothman, 2002; Berner, 2006), and
has been reviewed elsewhere (Korte and Kozur, 2010). Much work on
the Permian–Triassic boundary has focused on coal measure sequences
with well-preserved fossil pollen and leaves (Kazarinova, 1979;Wright
and Askin, 1987; Sadovnikov and Orlova, 1990; Retallack, 1995, 1999;
Morante, 1996; Wang, 1996; Krull and Retallack, 2000; de Wit et al.,
2002; Sarkar et al., 2003; Retallack et al., 2005, 2006, 2007; Lindström
and McLoughlin, 2007; Johnson et al., 2008; Sadovnikov, 2008, 2011;
Krassilov and Karasev, 2009; Mogutcheva and Krugovykh, 2009;
Davies et al., 2010; Mogutcheva and Naugolnykh, 2010). This paper
instead emphasizes ongoing studies of calcareous red beds (Retallack
et al., 2003; Retallack, 2005a; Coney et al., 2007; Szurlies, 2007; Taylor
et al., 2009; Inosemtsev and Targulian, 2010; Tabor et al., 2011;
Thomas et al., 2011; Benton et al., 2012; Newell et al., 2012), with
their distinctive aridland paleosols (Aridosols, Alfisols, and Vertisols)
and fossil vertebrates (Figs. 2–3). There have been difficulties
understanding the Permian–Triassic transition in calcareous red beds
because plant fossils are rare to lacking (Gastaldo et al., 2005), and
ian formations Triassic formations References

adi Formation Telqua Formation Tabor et al., 2011
nal Fm. Anton Chico Fm. Retallack, 2005a
our Fm. Katberg Sandstone Retallack et al., 2003
chumovskaya Kopanskaya Svita Taylor et al., 2009
ates Fm. Dewey Lake Fm. Retallack, 2005a
our Fm. Katberg Sandstone Retallack et al., 2003
our Fm. Katberg Sandstone Coney et al., 2007
ates Fm. Dewey Lake Fm. Retallack, 2005a
our Fm. Katberg Sandstone Retallack et al., 2003
ckelschiefer Geinhausen Fm. Szurlies, 2007
chumovskaya Kopanskaya Svita Taylor et al., 2009
deking Fm. Jiucaiyuan Fm. Thomas et al., 2011
deking Fm. Jiucaiyuan Fm. Thomas et al., 2011
chumovskaya Kopanskaya Svita Taylor et al., 2009
our Fm. Katberg Sandstone Ward et al., 2005
our Fm. Katberg Sandstone Ward et al., 2005



Table 2
Coal measure Permian–Triassic boundary sections.

Locality GPS position Permian formations Triassic formations References

Allan Hills, Antarctica S76.70240 E159.73623 Weller C.M. Feather Congl. Retallack et al., 2005
Banspetali (Raniganj), India N23.617511 E86.895819 Raniganj Fm. Panchet Fm. Sarkar et al., 2003
Chahe, Guizhou, China N26.688496 E103.778506 Kayitou Fm. Dongchuan Fm. Shen et al., 2011
Chuanyan, Sichuan, China N28.169361 E105.082111 Wangjiazhai Fm. Feixuanguan Fm. Shen et al., 2011
Coalcliff, NSW, Australia S34.256251 E150.973237 Eckersley Fm. Coal Cliff Ss. Retallack, 1999
Coalsack Bluff, Antarctica S84.23898 E162.29979 Buckley C.M. Fremouw Fm. Retallack et al., 2005
Coxs Gap. NSW, Australia S32.435836 E150.207014 Farmers Ck Fm. Widdin Brook Retallack, 1999
Denison bore, Qld, Australia S23.749425 E147.89658 Rangal Coal M. Rewan Fm. Morante, 1996
Eddystone 1, Qld, Australia S24.955465 E148.518282 Rangal Coal M. Rewan Fm. Morante, 1996
Fad'yu Kuda River, Siberia N74.083645 E97.650238 Zverinskaya Sv. Betlinskaya Sv. Sadovnikov and Orlova, 1990
Godavari Coalfield, India N17.964679 E80.759085 Raniganj Fm. Panchet Fm. de Wit et al., 2002
Graphite Peak, Antarctica S85.05211 E172.36832 Buckley C.M. Fremouw Fm. Retallack et al., 2005
Jiaocheng, North China N37.569273 E112.122137 Sunjiagiou Fm. Liujiagou Fm. Wang, 1996
Korar Coalfield, India N23.181065 E82.337245 Raniganj Fm. Panchet Fm. de Wit et al., 2002
Gagarii Island, Siberia N63.772339 E97.510260 Bugariktinskaya Nidimskaya Sv. Kozur and Weems, 2011
Guanbachong, Yunnan, China N27.404333 E103.56325 Xuanwei Fm. Dongchuan Fm. Shen et al., 2011
Longmendong, Sichuan, China N29.584556 E103.41533 Xuanwei Fm. Dongchuan Fm. Shen et al., 2011
Mide, Yunnan, China N26.236943 E104.596324 Kayitou Fm. Dongchuan Fm. Shen et al., 2011
Mirn'i, Siberia N61.996139 E113.861321 Bugarikta Svita Ukugutskoi S. Kazarinova, 1979
Morondava, Madagascar S21.359622 E45.506862 Lower Sakamena Mid-Sakamena Wright and Askin, 1987
Mount Crean, Antarctica S77.87383 E159.53333 Weller C.M. Feather Congl. Retallack et al., 2005
Murrays Run bore, Australia S33.071585 E151.15253 Redmanville Ck. Dooralong Sh. Retallack, 1999
Nebrudovo, Russia N60.149611 E45.816111 Vyaznikovian Nebrudovian Krassilov and Karasev, 2009
Noril'sk, Siberia N69.37439 E88.127041 Nadezhdinskaya Mokulaevskaya Sadovnikov and Orlova, 1990
Novokutznetsk, Siberia N54.388827 E87.534582 Yerunakovskaya Mal'tsevskaya Davies et al., 2010
Portal Mountain, Antarctica S78.10784 E159.36727 Weller C.M. Feather Congl. Retallack et al., 2006
Shapeless Mountain, Antarctica S77.43797 E160.47073 Weller C.M. Feather Congl. Retallack et al., 2005
Talcher Basin, India N20.960523 E85.123355 Raniganj Fm. Panchet Fm. de Wit et al., 2002
Tsaagan Tolgoy, Mongolia N42.560157 E105.361833 Tsaagan Tolgoy Tavan Tolgoy Johnson et al., 2008
Tucheng, Guizhou, China N25.654341 E104.371393 Kayitou Fm. Dongchuan Fm. Shen et al., 2011
Vyazniki, Russia N56.318194 E42.138806 Vyaznikovian Nebrudovian Krassilov and Karasev, 2009
Wardha Coalfield, India N20.052258 E79.305261 Raniganj Fm. Panchet Fm. de Wit et al., 2002
Whaleback Bluff, Antarctica S70.528349 E68.257439 Bainmedart C.M. Flagstone Bench Lindström and McLoughlin, 2007
Wybung Head, NSW, Australia S33.197483 E151.621853 Karignan Congl. Dooralong Sh. Retallack, 1999
Zhongzhai, Guizhou, China N26.156435 E105.287076 Wangjiazhai Fm. Feixuanguan Fm. Shen et al., 2011

92 G.J. Retallack / Gondwana Research 24 (2013) 90–103
vertebrate fossils are sporadic in occurrence (Benton et al., 2004;
Ward et al., 2005; Gastaldo et al., 2009). Fortunately, paleosols provide
a remarkably complete record of Permian and Triassic climate and
vegetation that can be used to supplement paleontological records
(Retallack et al., 2003; Retallack, 2005a; Thomas et al., 2007, 2011;
Taylor et al., 2009). Unlike paleosols of coal measures which were
partially or entirely waterlogged as they sank below thick peats and
were isolated from the atmosphere, formerly well drained paleosols of
calcareous red beds formed over substantial periods of time (millennia)
in full contact with the atmosphere and biosphere (Retallack, 1997a,
2001). These paleosols are massive and hackly from the activity of
roots and burrows disrupting original bedding of sedimentary parent
materials, and have a horizon of calcareous nodules below surface
rooted horizons (Figs. 2b, d, and 3b, d). These modified beds punctuate
long sequences of alluvial and aridland sedimentary deposits (Figs. 2a, c,
and 3a, c). Many features of such red calcareous paleosols can be used as
quantitative proxies for past CO2 and a variety of paleoclimatic param-
eters (Retallack, 2005a, 2009b; Sheldon and Tabor, 2009), as reviewed
here. Furthermore, these greenhouse crises had marked effects on
animals and plants and their fossil record of the Permian and Triassic,
as also reviewed here.

2. Materials and methods

Many paleosol sequences are now known in Permian and Triassic
calcareous red beds (Table 1) and coal measures (Table 2). Calcareous
red paleosols of the Karoo Basin of South Africa (Fig. 2a–b: Retallack
et al., 2003; Ward et al., 2005), Cis-Uralian Russia (Fig. 2c–d: Benton
et al., 2004; Inosemtsev and Targulian, 2010) and Niger (Tabor et
al., 2011) are known for their fossil vertebrates. More revealing
sequences, because of the abundance of paleosols, have now been
found in Texas–Oklahoma (Fig. 3c–d) and Utah–New Mexico
(Fig. 3a–b). Utah–New Mexico has a composite sequence of paleosols
ranging from the base of the Permian to the top of the Triassic
(Retallack, 2009a), which can be used as a paleoclimatic standard
until other records are comparably documented. Because of the
data-density of paleosols in the red rock country of Utah and New
Mexico, this region reveals the transient and non-periodic nature,
and varied magnitude, of paleoclimatic events. These events were
defined (by Retallack, 2009a) as proxies more than 2 standard devia-
tions beyond a 10-point runningmean value.Many of the paleoclimatic
excursions were short-lived events (100,000 years or less) and they
were separated in time by millions to tens of millions of years. Of the
19 Permian and Triassic paleoclimatic events, 5 were clustered within
the 4.4-million-year span of the Early Triassic (time scale revised from
Gradstein et al., 2004, by Ovtcharova et al., 2006; Shen et al., 2011).

Identification of paleoclimatic excursions requires close attention to
meter level of each paleosol within stratigraphic sections. Paleosols are
ubiquitous in red beds that have already been studied for radiometric
dating of ashes, or paleomagnetic stratigraphy. With meter levels of
geochronological tie points the relative age of each paleosol can then
be inferred by linear regression of meter level versus geological age in
local sections (Retallack, 2005a, 2009a). Abrupt climate shifts are also
apparent from paleoclimatic proxies plotted by meter level (Tabor et
al., 2002; Tabor andMontañez, 2004; Tabor, 2007). Such transients can-
not be detected in time series lumping paleoclimatic proxy data by
formations (Ekart et al., 1999; Montañez et al., 2007), by biostrati-
graphic zones (Angielczyk and Walsh, 2008), or within 10 million
year or longer bins (Rothman, 2002; Berner, 2006). Such data
smoothing lacks stratigraphic resolution required to identify transient
paleoclimatic excursions.

Thousands of Permian and Triassic paleosols have now been docu-
mented, but most are known only from reconnaissance studies.
Detailed description and naming of particular kinds of paleosols, or



Fig. 2. Calcareous red bed sections of the Karoo Basin, South Africa (a–b) and Cis-Uralian Russia (c–d). (a) Laminites of upper Palingkloof Member of Balfour Formation (0 to −5 m in
section of Retallack et al., 2003), with sandstones of Katberg Formation in hills behind at Lootsberg Pass. (b) Karie pedotype paleosol in uppermost PalingkloofMember of Balfour Forma-
tion (18.7 m in section of Retallack et al., 2003) at Lootsberg Pass. (c) Sandstone of Kopanskaya Suite above paleosols of Kulchumovskaya Suite at Krasnogor (Mikhail Surkov's head is at
0 m in section of Taylor et al., 2009). (d) Permian calcareous nodular paleosol of Kulchumovskaya Suite at Bovevaya Gora (162 m in section of Taylor et al., 2009). Images c–d are courtesy
of Timothy Kearsey.
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pedotypes, are needed for two reasons. First, pedotypes provide specific
reference profiles for testing alternate hypotheses. For example, Tabor
et al. (2007) argued that Permian and Triassic paleosols at Carlton
Heights, South Africa, were formerly waterlogged and so unsuitable
proxies for atmospheric CO2 or paleoclimate. The paleosols in question
were described (by Retallack et al., 2003) as Sedibo pedotype and their
waterlogging acknowledged, but interpretative limitations of those
few paleosols do not apply to other pedotypes at Carlton Heights or
elsewhere in South African rocks of equivalent age (Fig. 2a–b).
Gastaldo et al. (2009) suggested correlation of a laminite unit 8 m
above the Permian–Triassic transition laminites at Bethulie, South Africa,
but the lower laminites are unmistakably different in grain size (clay–silt
versus silt–sand), color (dark red-gray versus light greenish gray) and
associated paleosols (Zam versus Barathi pedotypes respectively:
Retallack et al., 2003). Pedotype terminology allows precision in paleosol
description and naming.

Second, pedotypes represent fundamental interpretive units, each
requiring individual interpretation of soil-forming factors. Unlike lake
deposits with their confusing mix of leaves from various sources
(Gastaldo et al., 2005), paleosols preserve the roots, trunks and leaf
litters of plant growing within them (Retallack and Krull, 1999). Poorly
drained Triassic paleosols supported lycopsids with hollow roots and
corms (Cylostrobus on Warriewood pedotype), whereas well drained
Triassic paleosols of the same formations supported seed ferns
(Dicroidium on Avalon pedotype) and conifers (Voltziopsis on Long
Reef pedotype), with copiously branching woody roots (Retallack,
1997b, 1997c). Similarly bones of vertebrates can be carried by streams
far from their habitats (Retallack et al., 2007), but the skeletons of
animals buried in their burrows and disarticulated within paleosols
are good guides to paleocommunities. For example, South African
Kuta pedotype yielded only Lystrosaurus, often within burrows (Bordy
et al., 2011), but the nearby Patha pedotype included a more diverse
assemblage of Lystrosaurus, Proterosuchus, Owenetta, and a whaitsiid
carnivore (Retallack et al., 2003). The Permian–Triassic therapsids
Lystrosaurus and Diictodon were burrowers in well drained soils (Kuta
and Som pedotypes respectively), and not as was once thought, aquatic

image of Fig.�2


Fig. 3. Calcareous red bed sections of Bernal Mesa, NewMexico (a–b) and Caprock Canyons, Texas (c–d), U.S.A. (a) Red beds of the Bernal Formation overlain by sandstones of the Anton
Chico Formation (near top ofmesa) viewed from south. (b) Deep-calcic paleosol within upper Bernal Formation (34.6 m in section of Retallack, 2005a). (c) Red beds of Alibates Formation
(lowest gully) overlain by Dewey Lake Formation viewed from west. (d) Deep-calcic paleosol within Dewey Lake Formation (11.7 m in section of Retallack, 2005a).
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creatures (Smith, 1987; Groenewald, 1991). Likely therocephalian
therapsid burrows from the Early Triassic of Antarctica described by
Sidor et al. (2008) are common in the Gregory pedotype at 183 m in
the section of Retallack and Krull (1999), whereas Lystrosaurus and
Thrinaxodon have been found in Dolores pedotype paleosols elsewhere
in Antarctica (Retallack and Hammer, 1998). There are few large collec-
tions of Permian and Triassic fossils tied to particular pedotypes, but
paleocommunities would be better understood if careful note of associ-
ated paleosols were made.

3. Paleoclimatic records

3.1. Paleoprecipitation

Paleoprecipitation can be estimated for paleosols from depth to
carbonate nodules (Do in cm), which increases in modern soils with
mean annual precipitation (R in mm) following Eq. (1) below
(R2=0.52, standard error±147 mm). In other words, modern soils
with deep calcareous nodular (Bk) horizons form in humid climates
and those with shallow nodular horizons in arid climates (Retallack,
2005b).

R ¼ 137:24þ 6:45Do−0:013Do
2 ð1Þ

In using depth to Bk as a proxy for paleoprecipitation, allowance
needs to bemade for burial compaction of the paleosols, which reduces
depth to Bk, using a standard compaction equation (Sheldon and
Retallack, 2001). Depths in paleosols can also be compromised by
erosion under paleochannels or by vertic displacement, but these
effects are avoided by field observations in large outcrops (Retallack
et al., 2003). Higher than modern atmospheric CO2 may increase
depth to carbonate nodules in soils, but an increase from 280 to
3080 ppmv modeled by McFadden and Tinsley (1985) increased
depth to pedogenic carbonate only 5 cm, so this correction is seldom
necessary. Another control of depth to Bk in modern soils is respired
CO2 in the soil, a measure of secondary productivity, but this is closely
correlated with mean annual precipitation in modern soils (Retallack,
2009b). Permian and Triassic ecosystems do not appear to have been

image of Fig.�3
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so physiognomically distinct from modern vegetation to require a pro-
ductivity correction, but such corrections may be needed for Devonian
and geologically older paleosols (Retallack and Huang, 2011).

Another useful paleohyetometer for paleosols was devised by
Sheldon et al. (2002) based on chemical index of alteration without
potash (CIA−K=A=100 mAl2O3/(mAl2O3+mCaO+mNa2O), in
moles), which increases with mean annual precipitation (R in mm)
in modern soils (R2=0.72; S.E.=±182 mm), as follows.

R ¼ 221e0:0197A ð8Þ

This formulation is based on the hydrolysis equation of weathering,
which enriches alumina at the expense of lime, magnesia, potash and
soda.Magnesia is ignored because it is not significant formost sedimen-
tary rocks, and potash is left out because it can be enriched during deep
burial alteration of sediments (Maynard, 1992). One limitation of this
method is that it conflates weathering that contributed to production
of sedimentary parent material with weathering within the paleosol:
full profile mass balance may be needed to address this problem
(Retallack and Huang, 2011). Another problem in application to calcar-
eous paleosols is that the proxy was devised only for non-calcareous
parts of paleosols, not calcareous nodules which can be tiny and
scattered in their distribution: any analysis with more than 3 wt.%
CaO should be not be used as a proxy.

Such estimates of paleoprecipitation for Permian and Triassic calcar-
eous paleosols are presented in Fig. 4b–d using the Bk proxy, and for
non-calcareous paleosols in Fig. 4e using the CIA−K proxy. The Sydney
Basin sequence includes coal measures of a more humid region
(Retallack et al., 2011) than the aridlands represented by Utah
(Retallack, 2009a), Texas (Retallack, 2005a) and South Africa
(Retallack et al., 2003). The Karoo Basin was the driest of these regions,
and has indications of loess and declining precipitation to the east as in
the Karoo desert today (Retallack et al., 2003). Despite regional differ-
ences and some intervals of sparse or missing data (uninflected parts
of time series in Fig. 4), the principal spikes in paleoprecipitation appear
synchronous globally.
Fig. 4. Utah–New Mexico paleoclimatic proxy record (after Retallack, 2009a) compared with
(Retallack, 2009a), Texas–Oklahoma and South Africa (Retallack, 2005a), and from analysis for
Other aspects of paleoprecipitation, such as seasonality can be
inferred from spread of carbonate nodules within profiles: modern
monsoonal soils have carbonate noduleswidely spread though the pro-
file, whereas soils with less seasonal precipitation have more focused
horizons of nodules (Retallack, 2005b). Results of such observations
for Permian and Triassic paleosols of Utah and New Mexico did not
show increased monsoonal seasonality at times of high CO2 (Retallack,
2009a). Monsoonal seasonality requires particular local geographic
contrasts between land and sea temperatures (Solomon et al., 2007).

Another approach to paleoseasonality is the use of soil morpholo-
gy as well as geochemical proxies for evapotranspiration and energy
input from precipitation to estimate vegetation types. Application
of these proxies for earliest Permian paleosols of Texas and New
Mexico found basal and mid Asselian, and lower Sakmarian spikes
in paleoprecipitation represented by wet forests, in contrast to other
times of moist forest and desert shrubland (Gulbranson et al., 2011).

3.2. Paleotemperature

A useful paleotemperature proxy for paleosols devised by Sheldon
et al. (2002) uses alkali index (N=(K2O+Na2O)/Al2O3 as a molar
ratio), which is related tomean annual temperature (T in °C) inmodern
soils by Eq. (2) (R2=0.37; S.E.=±4.4 °C). This inverse relationship
may reflect increase alkali mobilization in warm soils.

T ¼ −18:52 N þ 17:22 ð2Þ

Such estimates of paleotemperature for Permian and Triassic
paleosols are presented in Fig. 5b–c. These data show spikes in paleo-
temperature corresponding to most of the spikes in paleoprecipitation
(Bk proxy Fig. 5a). Paleotemperatures for Sydney Basin (Fig. 5c) non-
calcareous paleosols are reasonable for such a high-latitude site, but
those for paleotropical Utah–New Mexico (Fig. 5b) are unrealistically
low, and may indicate that this proxy was compromised by salt precip-
itation in semiarid climates, which were poorly represented in the
training set of modern soils (Sheldon et al., 2002). Study of phyllosili-
cate and hematite isotopic composition (δD and δ18O) in Late
paleoprecipitation estimated for compaction-corrected depth to Bk in Utah–New Mexico
chemical index of alteration minus potash in the Sydney, Australia (Retallack et al., 2011).
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Fig. 5. Utah–New Mexico paleoclimatic proxy record (after Retallack, 2009a) compared with paleotemperature time series estimated from chemical analysis for alkali index in
Utah–New Mexico (Retallack, 2009a), and Sydney Australia (Retallack et al., 2011).
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Pennsylvanian–Early Permian (305–280 Ma) paleosols of nearby Texas
have been taken as evidence of paleotemperatures of 24–37 °C, with
abrupt rises in the basal andmiddle Asselian (Tabor, 2007). Comparable
earliest Triassic temperature rises have been proposed fromoxygen iso-
topic depletion in tropical marine carbonates fromChina (Joachimski et
al., 2012). These isotopic analyses are evidence that some paleoclimatic
spikes were oppressively hot in the tropics.

4. CO2 greenhouse proxies

The CO2 paleobarometer of Retallack (2009a) can be used to esti-
mate atmospheric CO2 (C in ppmv) from stomatal index (I in %) of fossil
plants with preserved cuticles. Eq. (3) for atmospheric CO2 was based
on greenhouse experimental data with living Ginkgo and on counting
of herbarium specimens of Ginkgo collected during the rapid and ongo-
ing post-industrial rise of atmospheric CO2. Ginkgo is found in Late
Triassic and later rocks, but fossil seed ferns such as Lepidopteris have
comparable stomatal structure to living Ginkgo and similar stomatal
index to Ginkgo when found within the same deposits (Retallack,
2002). This inverse relationship quantifies the observation that plant
leaves have fewer stomates when atmospheric CO2 is high than when
atmospheric CO2 is low, because stomates also mitigate water loss
(Wynn, 2003).

C ¼ 294:1þ 1
4:84� 10−10
� �

I7:93

" #
ð3Þ

The compilation of Permian and Triassic CO2 determinations from
stomatal index of fossil Lepidopteris shown in Fig. 6b and Table 3 is
mainly from Retallack (2009a), with additions from Vörding and Kerp
(2008), Chaney et al. (2009), Bonis et al. (2010), Bomfleur et al.
(2011b), and Retallack et al. (2011). The highest calculated levels of
CO2, a staggering 7832±1676 ppm (2σ error by Gaussian propagation)
at the Late Permianmass extinction horizon is 28 times the postglacial–
preindustrial CO2 levels of 280 ppmv (Solomon et al., 2007). Most of
the paleoclimatic transients identified in Utah–New Mexico (Fig. 6a)
are represented by spikes in atmospheric CO2 (Fig. 6b). Also found are
numerous intervening times when CO2 was a near modern
300–500 ppmv (Fig. 6b). Modern CO2 values are rising: the year 2011
peaked at 394 ppm in June at Mauna Loa, Hawaii (Tans and Keeling,
2011).

Organic carbon isotopic data for the Permian and Triassic can also be
regarded as an indirect proxy for atmospheric CO2 because extremely
low isotopic values can only be plausibly explained using isotopic
mass balance by atmospheric injection of large amounts of isotopically
light CH4 (Krull and Retallack, 2000; Retallack and Jahren, 2008).
Unusually large negative isotopic excursions have been found at 122
Permian–Triassic boundary sections around the world (Korte and
Kozur, 2010). Methane itself is a potent greenhouse gas, and in addition
would have oxidized to CO2 within a decade (Solomon et al., 2007).
These isotopic records are thus indirect evidence for volatility of atmo-
spheric greenhouse gas composition, and the unusual magnitude of
Permian–Triassic boundary events. Because abundant methane is indi-
cated by very negative isotopic values (Krull and Retallack, 2000),
spikes in CO2 levels from stomatal index (Fig. 6b) and in the Bk paleocli-
matic proxy (Fig. 6a) correspond with troughs in isotopic composition
of organic matter (Fig. 6c). This is only an indicator of greenhouse
extremes, because other factors come into play at moderate carbon
isotopic compositions (Retallack and Jahren, 2008; Korte and Kozur,
2010). For example, another unusual characteristic of the isotopic com-
position of Permian fossil plants is an increased difference in carbon
isotopic composition compared with coeval marine carbonate (Δ13C),
and this has beenused byBeerling et al. (2002) to confirmmodel results
of Berner (2006) suggesting atmospheric O2 high as 35% during the Late
Carboniferous and Permian, but much less (16%) during the early
Triassic.

Atmospheric CO2 can also be estimated from carbon isotopic compo-
sition of paleosol carbonate and organic matter, because there is a
marked difference in isotopic compositions of carbon in CO2 of open
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Fig. 6. Utah–NewMexico paleoclimatic proxy record (after Retallack, 2009a) compared with carbon dioxide estimates across the Permian–Triassic boundary from Lepidopteris stomatal
index (Retallack, 2009a; Bonis et al., 2010; Retallack et al., 2011) and carbon isotope composition of organic matter in the Sydney Basin, Australia (after Retallack et al., 2011).
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air (about −6.5‰ δ13C) and respired in soil air (about −26‰ δ13C in
model soil of Cerling, 1991). At times of high atmospheric CO2, diffusion
of isotopically heavy atmospheric CO2 into a soil with isotopically light
respired CO2 increases the isotopic value fixed within low magnesium
calcite of soil carbonate. These calculations require not only (1) carbon
isotopic composition of carbonate, but (2) atmospheric CO2 isotopic
composition from paleosol organic matter (Arens et al., 2000), which
may have to be modeled to offset effects of plant decomposition
(Wynn, 2007), (3) paleotemperature from paleosol chemical composi-
tion (Sheldon et al., 2002) or oxygen isotope (δ18O) composition of
phyllosilicates (Tabor, 2007) or carbonate (Dworkin et al., 2005), and
(4) respired soil CO2 concentrations from depth to paleosol Bk
(Retallack, 2009a) corrected for burial compaction (Sheldon and
Retallack, 2001). These complex equations are difficult for the Permian
Table 3
Permian–Triassic greenhouse crises, events and non-marine Lagerstätten.

Ma Geological age PCO2 (ppmv) Notable and other events

203.6 Base Rhaetian 6121 Lepidosuars and testudines div
216.5 Base Norian 3074 Mammals and dinosaurs divers
228.0 Base Carnian 1887 Phytosaurs and cheirolepid con
236.0 Lower Ladinian 1517 Gnetaleans diversify
237.0 Base Ladinian (≈1600) End of coal gap
242.0 Middle Anisian (≈2000) Bennettites diversify
246.8 Base Anisian 3860 Rhynchosaurs and pteridosperm
250.8 Base Spathian (≈3000) Pleuromeialian acme
251.5 Base Smithian (≈3000) Pleuromeialian acme
252.0 Base Dienerian 2882 Pleuromeialian acme
252.1 Lower Griesbachian 7243 Pleuromeialian acme
252.3 Upper Changhsingian 7832 Mass extinction, Siberian Traps
262.0 Middle Capitanian 4766 Mass extinction, Emeishan Trap
270.6 Lower Roadian 1887 End of pelycosaurs, coal flora, P
275.6 Lower Kungurian 1745 Voltzialean conifers diversify
280.0 Middle Artinskian (≈1000) End P2 glaciaton: lakes with M
292.0 Lower Sakmarian 1369 End P1 glaciation
297.0 Middle Asselian (≈1500) Lakes with Micromelerpeton
299.0 Lower Asselian (≈1000) Lakes with jellyfish

Note: The pCO2 estimates are from stomatal index of Lepidopteris (Retallack, 2009a; Bonis
relative strength of paleoclimatic proxy (Retallack, 2009a). Glaciations (P1–4) are after Fiel
from Benton (1983).
Triassic boundary interval when atmospheric carbon isotopic composi-
tion fluctuated so wildly, but nevertheless the few pedogenic estimates
available confirm both spikes of about 5000 ppm for the Permian–
Triassic transition (Thomas et al., 2007) and 1300–1600 ppm for early
Late Triassic (Prochnow et al., 2006), as well as other times when CO2

was an unremarkable 300–500 ppm (Ekart et al., 1999; Montañez et
al., 2007).

Another indication of elevated atmospheric CO2 may be pedogenic
dolomite nodules, because most modern soils and paleosols from
times of low atmospheric CO2 have low magnesian calcite nodules
(Retallack, 2009a; Kearsey et al., 2012). The reason for this temporal
correlation has been unclear until recently. Now, Zhang et al. (2012)
report the formation of disordered dolomite at room temperature
by the dehydrating action of sugars derived from extracellular
Non-marine Lagerstätten References

ersify Redonda Johnson et al., 2002
ify Solite Olsen and Johansson, 1994
ifers diversify Madygen Grimaldi and Engel, 2005

St. Peters Woodward, 1908
Brookvale Wade, 1935
Sidmouth Benton and Spencer, 1995

s diversify Hangviller Etter, 2002
Gosford Woodward, 1890
Velikhorestskoe Shishkin et al., 2000
Vikundu Hankel, 1992
Maji ya Chumvi Hankel, 1992

, coal gap Anakit Shishkin, 1998
s, end P4 Rapid City Hussakof, 1916
3 glaciation Koštálov Milner, 1981

Tschekarda Grimaldi and Engel, 2005
esosaurus Worcester MacRae, 1999

Elmo Grimaldi and Engel, 2005
Odernheim Witzmann and Pfritzschner, 2003
Gottlob Gand et al., 1996

et al., 2010; Retallack et al., 2011), but those in round numbers are interpolated from
ding et al. (2008). Plant events are from Anderson et al. (2007) and vertebrate events
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polysaccharides of microbes. This effect is more marked with galactose
from methanogens, sulfur reducing and fermenting bacteria than with
glucose from cyanobacteria and plants, implying that greenhouse
spike aridland soils have differentmicrobial communities than icehouse
aridland soils.

Other proxies for former atmospheric CO2 include mass balance
models of sedimentary carbon and sulfur (Berner, 2006), and strontium
isotopic values of marine carbonates (Rothman, 2002), but these
marine records calculated in steps of 10 million years misleadingly
show longperiods of very high CO2, unlike the transient spikes apparent
from pedogenic carbonate (Prochnow et al., 2006) and stomatal index
data (Fig. 6). Marine algal carbon isotope composition (Kaufman and
Xiao, 2003; Freeman and Pagani, 2005), and base depletion of paleosols
(Sheldon, 2006), have low precision, but have been usefully applied to
unusually high levels of Precambrian CO2. Alkenone organic carbon
compared with foraminiferal carbonate carbon isotopes (Freeman and
Pagani, 2005), and foraminiferal boron isotopes (Pearson and Palmer,
1999) have been applied to Cenozoic records only, because they are vul-
nerable to organic thermal maturation and carbonate diagenesis. The
alkenone and boron proxies are compromised by variations in river
input to the ocean (Royer et al., 2001). Goethite-occluded carbonate
in paleosols can also be used as CO2 proxy (Tabor and Yapp, 2005),
but it is rarely preserved in paleosols as old as Permian and Triassic
because of burial dehydration of goethite to hematite (Retallack,
1997a, 2001).

5. Vegetation crises

The Late Permian (upper Changhsingian) mass extinction termi-
nated glossopterids, gigantopterids, tree lycopsids and cordaites,
which were major contributors to coals in the southern hemisphere,
China, and northern hemisphere, respectively (Sadovnikov and
Orlova, 1990; Wang, 1996; Retallack et al., 2006; Shen et al., 2011).
Thismass extinction ofwetland plantswas at a time of unusually anoxic
swamp soils (Sheldon and Retallack, 2002), and ushered in a 15 million
Fig. 7. Utah–New Mexico paleoclimatic proxy record (after Retallack, 2009a) compared wit
thus frost sensitive terminal meristems in the Sydney Basin, Australia (after Retallack et al.
year hiatus in peat formation (“coal gap” of Retallack et al., 1996). Other
Permian and Triassic greenhouse events also correspond to stages in evo-
lution of wetland floras: Early Permian Callipteris–Ottokaria flora, Middle
Permian Plumsteadia–Rufloria flora, Late Permian Lidgettonia–Tatarina
flora, latest Permian–Early Triassic Pleuromeia flora, andMiddle–Late Tri-
assic Dicroidium–Scytophyllum flora (Ottokaria, Plumsteadia and Lidget-
tonia are reproductive structures attached to Glossopteris leaves;
Dobruskina, 1980; Meyen, 1982; Retallack, 2005a; Retallack et al.,
2006). Early Permian vegetation was decidedly archaic, with broadleaf
seed ferns and tree lycopsids not much different from Carboniferous
swamp vegetation, but by the Late Triassic, modern clades of conifers,
cycads and gnetaleans were diverse (Anderson et al., 2007; DiMichele
et al., 2008; Xiong and Wang, 2011).

Greenhouse events were not only turning points in plant evolution,
but also promoted transient crisis vegetation. A narrow horizon of
conifer-dominated floras from the basal Middle Permian (Roadian) of
Texas for example is anomalous within a sequence dominated by
broadleaved seed ferns (DiMichele et al., 2001). Greenhouse warming
in this paleotropical region may have created evapotranspiration levels
intolerable to many broadleaved plants. Other greenhouse transients of
latest Permian to Early Triassic floras worldwide are represented by
assemblages of non-arborescent isoetalean lycopsids, including the
oldest known fossils of the living genus Isoetes (Retallack, 1997c;
Naugolnykh and Mogutcheva, 2006), and a variety of allied extinct
genera such as Pleuromeia, Cylostrobus, Tomiostrobus, Gagariostrobus
and Mesenteriophyllum (Wang, 1996; Mogutcheva and Naugolnykh,
2010; Bomfleur et al., 2011a; Sadovnikov, 2011). The large apical meri-
stemof these plants would havemade them frost sensitive, likemodern
palms and cacti (Retallack et al., 2011), and yet they are locally common
with high paleolatitude floras of southeastern Australia (Retallack,
1997c) and Siberia (Sadovnikov, 2011). Greenhouse warming events
may have enabled dispersal from tropical to polar regions.

In the high paleolatitude Sydney Basin, Australia, times of green-
house crisis (Fig. 7a) coincided with spikes of lycopsid spore diversity
(Fig. 7b) and large diameter leafy axes (Fig. 7c). Most (but not all) of
h spikes in diversity of tropical lycopsid spores and of plants with large leafy axes, and
, 2011).
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these large leafy axes and lycopsid sporeswere isoetaleans (Retallack et
al., 2011), which are restricted to particular narrow horizons (Retallack,
1997c). There are comparable successive acme zones of Tomiostrobus in
Siberia (Sadovnikov, 2011) and of Pleuromeia in North China (Wang,
1996). Intervening strata between these lycopsid spikes are dominated
by conifers, seed ferns, ferns and horsetails, which represent the normal
high-latitude floras of those regions. Thus Permian and Triassic green-
house spikeswere responsible forwidespread but transient distribution
of thermophilic lycopsids, on unusually short time scales during the
Early Triassic. The long recovery from Late Permian (late Changsingian)
mass extinction was not simply due to its unusual severity, but due to
repeated Early Triassic greenhouse crises (Retallack et al., 2011).

6. Animal crises

The Late Permian (upper Changhsingian) mass extinction terminated
gorgonopsian therapsids (Ward et al., 2005), the Middle Permian
(mid-Capitanian) mass extinctions terminated dinocephalian therap-
sids (Retallack et al., 2006), and both events strongly reduced
vertebrate biodiversity (Rubidge, 1995; Fröbisch, 2008). These events
together with basal Wordian and basal Carnian greenhouse events
punctuate dynasties of Permian–Triassic vertebrates: Early Permian
pelycosaur, Middle Permian dinocephalian, Permian–Triassic dicyno-
dont, Middle Triassic rhynchosaur and Late Triassic dinosaur faunas.
Early Permian pelycosaur faunas included archaic reptiles and am-
phibians not much different from those of Carboniferous coal swamps,
but by the Late Triassic there were already a variety of small mammals
and large dinosaurs (Benton, 1983, 2008; Kitching and Raath, 1984;
Benton et al., 2004; Lucas, 2006, 2009).

Greenhouse crises may also have played a role in mass extinctions
and long-term evolutionary trends. Not only would greenhouse gases
have disrupted life on land with warmer and wetter climates, but
with spreading tropical pathogens, long-distance plant and animal
migrations, sea level rise, groundwater hypoxia and water acidification
(Retallack, 2011). In addition, atmospheric oxygen depleted bymassive
Fig. 8. Utah–NewMexico paleoclimatic proxy record (after Retallack, 2009a) compared with
(data from Angielczyk and Walsh, 2008).
emissions of CH4 and H2S (Berner, 2006) would have challenged
animals with pulmonary edema and other maladies of mountain sick-
ness familiar to mountaineers today (Retallack et al., 2003; Engoren
and Retallack, 2004). High elevations may have become uninhabitable,
further reducing habitat for many animals (Huey and Ward, 2005).
Lystrosaurus, notable as one of the few survivors of the Late Permian
mass extinction (Botha and Smith, 2007), shows a variety of adapta-
tions to low oxygen atmosphere (Retallack et al., 2003): small–medium
body size, secondary bony palate, barrel chest, short rib cage (sup-
porting a muscular diaphragm?), and short muscular limbs (allowing
burrowing: Groenewald, 1991).

Fig. 8 shows that both upper Changhsingian and mid-Capitanian
mass extinctions were turning points in long-term evolution of respira-
tory adaptations in South African Permian–Triassic and South American
Late Triassic anomodont therapsids (data from Angielczyk and Walsh,
2008). Both greenhouse and mass extinctions events curtailed a long-
term increase in body size (Fig. 8d), and were followed by marked
advances in area of both the secondary bony palate (Fig. 8c) and inter-
nal nares (Fig. 8d). The bony secondary palate separates the buccal from
the nasal cavity, thus creating an airway unobstructed by tongue or
food. Increased area of the bony secondary palate expanded to cover
areas that were internal nares in Early Permian therapsids, but the
area of internal nares remained little changed because of increases in
body size through time (Fig. 8).

A long term shift from the sprawling gait of crocodilians to themore
erect gait of mammals is seen within Permian and Triassic fossil track-
ways (Kubo and Benton, 2009). Within dicynodonts this transition
was completed by the latest Permian Coal Cliff Sandstone (Retallack,
1996; Retallack et al., 2011).

7. Conclusions

Numerous CO2 greenhouse spikes are now recognized during the
Permian and Triassic (Table 3), and these have consequences for stra-
tigraphy and paleontology, as shown in Fig. 9 for sections in Australia,
Permian–Triassic changes in respiratory adaptations of anomodont therapsid synapsids
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Fig. 9. International correlations of Permian and Triassic greenhouse crises.
Data sources for columns are. a) Gradstein et al. (2004), Ovtcharova et al. (2006). Shen et al. (2011) b) Retallack (2005a). c) Retallack et al. (2011). d) Meyen (1982), Sadovnikov
(2008), Sadovnikov and Orlova (1990), Kozur and Weems (2011). e–f) Kitching and Raath (1984), Rubidge (1995). g) Retallack (2005a). h) Thomas et al. (2011).
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in Australia, Siberia, South Africa, Texas and northwest China. Green-
house spikes were times of marine transgression (Retallack, 2011)
and of braided rather than meandering streams (Retallack, 1999;
Ward et al., 2000), with widespread stratigraphic consequences.
Greenhouse crises also terminated glacial episodes (Fielding et al.,
2008). Greenhouse spikes were also times of lycopsid acme zones
(Retallack, 1997c). Many famous Permian and Triassic fossil deposits
for articulated fish and insects coincide with greenhouse crises
(Woodward, 1890, 1908; Hussakof, 1916; Wade, 1935; Milner, 1981;
Hankel, 1992; Olsen and Johansson, 1994; Benton and Spencer,
1995; Gand et al., 1996; Shishkin, 1998; MacRae, 1999; Shishkin et
al., 2000; Etter, 2002; Johnson et al., 2002; Witzmann and
Pfritzschner, 2003; Grimaldi and Engel, 2005). Greenhouse crises en-
hance a variety of preservative conditions, such as high sea level,
greater magnitude of storms and floods, and acidification and anoxia
of groundwater (Retallack, 2011). Greenhouse crises were survived
by small to medium vertebrates capable of burrowing and coping
with low oxygen (Retallack et al., 2003). In sequences of red
calcareous paleosols (Figs. 2–3), greenhouse crises are marked by
deep-calcic well-developed clayey paleosols (Retallack, 2009a). In
sequences of coal measures, greenhouse crises are marked by
paleosols with siderite and berthierine indicative of hypoxia
(Retallack, 1997b; Sheldon and Retallack, 2002). By altering both cli-
mate and groundwater, CO2 greenhouse spikes had varied biotic and
sedimentary consequences that have yet to be considered in many
sequences.

Terminological problems arise from the fact that Middle to Late
Permian mass extinctions and greenhouse horizons are not at the
end ofMiddle or Late Permian (Kozur andWeems, 2011). It has become
customary to talk of “end-Permian” (Shen et al., 2011) and “end-
Guadalupian” extinctions (Clapham et al., 2009). The stratigraphic
gap between the lowest basal Triassic conodont Hindeodus parvus and
extinction and carbon isotopic evidence of greenhouse crisis in the
stratotype section at Meishan, China, is only 17 cm, which is now
thought to represent 200,000 years (Shen et al., 2011). However this
interval can be estimated from carbon isotope chemostratigraphy as
10 m near Hovea, western Australia (Metcalfe et al., 2008; Shi et al.,
2010), 18 m in South Africa (Retallack et al., 2003), 20 m at Caprock
Canyons, Texas (Retallack, 2005a), 40 m near Muswellbrook, in south-
eastern Australia (Retallack et al., 2011), 40 m in northwest China
(Metcalfe et al., 2009; Thomas et al., 2011) and 50 m at Graphite Peak,
Antarctica (Krull and Retallack, 2000). Middle Permian mass extinction
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in stratotype sections of China is now consideredmid-Capitanian rather
than end-Capitanian (= end-Guadalupian: Wignall et al., 2009). The
end-Guadalupian in China is now dated at 259 Ma (Shen et al., 2010)
and the Emeishan flood basalts at 257±9 Ma (Lai et al., 2012). An age
of 262 rather than 259 Ma is likely for the mid-Capitanian glossopterid
mass extinction in Antarctica (Retallack et al., 2006) and southeastern
Australia (Retallack et al., 2011), and dinocephalian extinction in
South Africa (Retallack et al., 2006) and Russia (Lucas, 2009). These
differences arise because Middle and Late Permian and Triassic are
defined by first appearances of conodonts, not mass extinctions
(Henderson, 2005).

Permian and Triassic greenhouse spikes are of special interest
because they include two of the greatest greenhouse crises of the Phan-
erozoic (upper Changhsingian andmid Capitanian), and a variety of less
severe greenhouses (Figs. 4–8). Such an array of cases can be used to
examine a variety of hypotheses about climatic and biotic consequences
of spikes in atmospheric CO2. Will such CO2 increases result in wetter
local climates? Will CO2 rises result in warmer climate? Will CO2 rises
promote poleward dispersal of thermophilic plants? Will CO2 rises
select for improved vertebrate respiration? Data presented here
(Figs. 4–5 and 7–8) answers all these questions in the affirmative, but
more could be done to quantify the effects of CO2 from such data.
Comparable data has been used for the Utah–New Mexico time series
(Retallack, 2009a), to determine empirically that CO2-temperature
sensitivity (MAT change with CO2 doubling) for that region is 0.8 °C.
This was the first such estimate based on empirical paleoproxy data,
and the estimate is low compared with global sensitivity determined
by modeling studies (1.5–6.2 °C: Royer et al., 2007). Similar data from
the Utah–Mexico time series was used to determine CO2-precipitation
sensitivity (MAP increase for CO2 doubling) of 89 mm for calcic horizon
estimates and 128 mm for geochemical estimates (Retallack, 2009a).
These studies are preliminary indications of what can be learned from
such data on past consequences of elevated atmospheric CO2.
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